
CSc 553

Principles of Compilation

0 : Administrivia

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

collberg@gmail.com


Introduction



Class : 553 – Principles of Compilation
Lecturer : Christian Collberg
Email : collberg@gmail.com

WWW : http://www.cs.arizona.edu/∼collberg

Office : 734
Office Hours : Tuesday 09:00-10:00
Phone : 621-6612
Lectures : TTh 12:30-13:45, GLD-S 701



Prerequisites

You should have had an introductory compiler class.
Specifically, you should understand parsing and semantic
analysis fairly well, and know something of code generation.
This is normally taught in an undergraduate compiler class
such as 453. If you lack this background you should read the
relevant chapters in the textbook.

You should be a proficient C programmer. Some knowledge of
Java may also be necessary.

Finally, you should have some background in an assembly
language. It doesn’t matter which one.



Compiler Design: We will...

gain a deeper understanding of compiler design in general;

gain a deeper understanding of programming language design;

learn more about runtime systems including interpretation,
garbage collection, exception handling;

look more closely at code generation and code optimization;

examine parallelizing compilers.



Topics

interpretation: Instruction sets, fast interpreter implementation.

fancy programming constructs: Exception handling, garbage
collection, iterators, modules, object oriented
language features.

code generation: Instruction selection, register allocation,
instruction scheduling, peephole optimization.

program analysis: Alias and shape analysis, dependence analysis,
data-flow analysis, control-flow analysis, type
hierarchy analysis.

code optimization: Global optimization, memory hierarchy
optimizations, inlining.

scientific code: FORTRAN, parallel computers, parallelizing
compilers.



Syllabus

You are responsible for reading
and understanding this syllabus.

If you have any concerns or issues
about the information in this document
you should bring them up during the

first week of class.



Exam-schedule

1 There is no midterm exam.

2 The final exam is scheduled for Wed May 11, 1:00-3:00.



Coursework



Course Work and Assessment

Assignment 1 Interpretation.

Assignment 2 Garbage collection and Object-Orientation.

Assignment 3 Code generation.

Assignment 4 Optimization.

Presentation One 20-minute presentation of a research paper.

The assignments will be done in teams of 2 students.

Assessment: Assignments 50%%, Presentation 10%%, Final
40%%.



Presentation

You will read one research paper related to compiler design,
and

1 prepare a 4-5 page summary handout (written in LATEX),
2 prepare a 15-25 slide presentation (written in LATEX/Beamer),
3 give a 20-minute presentation,
4 prepare 3 (high-level) questions suitable for a final exam.

I will give you LATEX templates for the handouts and slides.

The presentation and handout should
1 clearly describe the problem the authors solve,
2 give a high-level overview of the techniques employed,
3 present the results of the paper (theorems, performance, tools,

etc.),
4 give your own opinion of the ideas, techniques, solutions, etc.

presented in the paper, and suggestions for how they could be
extended or improved.

You may not plagiarize text/images from the paper.



Assessment Scheme



Tests, Quizzes, and Assignments

There will be

1 one comprehensive final exam, worth a total of 40%;

2 four programming assignments worth a total of 50%;

3 one paper presentation worth a total of 10%.



Late Assignments

Assignments handed in no more than 24 hours late will incur a
10% penalty.

Assignments handed in more than 24 but no more than 48
hours late will incur a 20% penalty.

Assignments handed more than 48 hours after the deadline
will receive a grade of 0.



Making up Tests

You cannot make up the final exam unless

1 you have notified the instructor in writing (email is fine) or by
phone prior to the test that you will be absent, and

2 you receive permission from the instructor to take the test at
a later date.



Curving

All grades (for exams, quizzes, assignments, etc) will be
curved up by throwing away the highest grade in the class and
scaling up such that the second highest grade is 100.

The curving is done to adjust for particularly difficult
tests/assignments, and to prevent an outlier from skewing the
grade distribution.

You cannot, after scaling, receive more than 100 on any exam,
quiz, assignment, etc.



Grade Assignment

You will fail the class if you get less than 50 (after curving) on
the final exam.

Otherwise, a curved total grade of [90,100] gives you an A,
[80,89] a B, [70,79] a C, [60,69] a D, and 59 and below an E.



Incomplete work policy

Except under exceptional circumstances I will not assign
incomplete grades.

I decide what is an exceptional circumstance.



Detailed Grading Scheme

To avoid any ambiguities, I have formalized the informal rules
given above.

The rules below should be considered minimum requirements
to achieve a particular grade. The instructor reserves the right
to do additional adjustments, as necessary.

Any contradictions, omissions, errors, or ambiguities in the
grading scheme will be resolved by the instructor.

Any issues or concerns regarding the grading scheme should
be brought to the attention of the instructor within the first
week of class.



Details — Curving

All raw scores range from 0 to 100.

Each individual score (final, midterm, quizzes, assignments)
will be curved using the function

curve(x̄ , s) = min(100, (100.0/max(x̄ − max(x̄)))x̄s )

where x̄ is a set of scores (for an assignment, a test, etc.) and
s is a student.

Note: − is set subtraction.

curve(x̄ , s) returns s’s score, curved up by
100.0/2nd highest class score .



Details — Curving. . .

For example, assume the following final exam scores:

34 45 66 88 98

After the curve has been applied, the scores will be

38.6 51.1 75 100 100



Details — Exams

final exam:

Let f̄ be the set of final exam scores.
Let f̄ s be the final exam score for student s.
Let W f be the weight of the final exam (40%).
t̄s
f = curve(f̄ , s)W f is the curved final score for

s.



Details — Presentation

Let p̄ be the set of presentation scores.

Let p̄s be the presentation score for student s.

Let Wp be the weight of the presentation (10%).

t̄s
p = curve(p̄, s)Wp is the curved presentation score for s.



Details — Assignments

Let āi be the set of scores for the i :th assignment.

Let ās
i be the score for student s on the i :th assignment.

Let Wa
i be the weight of the i :th assignment (

∑

i W
a
i = 50%).

Let ᾱs
i be the assignment score after late penalties have been

applied:

ᾱs
i =















ās
i if the assignment is handed in on time

0.9ās
i if the assignment is > 0 and ≤ 24 hours late

0.8ās
i if the assignment is > 24 and ≤ 48 hours late

0 if the assignment is > 48 hours late



Details — Assignments. . .

t̄s
a =

∑

i(curve(ᾱi , s)W
a
i ) is the total curved assignment score

for student s.

If, for whatever reason, the actual number of assignments is
less than the planned number, the Wa

i ’s will be scaled up
uniformly.



Details — Total Scores

The raw total score for student s is

t̄s = t̄s
f + t̄s

p + +t̄s
a

For every absence > 2 I will subtract 4 points from the final
grade:

ūs = t̄s − (max(0,# of absences − 2)) ∗ 4

We round up to the nearest integer:

totals = ⌈ūs⌉



Details — Grade Assignment

The final grade assignment for student s is

grades =































E if ts
f < 50























A if totals ∈ [90, 100]
B if totals ∈ [80, 89]
C if totals ∈ [70, 79]
D if totals ∈ [60, 69]
E if totals < 60

otherwise

In other words, a student with a curved final exam score
ts
f < 50 will fail the class, regardless of their results on the

other assessment categories.



Attendance Policy

My goal is to keep class attendance high so that we can get
good discussions going in the class.

You are allowed to miss 2 (two)
classes during the semester without
penalty. For every absence after
that I will deduct 4 (four) points off
your final grade.



The Handouts



Handouts & Other Material I

1 The textbook is “Compilers – Principles, Techniques, and
Tools”, by Aho, Sethi, Ullman.

2 I always make copies of my transparencies available to
students. Note that

I do this to relieve you of having to take notes during lectures,
they are not substitutes for reading the textbook,
their primary purpose is to remind you of what you need to
study for the exam.



Handouts & Other Material II

3 Various manuals and papers will be handed out during class.
Extra copies can be picked up from the boxes outside my
office.

4 Various information regarding the paper (including postscript
files of the handouts) can be found on the info-bahn:
http://www.cs.arizona.edu/~collberg/Teaching/553/2011/index.html

http://www.cs.arizona.edu/~collberg/Teaching/553/2011/index.html


Policies



Office hours

Office hours: Tuesday 09:00-10:00

I use an open door policy:



Collberg’s Café

Please come and see me to chat, ask questions, or snack:



Subject to Change Policy

The information contained in this course syllabus, other than
the grade and absence policies, may be subject to change with
reasonable advance notice, as deemed appropriate by the
instructor.

The instructor reserves the right to
1 add, drop, or change topics;
2 change exam or homework dates, etc.

Changes will be announced in class and on the
class web site!
You are responsible for checking this site regularly.



Notification of Objectionable Materials

There is no objectionable material in this class.



Students with Disabilities

If you anticipate barriers related to the format or requirements
of this course, please meet with me so that we can discuss
ways to ensure your full participation in the course.

If you determine that disability-related accommodations are
necessary, please register with Disability Resources (621-3268;
drc.arizona.edu) and notify me of your eligibility for
reasonable accommodations. We can then plan how best to
coordinate your accommodations.



Student Code of Academic Integrity

Assignments in this course require individual attention and
effort to be of any benefit. All work is expected to be that of
each student alone. You may not consult with others, except
in ways specifically authorized by the course instructor. You
also may not plagiarize another person’s work or copy another
person’s code.



Student Code of Academic Integrity. . .

Students are responsible for understanding and complying with
the University’s Code of Academic Integrity. A synopsis of the
Code is attached; the full text is available from the Office of
the Dean of Students in Room 203 Old Main. Among other
provisions, the Code demands that the work you submit is
your own, and that graded papers and exams will not
subsequently be tampered with. Copying of another student’s
programs or data, or writings is prohibited when they are part
of a published class assignment; it is immaterial whether the
copying is by computer, xerox, pen or other means. Witting
collaboration in allowing such copying is also a Code violation.



Student Code of Academic Integrity. . .

Assignments in this course require individual attention and
effort

Violations of the Code will, at minimum, result in loss of credit
for a graded item. An egregious first violation or any second
violation will minimally result in failure of the entire course.

See also http://studpubs.web.arizona.edu/policies/cacaint.htm the University of
Arizona Code of Academic Integrity.

I take academic integrity seriously! I will report every violation!

http://studpubs.web.arizona.edu/policies/cacaint.htm


Expected classroom behavior

Be courteous and treat others in the class with respect.

Please be courteous to other students by refraining from
talking, playing loud music in your headphones, etc.

Silence cell phones, pagers, etc.

We come to class to learn: don’t read the newspaper, solve
cross-word puzzles, etc.

Treat the TAs with respect: they do their best to grade your
assignments on time, help you with software installation
problems, help you with assignments, etc. But they have their
own class work to attend to, too.



Policies against threatening behavior

Read and abide by the following link:
http://policy.web.arizona.edu/~policy/threaten.shtml.

http://policy.web.arizona.edu/~policy/threaten.shtml


Now What?

Let’s Have Fun!!!1

1That’s right — compilers are fun!



From: Dwight VandenBerghe, dwight@pentasoft.com

Date: 31 May 1997 09:43:49 -0400

Newsgroups: comp.compilers

> why did we all get into compilers?

I was seventeen and had a lot of time on my hands. I

was a programmer for the US Marines, stationed in Da

Nang, Vietnam, in the mid sixties, and during the

long nights I would go through the IBM microfiche -

they kept a full set in the computer room, all the

manuals and all the source code for all their tools.

I got interested in the COBOL compiler, and I read

through the assembler code for it. I still remember

reading the instructions that scanned in an integer.

It just thrilled me, seeing how that magic was done.

I stayed up late into the early morning, trying to

figure it all out.



It’s 3:10AM here now, and I’ve just finished

downloading some papers from Norway on attribute

grammars in ML. I have to go print them out. I’m

dead tired, but this stuff is so exciting that sleep

will have to wait. I’m 48 now, and my youngest boy

is almost seventeen. My grandkids are great, and my

wife is a gem, but you know, I hope that I am still

cheating sleep for another couple of decades, because

I feel seventeen, not nearly fifty. Compilers are

magical. Compilers are like the two opposing mirrors

in the funhouse - you see infinity, yet you are

clearly finite. Writing a compiler, you go back and

forth, from the infinite to the practical, over and

over again.



And now, with the advent of functional programming

into my life, there is an elegance to the code that I

haven’t seen before. The functional style seems to

me to be made for us compiler jockeys. And the

advances that have been made in this field: BURS

theory, the SUIF system, transformational tree

rewrite systems, higher-order attribute grammars, the

exciting new work with LL(infinite) parser generators

... it’s simply thrilling. Nothing else compares,

at least, for me. Applications suck; device drivers

are tedious; operating systems and file management

and databases are boring. After 31 years, I’ve

pretty much done it all, and if it wasn’t for

compilers I’d be bored stiff. Yet here it is, the

wee hours yet again. Last night I finally hauled

myself to sleep at a little after 2AM, because I

found some great papers on polymorphic type theory on

some server in the UK. So it goes.

Dwight



What’s available in Compiler Jobs?

From: Clifford Click, cliff.click@Eng.Sun.COM

Newsgroups: comp.compilers

> 2. What do you think is the future for this market?

> 3. Is the demand growing?

Skilled optimizing compiler writers are in high

demand. The market is small, but the the labor pool

is even smaller. (The demand for people who make

functioning parsers is much smaller, probably due to

the ease of using lex & yacc).



The future for this market? Welll... as long as

chip architects and language designers are alive I

got a job. Merced looks like full time employment

for 20+ people for 5+ years (OUTSIDE of Intel & HP;

they probably have double that number already and are

always looking for more). [Again, I’m talking about

optimizing compiler writers; big optimizers grow big

support groups that hire more people in nearby

fields]

And yes, I believe the demand is growing.



www.compilerjobs.com/jobs/microsoft.htm

Job Title Software Design Engineer Lead

Description The Visual Basic.Net team is in search of an

exceptionally strong development lead,

experienced and interested in driving the

development effort on Visual Basic .Net

compiler. Responsibilities include leading

a team in designing and implementing new

VB.Net language features.

This is a great opportunity to be involved

with the development of the most successful

development tool and one of the most important

technologies at Microsoft.

Qualifications Solid knowledge of C/C++ and multi-threaded

programming. A BA/BS or MS degree in CS.

Website www.microsoft.com



www.compilerjobs.com/jobs/cray.htm

Job Location Mendota Heights, MN USA

Description Cray Inc. designs, builds, and sells high-

performance MPP, vector processor and scalable

shared memory parallel computer systems.

Qualifications Proficient in C, C++, and Fortran. Minimum of

2-3 years experience in writing compilers.

Familiar with Unix. Experience is desired in:

Compiling for Multiprocessors, Parallel

programming, Performance tuning.

Education: B.S. in Computer Science or equivalent

experience.

Our website http://www.cray.com



www.compilerjobs.com/jobs/cloakware.htm

Job Title Compiler Designer - Permanent

Job Location Ottawa, Ontario, CANADA

Description Working with our core technology team you

will develop compilers for our Tamper-Resistent

Software (TRS).

Our website http://www.cloakware.com

Qualifications Cloakware is seeking expert Compiler Writers,

with knowledge any or a combination of the

following: Optimization, Program Transformation,

Combinatorics, Obfuscation Techniques, Program

slicing Techniques, Numerical Analysis, Semetric

Representations for Control- and Data-Flow,

Control- and Data-Flow Dependencies



www.compilerjobs.com/jobs/irvine.htm

Job Title Post-Doctoral Researcher

Description Several postdoctoral research positions are

available, working on new approaches to mobile

code; this is compiler-related research.

Qualifications Applicants must have attained a Ph.D. in

Computer Science or related field and have

prior experience with software systems,

possess demonstrated familiarity with code

generation for modern RISC architectures,

and the Ada and Java programming languages.

Website www.ics.uci.edu/~franz


