
CSc 553

Principles of Compilation

13 : Garbage Collection — Uncooperative

Languages

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

collberg@gmail.com

Introduction

Uncooperative Languages

There is some information which is necessary in order to perform
automatic memory management:

1 We need to find the roots of the object graph, i.e. the
pointers from the stack, registers, or global variables which
point to objects on the heap.

2 We need to know the size, the beginning, and end of each
object.

3 For each object we need to find which of its fields are pointers.

Unfortunately, some languages have been designed so that it
is impossible to determine this information.

C and C++ are the two most popular such languages.

Uncooperative Languages. . .

C and C++ don’t separate safe and unsafe features (such as
address and bit manipulation) which are sometimes needed in
systems programming.

Modula-3 has similar unsafe features as C and C++ but they
can be encapsulated into unsafe modules, which don’t mess
up the safety of the main (safe) part of the program.

Uncooperative Languages. . .

Most GC algorithms assume that there is always a pointer to
the beginning of every object. Depending on the code
generator, that may or may not be true.

f(g,s) char (*g)(); char * s;

{ int i; int l = strlen(s);

for (i = 0; i < l; i++)

s[i] = (*g)(s[i]); }

There may be no pointer to s[0].

Uncooperative Languages. . .

We need to know

1 the roots of the object graph.

2 the size, the beginning, and end of each object.

3 which object fields are pointers.

Finding Roots:

Foo* f = new foo; // f = 0x53f36

f = NULL; // f* is garbage

int i = 0x53f36; // points to f...

Uncooperative Languages. . .

Finding the beginning:

char* str = new char[26];

strcpy(str, "This is a string");

str += 10; // Only ptr to str...

Finding pointers:

union Unsure {char* str; int i} x;

Conservative GC

Works OK for uncooperative languages (C, C++) where we
can’t distinguish between pointers and integers. Sometimes
fails to reclaim all garbage.

Main Ideas:

Allocate memory in chunks. Each chunk holds a collection of
objects of a certain size (i.e. it’s easy to find the start of
objects).

Chunks are numbered. A pointer consists of 12 bits of chunk
number (C) + 20 bits of offset within the chunk (O).

Conservative GC. . .

To check whether a value V = (C ,O) is a pointer to some
object we check that

1 Heap-bottom ≤ V ≤ Heap-top,
2 FirstChunk# ≤ C ≤ LastChunk#
3 the offset O is a multiple of the object size in chunk C .

Conservative GC. . .

32 bytes each

List:

1 2 3 4 5 6 7

size
= 8

mark
bits

Objects

Chunk 1:

.

. 8 bytes
each

V:

Chunk number Offset within chunk

(12 bits) (20 bits)

000000000111 00000000000000011110

Objects

Chunk 7: size mark
bits= 32

4K bytes

Chunk

Readings and References

Read Scott, pp. 389.

