
CSc 553

Principles of Compilation

1 : Compiler Overview

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

collberg@gmail.com

What does a compiler do?

What’s a Compiler???

DataType:Tree

File

P.o

Abstract

Machine

Interpreter

P.abs

Abstract

Machine Code

Integrated Programming

Environment with

Structure Editor,

Compiler, and Debugger.

Link− able

Linker

P File

Executable

P

File

Executable

Text Editor

void P () {
 int i
}

Buffers File Edit Help

−−Emacs: P.c 3:08pm −74%−

File Edit Execute

Debug

Run

Compile

(i==1)if {
P.c

Compiler

Assembler?

File

Source: P

}

Text

void P (•) {

i++;•

}•

int i;•

Compiler Input and Output

Compiler Input

Text File Common on Unix.

Syntax Tree A structure editor uses its that knowledge of the
source language syntax to help the user edit & run
the program. It can send a syntax tree to the
compiler, relieving it of lexing & parsing.

Compiler Output

Assembly Code Unix compilers do this. Slow, but easy for the
compiler.

Object Code .o-files on Unix. Faster, since we don’t have to call
the assembler.

Executable Code Called a load-and-go-compiler.

Abstract Machine Code Serves as input to an interpreter. Fast
turnaround time.

C-code Good for portability.

Compiler Tasks

Static Semantic Analysis Is the program (statically) correct? If
not, produce error messages to the user.

Code Generation The compiler must produce code that can be
executed.

Symbolic Debug Information The compiler should produce a
description of the source program needed by symbolic
debuggers. Try man gdb .

Cross References The compiler may produce cross-referencing

information. Where are identifiers declared &
referenced?

Profiler Information The compiler should produce profiler

information. Where does my program spend most of
its execution time? Try man gprof .

The structure of a compiler

Compiler Phases

A N A L Y S I S

Semantic Analysis

Syntactic Analysis

Lexical Analysis

Intermediate Code

Generation

Code Optimization

Machine Code

Generation

S Y N T H E S I S

Compiler Organization

Compiler Organization I (a)

One Pass Analysis and Synthesis Fast. OK for
definition-before-use languages like Pascal. No
explicit intermediate representation. Target machine
code is generated on-the-fly. Very little optimization
is possible since we can’t “look forward”. Difficult to
retarget, since semantic analysis and code generation
are performed simultaneously.

One Pass Plus Peephole Optimization Better code generation by
performing a scan over the machine code and making
local improvements.

One Pass Analysis + IR Generation Machine code is produced
from an explicit intermediate representation. Better
chances that the front-end & back-end can be
recycled.

Compiler Organization I (b)

Machine Code

Analysis and

Synthesis

One Pass Anal.

& IR Synth. +

Code gen.

One Pass plus

Peephole Opt.

Peephole

Optimization
Machine Code

Generation

A
n
a
l
y
s
i
s

S
y
n
t
h
e
s
i
s

A
n
a
l
y
s
i
s

S
y
n
t
h
e
s
i
s

A
n
a
l
y
s
i
s

S
y
n
t
h
e
s
i
s

I

R

Source Code

Machine Code

Source Code

Machine Code

Machine Code

Source Code

Intermediate Code

One Pass

Compiler Organization II (a)

Multipass w/ Interm. Files Early compilers were severely
constrained by the size of available primary storage.
Therefore the compiler was often organized as a
series of passes, where each pass wrote its output to
an intermediate file which then became input to the
next pass. Still a good design if you’re not worried
about speed.

Multipass Analysis Languages that allow “use-before-declaration”,
require the compiler to process the program more
than once..

Multipass Synthesis Highly optimizing compilers usually process
the intermediate representation in several passes.
Often, we separate machine-independent and
machine-dependent optimizations.

Compiler Organization II (b)

file 2

a
r
s
i
n
g

L
e
x
i
n
g

A
n
a
l
y
s
i
s

.

D
e
c
l

Semantic

Analysis

Multipass

with multiple

files

Multipass

Analysis for

forw. ref.

Machine−

independent

Optimization

IR Generation

Machine−spec.

Optimization

Code Gen.

Analysis

High

Level
IR

Code

Generation

Semantic

Analysis

Analysis

Syntactic

token

file

Lexical

Analysis

High

Level
IR

IR
Level

Low

IR
Level

Low

Source Code Source Code

IR SyTab

Multipass

Synthesis

Synthesis

Machine Code

Source Code

Machine Code

IR
file 1

IR

P

Multi-Language — Multi-target Compilers

Mips−compiler

O

N

T

F

Ada Pascal Modula−2 C++

B

A

C

K

Sparc Mips 68000 IBM/370

E

N

D

E

N

D

Pascal Pascal

68k−compiler
Ada

Mips−compiler

R

Multipass Compilation

Multi-pass Compilation I

We are going to work with compilers with multi-pass analysis
and multi-pass synthesis parts.

These compilers are very general:

They can handle any language, whether free or fixed
declaration order.
They can produce efficient code.
They are portable since the front- and back-ends can be reused
for compilers for new languages or new architectures.

We will assume that the parser builds a tree (an abstract

syntax tree) that is modified during semantic analysis, and
then used during code generation.

Multi-pass Compilation. . .

The next slide shows the outline of a typical compiler. In a
unix environment each pass could be a stand-alone program,
and the passes could be connected by pipes:

lex x.c | parse | sem | ir | opt | codegen > x.s

For performance reasons the passes are usually integrated:

front x.c > x.ir

back x.ir > x.s

The front-end does all analysis and IR generation. The
back-end optimizes and generates code.

Multi-pass Compilation. . .

Optimize

AST

asm VM

Semantic
Analyser

Interm.
Code Gen

IR

Machine
Code Gen

IR AST

Lexer

tokens

source

errors

errors

Parser

errors

Gen
VM Code

NIL

then else nextexpr

If−StatType Next

id:T

Binary

RightOp:<Left

val:1

IntConst

id:a

Ident

Assign−Stat

des expr next

Ident

id:b

IntConst

val:2

NIL

...

NIL

TYPE, Ident:T, ARRAY, [,...

IF, Ident:a, <,

IntConst:1, THEN, Ident:b

:=, IntConst:2, END,...

Lexical
Analysis

Syntactic
Analysis

Semantic
Analysis

name: T

high: 10

type

low: 2

ARRAY

Real

Boolean

Integer

Symbol
Table

Branch(Op:>=, Lab:L1)

Load IntConst(val:1)

GlobalVar(id:a)

Store

GlobalVar(id:b) IntConst(val:2)

intermediate code
Generation of

ld

cmp

bge

set a, %l0

[%l0], %l0

%l0, 1

L1

L1:

set

set

st %l1, [%l0]

b, %l0

2, %l1Optimiz−
ation

Machine
Code
Generat.

then else nextexpr

If−Stat

Ident

id:a type

Assign−Stat

des expr nextRightOp:<Left type

Binary

IntConst

val:1 type

Ident

id:b type
IntConst

val:2 type

TYPE T =

ARRAY[2..10] OF REAL
...

...
IF a<1 THEN b:=2 END

NIL

...

Example

Example I

Let’s go through the compilation of a procedure Foo, from
start to finish:

PROCEDURE Foo ();

VAR i : INTEGER;

BEGIN

i := 1;

WHILE i < 20 DO

PRINT i * 2;

i := i * 2 + 1;

ENDDO;

END Foo;

The compilation phases are:

Lexial Analysis ⇒ Syntactic Analysis ⇒

Semantic Analysis ⇒ Intermediate code generation

⇒ Code Optimization ⇒ Machine code generation.

Example II – Lexical Analysis

Break up the source code (a text file) and into tokens.

Source Code Stream of Tokens

PROCEDURE Foo ();

VAR i : INTEGER;

BEGIN

i := 1;

WHILE i < 20 DO

PRINT i * 2;

i := i * 2 + 1;

ENDDO;

END Foo;

PROCEDURE, <id,Foo>, LPAR, RPAR, SC,

VAR, <id,i>, COLON, <id,INTEGER>,SC,

BEGIN, <id,i>,CEQ,<int,1>,SC,

WHILE, <id,i>, LT, <int,20>,DO,

PRINT, <id,i>, MUL, <int,2>, SC,

<id,i>, CEQ, <id,i>, MUL, <int,2>, PLUS,

<int,1>, SC, ENDDO, SC, END, <id,Foo>,

Example III/A – Syntactic Analysis

Stream of Tokens Abstract Syntax Tree

PROCEDURE, <id,Foo>,

LPAR,RPAR,SC,VAR,<id,i>,

COLON,<id,INTEGER>,SC,

BEGIN,<id,i>,CEQ,<int,1>,

SC,WHILE,<id,i>,LT,<int,20>,

DO,PRINT,<id,i>,MUL,<int,2>,

SC,<id,i>,CEQ,<id,i>,MUL,

<int,2>,PLUS,<int,1>,SC,

ENDDO,SC,END,<id,Foo>,SC

<1i

ASSIGN WHILE

i 20

VAR−DECL

PROC−DECL

*

i 2

i

ASSIGN

*

i 2

1

+

PRINT

EXPR op:<

Left Right

LITERAL

val:1

VAR−REF

id:i

VAR−REF

id:i

LITERAL

val:20

ASSIGN−STAT

Des Expr

id:i

type:INTEGER

VAR−DECL

DeclsArgs Stats

id:FooPROC−DECL

WHILE−STAT

Expr Body

PRINT−STAT

Expr

EXPR

Left Right

op:*

VAR−REF

id:i

LITERAL

val:2

ASSIGN−STAT

Des Expr

EXPR

Left Right

op:*

VAR−REF

id:i

LITERAL

val:2

VAR−REF

id:i

EXPR

Left Right

op:+

LITERAL

val:1

Example IV/A – Semantic Analysis

Abstract Syntax Tree Decorated Abstract Syntax Tree

<1i

ASSIGN

VAR−DECL

PROC−DECL

i 20

WHILE

PRINT

*

i 2

PRINT

ASSIGN WHILE

INT

i

i

INT

1

INT

<

BOOL

INT

20

VAR−DECL

PROC−DECL

i

INT

2
INT

*

INT

ASSIGN

i

INT
2

INT

*

INT

1

INT

+

INT

i

INT

PRINT−STAT

Expr

EXPR op:<

Left Right

type:bool

WHILE−STAT

Expr Body

VAR−REF

id:i

type:int

LITERAL

type:int

val:20

EXPR

Left Right

type:int

op:*

LITERAL

type:int

val:2

VAR−REF

id:i

type:int

LITERAL

val:1

type:int

VAR−REF

id:i

type:int

id:i

type:INTEGER

VAR−DECL ASSIGN−STAT

Des Expr

DeclsArgs Stats

id:FooPROC−DECL

ASSIGN−STAT

Des Expr

VAR−REF

id:i

type:int

EXPR

Left Right

type:int

op:+

EXPR

Left Right

type:int

op:*

VAR−REF

id:i

type:int

LITERAL

type:int

val:2

LITERAL

val:1

type:int

Example V/A – Intermediate Code Generation

Decorated Abstract Syntax Tree Intermediate Code

PRINT

ASSIGN

VAR−DECL

WHILE

PROC−DECL

INT

i

i

INT

1

INT

<

BOOL

INT

20

*

INT

i

INT
2

INT

[1] ASSIGN i 1
[2] BRGE i 20 [9]
[3] MUL t1 i 2
[4] PRINT t1
[5] MUL t2 i 2
[6] ADD t3 t2 1
[7] ASSIGN i t3
[8] JUMP [2]
[9]

Example V/B – Intermediate Code Generation

Intermediate Code Intermediate Code Definition

[1] ASSIGN i 1
[2] BRGE i 20 [9]
[3] MUL t1 i 2
[4] PRINT t1
[5] MUL t2 i 2
[6] ADD t3 t2 1
[7] ASSIGN i t3
[8] JUMP [2]
[9]

ASSIGN A,B A := B ;

BRGE A,B ,C IF (A ≥ B) THEN
continue at instruction
C ;

MUL A,B ,C A := B ∗ C ;

ADD A,B ,C A := B + C ;

SHL A,B ,C A:=shift B left C

steps;

PRINT A Print A and a newline;

JUMP A Continue at instruction
A;

Example VI – Code Optimization

Intermediate Code Optimized Intermediate Code

[1] ASSIGN i 1
[2] BRGE i 20 [9]
[3] MUL t1 i 2
[4] PRINT t1
[5] MUL t2 i 2
[6] ADD t3 t2 1
[7] ASSIGN i t3
[8] JUMP [2]
[9]

[1] ASSIGN i 1
[2] BRGE i 20 [8]
[3] SHL t1 i 1
[4] PRINT t1
[5] ADD t2 t1 1
[6] ASSIGN i t2
[7] JUMP [2]
[8]

Example VII – Machince Code Generation

Intermediate Code MIPS Machine Code

[1] ASSIGN i 1
[2] BRGE i 20 [8]
[3] SHL t1 i 1
[4] PRINT t1
[5] ADD t2 t1 1
[6] ASSIGN i t2
[7] JUMP [2]
[8]

.data

_i: .word 0

.text

.globl main

main: li $14, 1

$32: bge $14, 20, $33

sll $a0, $14, 1

li $v0, 1

syscall

addu $14, $a0, 1

b $32

$33: sw $14, _i

Summary

Readings and References

Read the Dragon Book:

Introduction Chapter 1
A Simple Syntax-Directed Translator Chapter 2
A Complete Front-End Appendix A

Summary I

The structure of a compiler depends on
1 the complexity of the language we’re working on (higher

complexity ⇒ more passes),
2 the quality of the code we hope to produce (better code ⇒

more passes),
3 the degree of portability we hope to achieve (more portable ⇒

better separation between front- and back-ends).
4 the number of people working on the compiler (more people ⇒

more independent modules).

Some highly retargetable compilers for high-level languages
produce C-code, rather than machine code. This C-code is
then compiled by the native C compiler to machine code.

Summary II

Some languages (APL, LISP, Smalltalk, Java, ICON, Perl,
Awk) are traditionally interpreted (executed in software by an
interpreter) rather than compiled to machine code.

Some interpreters use dynamic compilation (or jitting),
switching between

1 interpreting the virtual machine code,
2 translating the virtual machine code to native machine code,
3 executing the native machine code,
4 optimizing the native and/or virtual machine code, and
5 throwing native code away if it is no longer needed or takes up

too much room.

All this is done dynamically at runtime.

Historical Notes

The First Compiler

FORTRAN I was the first “high-level” programming language.
It’s designers also wrote the first real compiler and invented
many of the techniques that we use today.

The FORTRAN manual can be found here:
http://www.fh-jena.de/~kleine/history.

The excerpt on the next few slides is taken from

John Backus, The history of FORTRAN I, II, and III,
History of Programming Languages, The first ACM

SIGPLAN conference on History of programming

languages, 1978.

http://www.fh-jena.de/~kleine/history

Before 1954 almost all programming was done in

machine language or assembly language. Programmers

rightly regarded their work as a complex, creative

art that required human inventiveness to produce an

efficient program. Much of their effort was devoted

to overcoming the difficulties created by the

computers of that era: the lack of index registers,

the lack of builtin floating point operations,

restricted instruction sets (which might have AND but

not OR, for example), and primitive input- output

arrangements. Given the nature of computers, the

services which "automatic programming" performed for

the programmer were concerned with overcoming the

machine’s shortcomings. Thus the primary concern of

some "automatic programming" systems was to allow the

use of symbolic addresses and decimal numbers...

Another factor which influenced the development of

FORTRAN was the economics of programming in 1954.

The cost of programmers associated with a computer

center was usually at least as great as the cost of

the computer itself. ... In addition, from one

quarter to one half of the computer’s time was spent

in debugging. ...

This economic factor was one of the prime motivations

which led me to propose the FORTRAN project ... in

late 1953 (the exact date is not known but other

facts suggest December 1953 as a likely date). I

believe that the economic need ... provided for our

constantly expanding needs over the next five years

without ever askinging us to project or justify those

needs in a formal budget.

It is difficult for a programmer of today to

comprehend what "automatic program- ming" meant to

programmers in 1954. To many it then meant simply

providing mnemonic operation codes and symbolic

addresses, to others it meant the simple’process of

obtaining subroutines from a library and inserting

the addresses of operands into each subroutine. ...

We went on to raise the question "...can a machine

translate a sufficiently rich mathematical language

into a sufficiently economical program at a

sufficiently low cost to make the whole affair

feasible?" ...

In view of the widespread skepticism about the

possibility of producing efficient programs with an

automatic programming system and the fact that

inefficiencies could no longer be hidden, we were

convinced that the kind of system we had in mind

would be widely used only if we could demonstrate

that it would produce programs almost as efficient as

hand coded ones and do so on virtually every job.

As far as we were aware, we simply made up the

language as we went along. We did not regard

language design as a difficult problem, merely a

simple prelude to the real problem: designing a

compiler which could produce efficient programs. Of

course one of our goals was to design a language

which would make it possible for engineers and

scientists to write programs themselves for the 704.

... Very early in our work we had in mind the

notions of assignment statements, subscripted

variables, and the DO statement....

The language described in the "Preliminary Report"

had variables of one or two characters in length,

function names of three or more characters,

recursively defined "expressions", subscripted

variables with up to three subscripts, "arithmetic

formulas" (which turn out to be assignment

statements), and "DO-formulas".

One much-criticized design choice in FORTRAN concerns

the use of spaces: blanks were ignored, even blanks

in the middle of an identifier. There was a common

problem with keypunchers not recognizing or properly

counting blanks in handwritten data, and this caused

many errors. We also regarded ignoring blanks as a

device to enable programmers to arrange their

programs in a more readable form without altering

their meaning or introducing complex rules for

formatting statements.

Section I was to read the entire source program,

compile what instructions it could, and file all the

rest of the information from the source program in

appropriate tables. ...

Using the information that was filed in section I,

section 2 faced a completely new kind of problem; it

was required to analyze the entire structure of the

program in order to generate optimal code from DO

statements and references to subscripted variables.

...

section 4, ... analyze the flow of a program

produced by sections I and 2, divide it into "basic

blocks" (which contained no branching), do a Monte

Carlo (statistical) analysis of the expected

frequency of execution of basic blocks--by simulating

the behavior of the program and keeping counts of the

use of each block--using information from DO

statements and FREQUENCY statements, and collect

information about index register usage ... Section 5

would then do the actual transformation of the

program from one having an unlimited number of index

registers to one having only three.

The final section of the compiler, section 6,

assembled the final program into a relocatable binary

program...

Unfortunately we were hopelessly optimistic in 1954

about the problems of debugging FORTRAN programs

(thus we find on page 2 of the Report: "Since

FORTRAN should virtually eliminate coding and

debugging...")

Because of our 1954 view that success in producing

efficient programs was more important than the design

of the FORTRAN language, I consider the history of

the compiler construction and the work of its

inventors an integral part of the history of the

FORTRAN language; ...

