CSc 553

Principles of Compilation

20: Code Generation III

Department of Computer Science University of Arizona

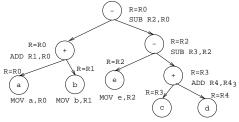
collberg@gmail.com

Copyright © 2011 Christian Collberg

Trivial Code Generation

Generating Code From Trees

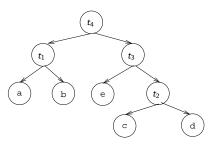
- To generate code from expression trees, traverse the tree and emit machine code instructions.
- For leaves (which represent operands), generate load instructions. For interior nodes, generate arithmetic instructions.
- Assume an infinite number of registers ⇒ easy algorithm!
- Each tree node N has an attribute 'R', the register into which the subtree rooted at N will be computed.



Generating Code From Labeled Trees

Optimal Ordering For Trees I

- We can generate 'optimal' code from a tree. 'Optimal' in the sense of 'smallest number of instructions generated'.
- The idea is to reorder the computations to minimize the need for register spilling.



First Order	Second Order		
$t_1 := a + b$	$t_2 := c + d$		
$t_2 := c + d$	$t_3 := e - t_2$		
$t_3 := e - t_2$	$t_1 := a + b$		
$t_4 := t_1 - t_3$	$t_2 := c + d$ $t_3 := e - t_2$ $t_1 := a + b$ $t_4 := t_1 - t_3$		

Optimal Ordering For Trees II

 Assume two registers available. The first ordering evaluates the left subtree first, and has to spill R0 to have enough registers available for the right subtree.

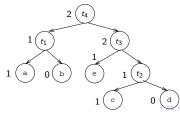
First Order	Second Order	First Order		Second Order	
t ₁ :=a+b	t ₂ :=c+d	MOV	a, R0	MOV	c, RO
$t_2 := c+d$	$t_3 := e - t_2$	ADD	b, R0	ADD	d, R0
$t_3 := e-t_2$	t ₁ :=a+b	MOV	c, R1	MOV	e, R1
$t_4 := t_1 - t_3$	$t_4 := t_1 - t_3$	ADD	d, R1	SUB	RO, R1
		MOV	RO, t_1	MOV	a, R0
		MOV	e, RO	ADD	b, RO
		SUB	R1, R0	SUB	RO, R1
		MOV	t_1 , R1	MOV	RO, t_4
		SUB	RO, R1		
		VOM	$R1, t_4$		

The Tree Labeling Phase I

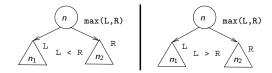
 The algorithm has two parts. First we label each sub-tree with the minimum number of registers needed to evaluate the subtree without any register spilling.

_ The Labeling Algorithm: ______

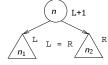
- n is a left leaf \Rightarrow label(n) := 1;
- n is a right leaf \Rightarrow label(n) := 0;
- n's children have labels $I_L \& I_R$:
 - $I_L \neq I_R \Rightarrow label(n) := max(I_L, I_R)$
 - $I_L = I_R \Rightarrow label(n) := I_L + 1$



The Tree Labeling Phase II



- If we have a node n with subtrees n_1 and n_2 with L=label(n_1) & R=label(n_2) & L<R then we can first evaluate n_2 into a register Reg using R registers. Then we use R-1 registers to evaluate n_1 .
- Similarly, if L>R then we can first evaluate n_1 into a register Reg and use the remaining R-1 registers for n_2 .



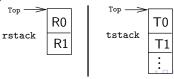
register to hold the result of n_1 while we evaluate n_2 .

The Generation Phase I

 gencode (n) generates machine code for a subtree n of a labeled tree T.

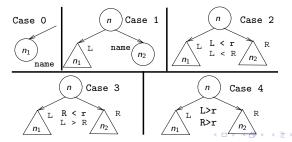
MOV M, R Load variable M into register R. MOV R, M Store register R into variable M. OP M, R Compute R := R OP M. $OP \in ADD$, SUB, MUL, DIV. $OP \in R2$, R1 Compute R1 := R1 $OP \in R2$.

- A stack rstack initially contains all available registers.
 gencode(n) generates code for subtree n using the registers
 on rstack, computing its value into the register on the top of the stack.
- A stack tstack of temporary memory locations is used for register spilling.

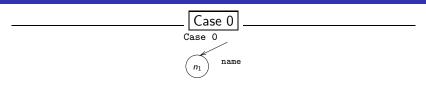


The Generation Phase II

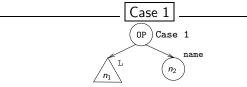
- Case 0 A leaf *n* is the leftmost child of its parent.
- Case 1 A leaf n_2 is the rightmost child of its parent.
- Case 2 A right subtree n_2 requires more registers than the left subtree n_1 .
- Case 3 A left subtree n_1 requires more registers than the right subtree n_2 .
- Case 4 Both subtrees require registers to be spilt.



The Generation Phase III

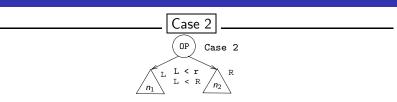


Generate a load instruction to load the variable into a register:
MOV name, top(rstack)



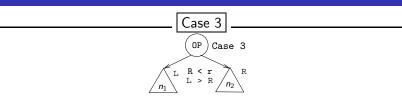
- Generate code for n_1 into register top(rstack), i.e. call gencode(n_1).
- ② Generate OP name, top(rstack)

The Generation Phase IV



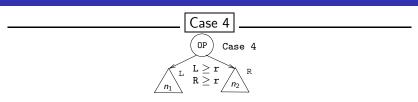
- n_1 can be evaluated without spilling, but n_2 requires more registers than n_1 .
- We swap the two top registers on rstack, evaluate n₂ into top(rstack), remove the top register, then evaluate n₁ into top(rstack). Restore the stack.
- swap(rstack), gencode(n2)
- ② R := pop(rstack)
- 4 Generate OP R, top(rstack)
- push(rstack, R), swap(rstack)

The Generation Phase V



- n_2 can be evaluated without spilling, but n_1 requires more registers than n_1 .
- We evaluate n₁ into top(rstack), remove the top register, then evaluate n₂ into top(rstack).
- \bigcirc gencode (n_1)
- ② R := pop(rstack)
- 4 Generate OP top(rstack), R
- push(rstack, R)

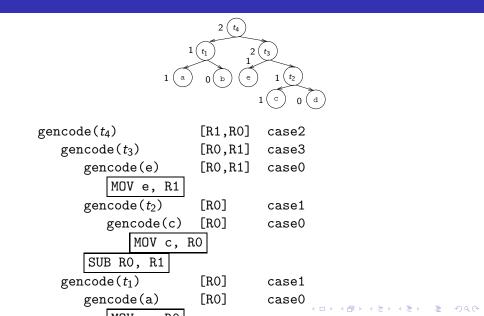
The Generation Phase VI

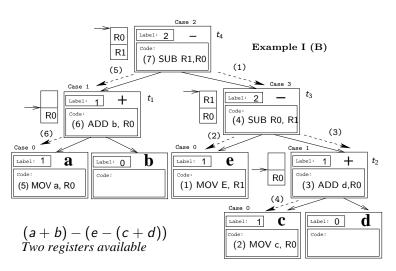


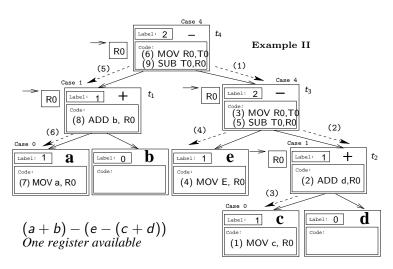
- Neither n_1 nor n_2 can be evaluated without spilling,
- We evaluate n₂ into a temporary memory location top(tstack), and then we evaluate n₁ into top(rstack).
- \bigcirc gencode (n_2)
- ② T := pop(tstack)
- ③ Generate MOV top(rstack), T
- \bigcirc gencode (n_1)
- push(tstack, T)
- 6 Generate OP T, top(rstack)

Examples

Example I (A)







Summary

Readings and References

• This lecture is taken from the Dragon Book:

Code Generation From Trees: 557-559, 561-566.

Local Optimization: 530-532, 600-602.

Summary I

• Why do we swap registers in Case 2?

