
CSc 553

Principles of Compilation

21 : Code Generation — Dynamic Programming

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

collberg@gmail.com


Introduction



Code

Tree matching/

Dynamic Programming

Peephole

Optimization

Graph

Coloring

Register

Allocation

Register

Assignment

Register

Spilling

Lexing, Parsing

Intermediate Code

Generation

Semantic Analysis,

Intermediate Code

Instruction

Selection

Instruction

Scheduling

X is used

here:

X is defined

here:

Separation into

Basic Blocks; 

Flow analysis;

Next−use information

computation;

Machine



Instruction Selection

Starting with intermediate code in tree form, we generate the
cheapest instruction sequence for each tree, using no more
than r registers (R0 · · ·Rr−1).
We will show an algorithm that integrates instruction selection
and register allocation and generates optimal code for a large
class of architectures.

Intermediate Code Example

WHILE i < 10 DO

X := X + 5*Y;

i := i + 2;

END

i

:=

X +

X *

Y5

:=

+

2i

i

GOTO

L1

LABEL

L2

LABEL

L1

IF−GE−GOTO

L210



Machine Model



Machine Model

We will assume the existence of these types of instructions:

Ri := E E is any expression containing operators, registers,
and memory locations. Ri must be one of the
registers of E (if any). I.e., we assume 2-address
instructions:

2-address R1 := R1 + R2.
3-address R1 := R2 + R3.

Ri := M A load instruction.

M := Ri A store instruction.

Ri := Rj A register copy instruction.

Ri := Ri + ind Rj A register indirect instruction.

All instructions have equal cost.



Naive Algorithm



Optimal Code Generation

(...C[i−1]...)

op(...C[i]...)

(...C[i]...)

Rk := Rk op M

Rk := Rk op Rj

T1 T2

To generate optimal code for an expression E ≡ E1 op E2 we
generate optimal code for E1, optimal code for E2, and then
code for the operator.

We have to consider every instruction that can evaluate op.

If E1 and E2 can be computed in an arbitrary order, we have
to consider both of them.

We may not have enough registers available, so some
temporary results may have to be stored in memory.



Basic (Näıve) Algorithm I

1 Compute the optimal cost for each node in the tree, assuming
there are 1, 2, · · · , r registers available. Also compute the
optimal cost of computing the result into memory.

The cost of a node n includes the cost of the code for n’s
sub-trees and the cost of the operator at n.

2 Store the result for each node n in a cost vector Cn[i ]:

C[1] = Cost of computing n into a register, with 1 (one)
register available.
C[2] = As above, but with 2 available registers.
C[3] = · · ·

C[0] = Cost of computing n into memory.



Basic (Näıve) Algorithm II

3 Traverse the tree and (using the cost vectors) decide which
subtrees have to be computed into memory.

4 Traverse the tree and (again using the cost vectors) generate
the final code:

1 First code for subtrees that have to be computed into memory.
2 Then code for other subtrees.
3 Then code for the root.

As we shall see, näıvely computing the costs recursively will
result in us recomputing the same cost several times.



(Näıvely) Computing the Costs

(...C[i]...)

op(...C[i]...)

(...C[i−1]...)

Rk := Rk op M

Rk := Rk op Rj

FOR EACH instruction I that matches op DO

• If the instruction requires the left

operand to be in a register, then

(recursively) compute the optimal

cost CL[i ] of evaluating the left

subtree with i registers available.

• If the instruction requires the

right operand to be in a register,

compute the cost CR [i − 1] of eval.

the right subtree with i − 1 regs.

• Compute the cost of evaluating the

subtree at n : CL[i ] + CR [i − 1] + 1.
ENDFOR



2
+2 regs

2 regs −

2 regs a b 1 reg

cost=?

cost=1 cost=0

cost=1+1+0=2

cost=2+?+1

min_cost=2

+2 regs

2 regs −

2 regs a b 1 reg

cost=?

cost=1 cost=1

cost=1+1+1=3

1

Ri := Ri + Rj

Ri := Ri − Mj

Ri := Ri − Rj

Ri := Ri + Rj

Ri := Mj

Ri := RI op Rj

Ri := RI op Mj

Ri := Rj

Mi := Rj



+

−

a b

cost=?

cost=1 cost=0

1 reg

2 reg

2 reg

2 reg

cost=1+1+0=2

4

+

−

a b

cost=?

cost=1

1 reg

2 reg

2 reg

2 reg

cost=1+1+1=3

cost=1

3

Ri := Ri + Mj

Ri := Ri − Mj

Ri := Ri + Mj

Ri := Ri − Rj

Ri := Mj

Ri := RI op Rj

Ri := RI op Mj

Ri := Rj

Mi := Rj



Dynamic Programming



Dynamic Programming I

Some recursive algorithms are very inefficient, because they
solve the same subproblem several times. That, for example,
is the case with the Fibonacci function in the next slide.

A rather obvious solution is to store the results in a table as
they are computed, and then check the table before solving a
subproblem to make sure that it’s value hasn’t already been
computed. This is known as memoization.

Even more efficient is to try to find a linear (topological) order
in which the subproblems can be solved, and then solve them
in that order, knowing that when we need the result of a
specific subproblem, it has already been computed. This is
dynamic programming.



Dynamic Programming II

Recursive Fibonacci

function Fib (n)

if n ≤ 1 then return 1

else return Fib(n − 1) + Fib(n − 2)

Memoization Fibonacci

for i := 1 to n do A[i ] := −1;
function Fib (n)

if A[n] = −1 then

if n ≤ 1 then A[n] := 1
else A[n] := Fib(n − 1) + Fib(n − 2)

return A[n]



Dynamic Programming III

Dynamic Programming Fibonacci

function Fib (n)

A[0] := A[1] := 1;
for i := 2 to n do

A[i ] := A[i − 1] + A[i − 2]



The Dynamic Programming
Algorithm



Computing Costs

There is a linear-time, dynamic programming, bottom-up
algorithm for computing the costs.

Compute C [i ] at node n

Consider each instruction Rk := E where E matches the
subtree, and choose the minimum C [i ], where C [i ]=The sum
of

1 C [i ] of n’s left subtree
2 C [i − 1] of n’s right subtree
3 the cost of the instruction at n

Ri := Ri op Rj Ri := Mj Mi := Rj

Ri := Ri op Mj Ri := Rj

(...C[i]...)

op(...C[i]...)

(...C[i−1]...)

Rk := Rk op M

Rk := Rk op Rj



Computing Costs – Example I (a)

− *

d

/a b c

+

e

(0, 1, 1) (0, 1, 1) (0, 1, 1)

(0, 1, 1) (0, 1, 1)

(3, 2, 2)
(5, 5, 4)

(8, 8, 7)

(3, 2, 2)

Ri := Mj

Ri := RI op Rj

Ri := RI op Mj

Ri := Rj

Mi := Rj



Computing Costs – Example I (b)

(0, 1, 1)

−

a b

(?, ?, ?)

(0, 1, 1)

1. R0 := R0 − R1

2. R0 := R0 − M

E

E1 E2

Ri := Ri op Rj Ri := Mj Mi := Rj

Ri := Ri op Mj Ri := Rj

1 E1 into R0 (2 regs avail); E2 into R1 (1 reg avail); Use
R0 := R0 − R1 at E ; Cost=E1[2] + E2[1] + 1 = 1 + 1 + 1 = 3

2 E2 into Memory (2 regs avail); E1 into R0 (2 regs avail); Use
R0 := R0 − M at E ; Cost=E2[0] + E1[2] + 1 = 0 + 1 + 1 = 2

C [2] = min(3,2) = 2.



Computing Costs – Example I (c)

a

(0, 1, 1)

b

(0, 1, 1)

− (?, ?, 2)

E1

E

1. R0 := R0 − ME2

Ri := Ri op Rj Ri := Mj Mi := Rj

Ri := Ri op Mj Ri := Rj

1 E2 into Memory (1 reg available); E1 into R0 (1 reg
available); Use R0 := R0 − M at E ;
Cost=E2[0] + E1[1] + 1 = 0 + 1 + 1 = 2

Only one instruction to choose from.

C [1] = 2.

The min cost of computing E into memory is the min cost of
computing E into a register (= min(2,2)) plus 1 (=3).



Computing Costs – Example I (d)

(0, 1, 1)

*−

+

b

(0, 1, 1)

a

(0, 1, 1)

c

(0, 1, 1)

/

ed

(5, 5, 4)(3, 2, 2)

(0, 1, 1)

3. R0 := R0 + M

2. R0 := R0 + R1(?, ?, ?)

E2E1

(3,2,2)

1. R0 := R0 + R1

1 E1 into R0 (2 regs avail); E2 into R1 (1 reg avail); Use
R0 := R0 + R1 at E ; Cost=E1[2] + E2[1] + 1 = 2 + 5 + 1 = 8

2 E2 into R1 (2 regs); E1 into R0 (1 reg); Use R0 := R0 + R1 at
E ; Cost=E2[2] + E1[1] + 1 = 4 + 2 + 1 = 7

3 E2 into Memory (2 regs); E1 into R0 (2 regs); Use
R0 := R0 + M at E ; Cost=E2[0] + E1[2] + 1 = 5 + 2 + 1 = 8

C [2] = min(8,7,8) = 7.



Generating Code – Example I (e)

+ (8, 8, 7)

− (3, 2, 2) * (5, 5, 4)

/

d

(0, 1, 1)

e

(0, 1, 1)

a

(0, 1, 1)

b

(0, 1, 1)

c

(0, 1, 1)
1 : R0 := c

7 : R1 := R1 + R0

4 : R0 := R0 + R1

(3, 2, 2)

3 : R1 := R1/e

2 : R1 := d

5 : R1 := a

6 : R1 := R1 − b



Dynamic Programming – Example II

(0, 1)

− (3, 2)

+ (10,9)

c

d

b

(0, 1)

/

(3, 2)

e

* (6, 5)

a

(0, 1)

(0, 1)

(0, 1)

8 : R0 := R0 − a

9 : R0 := R0 + M

2 : R0 := R0/e

3 : M := R0

5 : R0 := R0 ∗ M

6 : M := R0

7 : R0 := a

4 : R0 := c

1 : R0 := d



Summary



Readings and References

This lecture is taken from the Dragon book: 567–580.

Read “Emmelmann, Schröer, Landwehr: BEG – A generator

for Efficient Back Ends”, PLDI ’89.

Additional material: “Aho,Ganapathi,Tjiang: Code Generation

Using Tree Matching and Dynamic Programming, TOPLAS,
Vol 11, No. 4, Oct. 1989, pp 491-516.

For information on Dynamic Programming: see “Algorithms”,
by Cormen, Leiserson, Rivest, p. 310.



Summary



Homework I

Use the dynamic programming algorithm to generate optimal
code for the assignment

g := a ∗ (b + c) + d ∗ (e − f ).

Assume that two registers (R0, R1) are available.

Machine Model

Ri := Mj

Ri := Ri op Rj

Ri := Ri op Mj

Ri := Rj

Mi := Rj



Homework II

Use the dynamic programming algorithm to generate code for
the expression tree below using (a) 1 and (b) 2 registers. For
each node show the cost vector and the instruction(s)
generated.

/ c

d e

a b

* −

+

Ri := Mj

Ri := Ri op Rj

Ri := Ri op Mj

Ri := Rj

Mi := Rj


