CSc 553
Principles of Compilation

15 : OO Languages — Introduction

Department of Computer Science
University of Arizona

Copyright (© 2011 Christian Collberg

collberg@gmail.com

Object-Oriented Languages

@ Object-oriented languages extend imperative languages with:

© A classification scheme that allows us to specify is-a as well as
has-a relationships. Has-a is supported by Pascal, where we
can declare that one data item has another item (a record
variable has-a record field). Object-Pascal, Oberon, etc,
extends this capability with inheritance which allows us to
state that one data item is (an extension of) another item.

@ Late binding, which allows us to select between different
implementations of the same abstract data type at run-time.

Object-Oriented Languages. . .

@ @ Polymorphism, which is the ability of a variable to store values
of different types. OO languages support a special kind of
polymorphism, called inclusion polymorphism, that restricts
the values that can be stored in a variable of type T to values
of type T or subtypes of T.

@ Data encapsulation. Data (instance variables) and operations
(methods) are defined together.

© Templates and objects. A template (class or prototype)
describes how to create new objects (instances of abstract
data types).

Compiling OO Languages

@ Runtime type checking (a variable of type ref T may only
reference objects of type T or T's subtypes).

@ Because of the polymorphic nature of OO languages, we can't
always know (at compile-time) the type of the object that a
given variable will refer to at run-time. When we invoke a
method we can't actually know which piece of code we should
execute. Finding the right piece of code is called method
lookup. It can be done by name (Objective-C) or number
(C++).

@ Most OO languages rely on dynamic allocation. Garbage
collection is a necessary part of the runtime system of a
compiler for an OO language (C++ non-withstanding). This
requires runtime type description.

Example

Object-Oriented Example

TYPE Shape = CLASS

x, v : REAL;
METHOD draw(); BEGIN ---; END;
METHOD move(X,Y:REAL); BEGIN x := x+X; END;
END;
TYPE Square = Shape CLASS
side : REAL;
METHOD draw(); BEGIN ---; END;
END;

TYPE Circle = Shape CLASS
radius : REAL;
METHOD draw(); BEGIN ---; END;
METHOD area():REAL; BEGIN --- END;
END;

Example in Java

// Example in Java

class Shape {
double x, y;
void draw(); { --- }
void move(double X, double Y); {x = x+X; }}
class Square extends Shape {
double side;
void draw(); { ---}}
class Circle extends Shape {
double radius;
void draw(); { --- }
double area(); { --- }}

Example in Modula-3 (A)

(* Example in Modula-3 *)
TYPE Shape = OBJECT

x, vy : REAL

METHODS

draw() := DefaultDraw; move(X, Y : REAL) := Move
END;
Square = Shape OBJECT

side : REAL

METHODS

draw() := SquareDraw
END;

Circle = Shape OBJECT
radius : REAL
METHODS
draw() := CirlceDraw; area() := ComputeArea

END;

Example in Modula-3 (B)

(* Example in Modula-3 (continued) *)
PROCEDURE Move (Self : Shape; X, Y : REAL) =
BEGIN --- END Move;

PROCEDURE DefaultDraw (Self : Shape)
BEGIN --- END DefaultDraw;
PROCEDURE SquareDraw (Self : Square)
BEGIN --- END SquareDraw;

PROCEDURE CircleDraw (Self : Circle)
BEGIN --- END CircleDraw;

PROCEDURE ComputeArea (Self : Circle) : REAL =
BEGIN --- END ComputeArea;

Example in Oberon-2

TYPE Shape = RECORD x, y : REAL END;
Square = RECORD (Shape) side : REAL END;
Circle = RECORD (Shape) radius : REAL END;
PROCEDURE (Self : Shape) Move (X, Y : REAL) =
BEGIN --- END Move;
PROCEDURE (Self : Shape) DefaultDraw ()
BEGIN --- END DefaultDraw;
PROCEDURE (Self : Square) SquareDraw ()
BEGIN --- END SquareDraw;
PROCEDURE (Self : Circle) CircleDraw ()
BEGIN --- END CircleDraw;
PROCEDURE (Self : Circle) ComputeArea () : REAL =
BEGIN --- END ComputeArea;

Record Layout

Record Layout

@ Single inheritance is implemented by concatenation, i.e. the
instance variables of class C are

@ the variables of C's supertype, followed by
@ the variables that C declares itself.

I nheritance Record
Hi erarchy Layout

° ‘ C1’s instance vars

Q C1’s instance vars
(;’s instance vars

@ C1’s instance vars
G’s

C3’s instance vars

Record Layout

@ The offsets of the variables that C inherits from its supertype
will be the same as in the supertype itself.

@ In this example, (3 inherits from C, which inherits from C;.

@ (3 will have the fields from C; followed by the fields from
followed by C3's own fields. The order is significant.

I nheritance Record
Hi erarchy Layout

° ‘ C1’s instance vars

Q C1’s instance vars
(,’s instance vars

@ C1’s instance vars
G’s

C3’s instance vars

Record Layout. . .

S X: REAL
y: REAL
TYPE Shape = 0 . REAL
CLASS x,y: REAL; END; y: REAL
si de: REAL
TYPE Square = Shape
CLASS side:REAL; END; ¢ x: REAL
y: REAL
TYPE Circle = Shape radi us: REAL
CLASS radius:REAL; END; Inheri tance
Hi erarchy
VAR S:Shape; @
VAR Q:Square; 6
VAR C:Circle; @®

Record Layout. . .

@ An OO language compiler would translate the declarations in
the previous slide into something similar to this:

TYPE Shape=POINTER TO RECORD

x, y: REAL;

END;

TYPE Square=POINTER TO RECORD
x, y: REAL;
side:REAL;

END;

TYPE Circle=POINTER TO RECORD
x, y: REAL;
radius:REAL;

END;

VAR S:Shape; Q:Square; C:Circle;

Templates

Class Templates

To support late binding, runtime typechecking, etc, each class is
represented by a template at runtime. Each template has pointers
to the class’ methods and supertype.

Shape$Tenpl at e Shape$dr aw
I
draw 1 Shapesmove.

nove: 4+ o .
> .

Squar e$Tenpl at e

\

parent: Squaregdraw . \COde

oo > ----- for

move: et hods

P

Circle$Tenpl ate Circl e$draw,/ /,
rparent : ¥ ,/,

draw. ;

nove: Circl e$ar eay

' s ¢’
ar ea: =

Class Templates. . .

® Square’'s x,y fields are inherited from Shape. Their offsets
are the same as in Shape.

TYPE $TemplateT=POINTER TO RECORD
parent : $TemplateT;
move : ADDRESS;
draw : ADDRESS;
END;
TYPE Square=POINTER TO RECORD
$template : $TemplateT;

x, v : REAL;
side : REAL;
END;

CONST Square$Template:$TemplateT =

[parent= ADDR(Shape$Template) ;
move = ADDR(Shape$move) ;

ADDR(<QA11are®drawr) s 1 -

drauwr

Class Templates. . .

Each method is a procedure with an extra argument (SELF), a
pointer to the object through which the method was invoked.

TYPE Shape = CLASS
x, v : REAL;
METHOD draw (); BEGIN ---;
METHOD move (X, Y : REAL);

BEGIN x := x+X; --- END;
END;
)
PROCEDURE Shape$move (SELF : Shape; X,Y:REAL);
BEGIN
SELF~ .x := SELF~.x + X;
SELF~.y := SELF~.y + X;

END;

Method Lookup

Method Invocation

@ Sending the message draw to Q:
@ Get Q's template, T.
@ Get draw's address at offset 4
in T.
© Jump to draw's address, with
Q as the first argument.

Shape$Tenpl at e Shape$ove
parent: NL
draw
nove:

Squar e$Tenpl ate

parent: — Squar e$dr aw

draw -
nove:

E/ $tenpl ate
x =1

y =3
side = 15

Method Invocation. ..

VAR Q : Square;
BEGIN
Q := NEW (Square);
Q.x :=1; Q.y := 3; Q.side := 15;
Q.draw(); Q.move(20, 30);
END;
J
BEGIN
Q := malloc(SIZE(Square));
Q" .$template := Square$Template;
Q°.x :=1; Q7.y := 3; Q".side := 15;
Q" .$template”.draw(Q);
Q" .$template” .move(Q, 20, 30);
END;

Exam Problem

@ In the following object-oriented program
@ "TYPE U = T CLASS" means that U inherits from T.
o NEW T means that a new object of type T is created.
@ All methods are virtual, i.e. a method in a subclass overrides a

method with the same name in a superclass.

PROGRAM X;
TYPE T = CLASS [
v : INTEGER;c : CHAR;
METHOD P (x:INTEGER); BEGIN --- END P;
METHOD q (x:CHAR); BEGIN --- END Q;

1;

Exam Problem |. ..

TYPE U = T CLASS [
x : REAL; k : INTEGER;
METHOD R(x:INTEGER); BEGIN --- END R;
METHOD Q(r:REAL); BEGIN --- END Q;

1;
VAR t : T; u: TU;
BEGIN

t := NEW T; u := NEW U; <
END

@ Draw a figure that describes the state of the program at point
<. It should have one element for each item stored in memory
(i.e. global/heap variables, templates, method object code,
etc.) and should explicitly describe what each pointer points

to.

Summary

Readings and References

@ Read Scott: 467—489, 497-504

Summary

@ For single inheritance languages, an instance of a class C
consists of (in order):

@ A pointer to C's template.
@ The instance variables of C's ancestors.
© C(’s instance variables.
@ For single inheritance languages, subtype checks can be done
in O(1) time.
@ Method invocation is transformed to an indirect call through
the template.
@ If we can determine the exact type of an object variable at
compile time, then method invocations through that variable
can be turned into “normal” procedure calls.

Summary. . .

@ A template for class C consists of (in order):

@ A pointer to the template of C's parent.
@ The method addresses of C's ancestors.
© Addresses of C's methods.
@ Other information needed by the runtime system, such as
@ The size of a C instance.
o ('s pre- and postorder numbers, if the O(1) subtype test
algorithm is used.
@ ('s type code.
@ A type description of C's instance variables. Needed by the
garbage collector.

Confused Student Email

What happens when both a class and its subclass have
an instance variable with the same name?

@ The subclass gets both variables. You can get at both of
them, directly or by casting. Here's an example in Java:

class C1 {int a;}
class C2 extends C1 {double a;}
class C {

static public void main(String[] arg) {

Cl x = new C1(); C2 y = new C2Q);

x.a =5; y.a =5.b;

((Cy).a = 5;

}

}

