
CSc 553

Principles of Compilation

19 : Code Generation II

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

collberg@gmail.com

Basic Block Code Generation

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

Generate code one basic block at a time.

Basic Block Code Generation. . .

into their memory locations.

Load variables into registers.

Compute....

Store register values back

We don’t know which path through the flow-graph has taken
us to this basic block. ⇒ We can’t assume that any variables
are in registers.

We don’t know where we will go from this block. ⇒ Values
kept in registers must be stored back into their memory
locations before the block is exited.

Next-Use Information

Next-Use Information I

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

We want to keep variables in registers for as long as possible,
to avoid having to reload them whenever they are needed.

When a variable isn’t needed any more we free the register to
reuse it for other variables. ⇒ We must know if a particular
value will be used later in the basic block.

If, after computing a value X, we will soon be using the value
again, we should keep it in a register. If the value has no
further use in the block we can reuse the register.

Next-Use Information II(a)

X is live at (5)

(5) X := · · ·
... (no ref to X) ...

(14) · · · := · · · X · · ·

X is live at (5) because the value computed at (5) is used
later in the basic block.

X’s next use at (5) is (14).

It is a good idea to keep X in a register between (5) and (14).

Next-Use Information II(b)

X is dead at (12)

(12) · · · := · · · X · · ·
... (no ref to X) ...

(25) X := · · ·

X is dead at (12) because its value has no further use in the
block.

Don’t keep X in a register after (12).

Next-Use Information III – Example

Intermediate Live/Dead Next Use

Code x y z t7 x y z t7

(1) x := y+z L D D (2)

(2) z := x∗5 D L (3)

(3) t7 := z+1 L L (4) (4)

(4) y := z-t7 L L D (5) (5)

(5) x := z+y D D D

x, y, z are live on exit, t7 (a temporary) isn’t.

Next-Use Algorithm I

A two-pass algorithm computes next-use & liveness
information for a basic block.
In the first pass we scan over the basic block to find the end.
Also:

1 For each variable X used in the block we create fields X.live
and X.next use in the symbol table. Set X.live:=FALSE;
X.next use:=NONE.

2 Each tuple (i) X:=Y+Z stores next-use & live information.
We set

(i).X.live:=(i).Y.live:=(i).Z.live:=FALSE and
(i).X.next use:=(i).Y.next use:= (i).Z.next use:= NONE.

Kind=VAR Type=Int

Live=TRUE NextUse=(5)

Symbol Table Entry for X

(4) X := Y + 3
(5) Z := X + 9

Basic Block

(5) X.Live=FALSE X.NextUse=_

(4) X.Live=TRUE X.NextUse=(5)

Y.Live=FALSE Y.NextUse=_

Tuple

Info.

ID=X

Next-Use Algorithm II

1 Scan forwards over the basic block:

Initialize the symbol table entry for each used variable, and the
tuple data for each tuple.

2 Scan backwards over the basic block. For every tuple

(i): x := y op z do:

1 Copy the live/next use-info from x, y, z’s symbol table
entries into the tuple data for tuple (i).

2 Update x, y, z’s symbol table entries:

x.live := FALSE;
x.next use := NONE;
y.live := TRUE;
z.live := TRUE;
y.next use := i;
z.next use := i;

Next-Use Example I – Forward Pass

SyTab-Info Instr.-Info

live next use live next use

i x y z x y z x y z x y z

(1) x:=y+z F F F F F F

(2) z:=x*5 F F F F F F

(3) y:=z-7 F F F F F F

(4) x:=z+y F F F F F F

Next-Use Example II – Backwards Pass

SyTab-Info Instr.-Info

live next use live next use

i x y z x y z x y z x y z

(4) x := z+y F T T 4 4 F F F

(3) y := z-7 F F T 3 F T T 4 4

(2) z := x*5 T F F 2 F F T 3

(1) x := y+z F T T 1 1 T F F 2

The data in each row reflects the state in the symbol table
and in the data section of instruction i after i has been
processed.

Register & Address Descriptors

Register & Address Descriptors

During code generation we need to keep track of what’s in
each register (a Register Descriptor). One register may hold
the values of several variables (e.g. after x:=y).

We also need to know where the values of variables are
currently stored (an Address Descriptor). A variable may be
in one (or more) register, on the stack, in global memory; all
at the same time.

Address Descr.

Id Memory Regs.

x fp(16) {r0}
y fp(20) {}
z 0x2020 {r1, r3}
t1 {r0}

Reg. Descr.

Reg Contents

r0 {x, t1}
r1 {z}
r2 {}
r3 {z}

A Simple Code Generator

A Simple Code Generator

We have:

A flowgraph: We generate code for each individual basic block.

An Address Descriptor (AD): We store the location of each
variable: in register, on the stack, in global memory.

A Register Descriptor (RD): We store the contents of each
register.

Next-Use Information: We know for each point in the code
whether a particular variable will be referenced later
on.

We need:

GenCode(i: x := y op z): Generate code for the i:th intermediate
code instruction.

GetReg(i: x := y op z): Select a register to hold the result of the
operation.

Machine Model

We will generate code for the address-register machine
described in the book. It is a CISC, not a RISC; it is similar to
the x86 and MC68k.

The machine has n general purpose registers R0, R1, ...,

Rn.

MOV M, R Load variable M into register R.
MOV R, M Store register R into variable M.
OP M, R Compute R := R OP M, where OP is one of ADD,

SUB, MUL, DIV.
OP R2, R1 Compute R1 := R1 OP R2, where OP is one of

ADD, SUB, MUL, DIV.

GenCode((i): X := Y OP Z)

L is the location in which the result will be stored. Often a
register.

Y’ is the most favorable location for Y. I.e. a register if Y is in
a register, Y’s memory location otherwise.

1 L := GetReg(i: X := Y op Z).

2 Y’ := “best” location for Y. IF Y is not in Y’ THEN

gen(MOV Y’, L).

3 Z’ := “best” location for Z.

4 gen(OP Z’, L)

5 Update the address descriptor: X is now in location L.

6 Update the register descriptor: X is now only in register

L.

7 IF (i).Y.next use=NONE THEN update the register

descriptor: Y is not in any register. Same for Z.

GenCode((i): X := Y)

Often we won’t have to generate any code at all for the tuple
X := Y; instead we just update the address and register
descriptors (AD & RD).

IF Y only in mem. location L THEN

R := GetReg(); gen(MOV Y, R);

AD: Y is now only in reg R.

RD: R now holds Y.

IF Y is in register R THEN

AD: X is now only in register R.

RD: R now holds X.

IF (i).Y.next use=NONE THEN RD: No register holds Y.

At the end of the basic block:

Store all live variables (that are left in

registers) in their memory locations.

GetReg(i: X := Y op Z)

If we won’t be needing the value stored in Y after this
instruction, we can reuse Y’s register.

1 IF

Y is in register R and R holds only Y

(i).Y.next use=NONE

THEN RETURN R;

2 ELSIF there’s an empty register R available THEN

RETURN R;

3 ELSIF

X has a next use and there exists an occupied register R

THEN Store R into its memory location and

RETURN R;

4 OTHERWISE RETURN the memory location of X.

Code Generation Example I

Interm. Code Machine

(1) x := y + z MOV y, r0

ADD z, r0

(2) z := x ∗ 5 MUL 5, r0

(3) y := z - 7 MOV r0, r1

SUB 7, r1

(4) x := z + y MOV r0, z

ADD r1, r0

MOV r1, y

MOV r0, x

Note that x and y are kept in registers until the end of the
basic block. At the end of the block, they are returned to
their memory locations.

Code Generation Example II

Interm. Machine RD AD Live

x y z

x := y + z MOV y, r0 r0 ≡ x x ≡ r0 T F T

ADD z, r0

z := x ∗ 5 MUL 5, r0 r0 ≡ z z ≡ r0 F T

y := z - 7 MOV r0, r1 r0 ≡ z z ≡ r0 T T

SUB 7, r1 r1 ≡ y y ≡ r1

Code Generation Example III

Interm. Machine RD AD Live

x := z + y MOV r0, z r0 ≡ z z ≡ mem T T T

z ≡ r0

r1 ≡ y y ≡ r1

ADD r1, r0 r0 ≡ x x ≡ r0

r1 ≡ y y ≡ r1

z ≡ mem

MOV r1, y y ≡ mem

MOV r0, x x ≡ mem

Summary

Readings and References

This lecture is taken from the Dragon book:

Next-Use Information 534–535
Simple Code Generation 535–541.
Address & Register Descriptors 537

Summary I

Register allocation requires next-use information, i.e. for
each reference to x we need to know if x ’s value will be used
further on in the program.

We also need to keep track of what’s in each register. This is
sometimes called register tracking.

We need a register allocator, a routine that picks registers to
hold the contents of intermediate computations.

