
fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Checking System
Rules Using System-Specific, Programmer-

Written Compiler Extensions

Dawson Engler Benjamin Chelf Andy Chou Seth Hallem

1Computer Systems Laboratory
Stanford University

Presenter: Yoon-Kah Leow

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Outline of Topics

I Motivation for using Meta-level Compilation

I Meta-level Compilation

I Metal and xg++ Extensions

I Coverity Lessons Learnt

I Discussion and Conclusion

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Checking for System-Rules Violations Using Formal
Verification

1. Advantages

1.1 Able to locate hard-to-find errors. (i.e., when defined
appropriately)

2. Disadvantages

2.1 Hard to create a comprehensive specification.
2.2 Specifications are only an abstraction of actual code.

Can we propose something much easier than this?

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Checking for System-Rules Violations Using Testing

1. Advantages

1.1 Testing is easier than verification to implement.
1.2 Operates on the actual code.

2. Disadvantages

2.1 Execution paths grows exponentially with increasing code size.
2.2 Difficult to track intermittent bugs.
2.3 Hard to interpret test results.

Can we propose something that scales better than this?

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Checking for System-Rules Violations Using Manual
Inspection

1. Advantages

1.1 Take into consideration of various semantic levels.
1.2 Flexible

2. Disadvantages

2.1 Difficult to scale to large code sizes.
2.2 Inconsistent results.

Can we propose something that is more consistent?

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Checking for System-Rules Violations Using Compilers

YES! Compilers are a good alternative but what is missing?

I Meta-semantics of the underlying code.

I An easy yet scalable way for developers to extend the
compiler, xg++.

I Solution is Meta-level Compilation (MC).

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Checking for System-Rules Violations Using Compilers

YES! Compilers are a good alternative but what is missing?

I Meta-semantics of the underlying code.

I An easy yet scalable way for developers to extend the
compiler, xg++.

I Solution is Meta-level Compilation (MC).

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Checking for System-Rules Violations Using Compilers

YES! Compilers are a good alternative but what is missing?

I Meta-semantics of the underlying code.

I An easy yet scalable way for developers to extend the
compiler, xg++.

I Solution is Meta-level Compilation (MC).

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

What is Meta-level Compilation?

1. Extend compilers with checkers defined as high-level state
machines.

2. State machines are defined using a language called Metal .

3. Checkers are dynamically-linked into the compiler.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

An Example Metal State Machine

Pattens defining state transitions

1. sti() | restore flags() → enable

2. cli() → disable

Available States

1. is enabled: disable → is disabled | enable → error(double
enable)

2. is disabled: enable → is enabled | disable → error(double
disable) | end of path → error(exiting with interrupt request
disabled!)

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Potential Caveats

1. Extensions do not ensure 100% bugs-free.

2. Unable to check for proprietary systems features.

2.1 Send error-logs to system designers for verification.
2.2 Disregard items that is hard to reason.

3. False positives caused by local analyses.

3.1 Add global analysis or system-specific information.
3.2 Provide extra API calls to suppress warnings.

4. Compiler compatibility issues with other languages.

4.1 Remove illegal GNU ’C’ constructs.
4.2 Relax type-checking in g++ compiler front-end.
4.3 Port Metal language based checkers to support other

languages.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Expected Behavior of Assertions

MC detects code deviation in assertion constructs based on the
following 2 behavior definitions.

1. assert is used typically during development.

2. assert should never fail.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Assertion Checking Extension State-Machine

Patterns defining state transitions

1. Any statement resembling the form assert(expr).

2. Variables of any type in expr .

3. Any function call with any arguments in expr .

Available States

1. start: assert(expr) → mgk expr recurse(expr, in assert)

2. in assert: any fcall(args) → error(function call) | x=y →
error(assignment) | z++ → error(post-increment) | z++
→ error(post-decrement)

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Assertion Checking with Static Analysis

1. Track scalar variable values using dataflow analysis.

2. Evaluate the set of values accumulated for the variable in an
assert statement.

3. Set of values is the union of all previous constant assignments.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Temporal Orderings

MC checks for code execution order in the following scenarios.

1. System calls should always validate application pointers before
using them.

2. Execution order during memory allocation and deallocation.

2.1 Check returned pointer handler after malloc invocation before
using it.

2.2 Ensure deallocated memory is not used.
2.3 Paths that exits with an error needs to deallocate memory.
2.4 Allocated memory size cannot be lesser than the size of the

object.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Tracking Pointer Copying Between Kernel and User Space
State-Machine

1. Track all pointer variables during each system call.

2. Mark each pointer variable as tainted .

3. Eliminate/kill each pointer variable if it is re-assigned or
passed on to a tainted function.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Extensions Dealing with Global Contexts

Expected global Linux rules.

1. Check for kernel code invoking a blocking function during
interrupt disabled or while holding a spin-lock.

2. Check for kernel code invoking a blocking function during
kernel module loading.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Global analysis to detect blocking routine

1. Invoke local pass using a Metal extension.

2. Mark every blocking kernel routine.

3. Generate a global call-graph.

4. Invoke global pass and mark all routines that invokes a
blocking routine.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Check for deadlocks in the Linux Kernel

Pattens defining state transitions

1. sti() | restore flags() → enable

2. cli() → disable

Available States

1. is enabled: disable → check blocking functions(is disabled)

2. is disabled: enable → is enabled

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Optimization Extensions

Created extensions to optimize FLASH cache coherence protocol in
the following areas.

1. Buffer optimization to remove redundant buffer allocation for
control messages.

2. Detects redundant default message’s buffer length.

3. Applying XOR operation to consecutive messages that have
headers the same as the previous message.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Coverity Lessons Learnt

After commercialization of their product under the brand name,
Coverity, the authors experience the harsh reality from the
commercial world.

1. Associating coding practices with compiler.

2. Managing unconventional compiler extensions in embedded
design development.

3. Acquiring out-dated compiler designs.

4. Customers are not concern with bugs.

5. Programmers have a weak grasp in compilers and disregard
hard-to-understand bugs.

6. Customers have low trust in the product.

7. A good error is an error which can be diagnosed easily.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Managing Unconventional ’C’ Code with a ’C’ Compiler

Utilise a third party software to manage variations in ’C’ language.

1. Utilize Edison Design Group (EDG) front-end. Design targets
feature compatibility and version-specific bug compatibility.

2. Develop code ’transformers’ to parse code into reasonable
intermediate representations to be interpreted by EDG.

3. Hack EDG code to ensure compatibility!

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

fsu-logo

Outline
Motivation for using Meta-level Compilation

Meta-level Compilation
Metal and xg++ Extensions

Coverity Lessons Learnt
Discussion and Conclusion

Discussion and Conclusion

1. A good bug is easy to diagnose yet hard to dispute.

2. Users emphasizes on a tool which is scalable, easy to use,
and maintains high standard of accuracy with low number of
false positives.

3. Validation engineers might not have sufficient knowledge of
the tested code to write the necessary extensions.

Presenter: Yoon-Kah, Leow CSc553: Principles of Compilers, The University of Arizona

	Outline
	Motivation for using Meta-level Compilation
	Meta-level Compilation
	Metal and xg++ Extensions
	Coverity Lessons Learnt
	Discussion and Conclusion

