CSc 553

Principles of Compilation

21 : Code Generation — Dynamic Programming

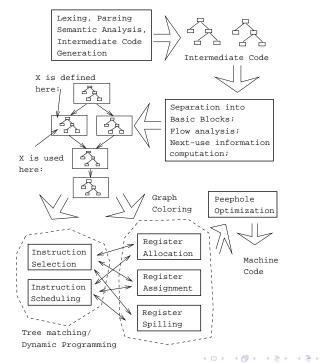
Department of Computer Science University of Arizona

collberg@gmail.com

Copyright © 2011 Christian Collberg

Introduction

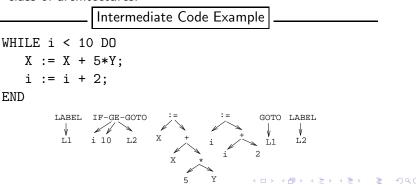
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



DQC

Instruction Selection

- Starting with intermediate code in tree form, we generate the cheapest instruction sequence for each tree, using no more than r registers $(R_0 \cdots R_{r-1})$.
- We will show an algorithm that integrates instruction selection and register allocation and generates optimal code for a large class of architectures.



Machine Model

Machine Model

We will assume the existence of these types of instructions:

 $R_i := E \mid E$ is any expression containing operators, registers, and memory locations. R_i must be one of the registers of E (if any). I.e., we assume 2-address instructions:

2-address $R_1 := R_1 + R_2$. 3-address $R_1 := R_2 + R_3$.

 $R_i := M$ | A load instruction.

 $M := R_i$ A store instruction.

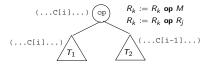
 $R_i := R_i$ A register copy instruction.

 $R_i := R_i + \operatorname{ind} R_j |$ A register indirect instruction.

All instructions have equal cost.

Naive Algorithm

Optimal Code Generation



- To generate optimal code for an expression $E \equiv E_1$ op E_2 we generate optimal code for E_1 , optimal code for E_2 , and then code for the operator.
- We have to consider every instruction that can evaluate op.
- If *E*₁ and *E*₂ can be computed in an arbitrary order, we have to consider both of them.
- We may not have enough registers available, so some temporary results may have to be stored in memory.

Basic (Naïve) Algorithm I

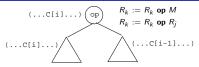
- Compute the optimal cost for each node in the tree, assuming there are 1, 2, ..., r registers available. Also compute the optimal cost of computing the result into memory.
 - The cost of a node *n* includes the cost of the code for *n*'s sub-trees and the cost of the operator at *n*.
- 2 Store the result for each node *n* in a **cost vector** $C_n[i]$:
 - **C[1]** = Cost of computing *n* into a register, with 1 (one) register available.

- C[2] = As above, but with 2 available registers.
- C[3] = · · ·
- **C[0]** = Cost of computing *n* into memory.

- Traverse the tree and (using the cost vectors) decide which subtrees have to be computed into memory.
- Traverse the tree and (again using the cost vectors) generate the final code:
 - First code for subtrees that have to be computed into memory.

- ② Then code for other subtrees.
- S Then code for the root.
- As we shall see, naïvely computing the costs recursively will result in us recomputing the same cost several times.

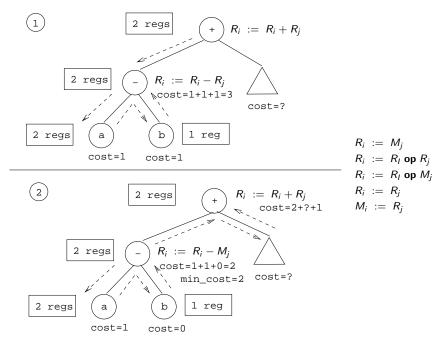
(Naïvely) Computing the Costs



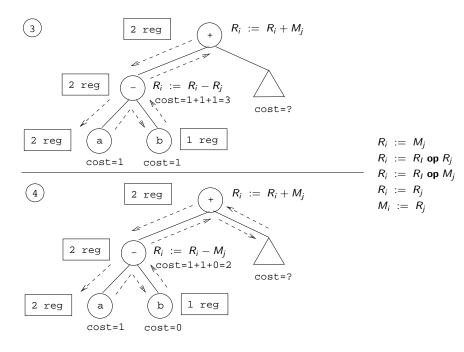
FOR EACH instruction I that matches op DO

- If the instruction requires the left operand to be in a register, then (recursively) compute the optimal cost $C_L[i]$ of evaluating the left subtree with *i* registers available.
- If the instruction requires the right operand to be in a register, compute the cost $C_R[i-1]$ of eval. the right subtree with i-1 regs.
- Compute the cost of evaluating the subtree at $n: C_L[i] + C_R[i-1] + 1$.

ENDFOR



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへで



- < ロ > < 回 > < 回 > < 回 > < 回 > < 回 > の <

Dynamic Programming

Dynamic Programming I

- Some recursive algorithms are very inefficient, because they solve the same subproblem several times. That, for example, is the case with the Fibonacci function in the next slide.
- A rather obvious solution is to store the results in a table as they are computed, and then check the table before solving a subproblem to make sure that it's value hasn't already been computed. This is known as **memoization**.
- Even more efficient is to try to find a linear (topological) order in which the subproblems can be solved, and then solve them in that order, knowing that when we need the result of a specific subproblem, it has already been computed. This is **dynamic programming**.

Recursive Fibonacci

function Fib (n)if $n \le 1$ then return 1 else return Fib(n-1) + Fib(n-2)

Memoization Fibonacci

▲日▼▲□▼▲□▼▲□▼ □ ののの

```
for i := 1 to n do A[i] := -1;
function Fib (n)
if A[n] = -1 then
if n \le 1 then A[n] := 1
else A[n] := Fib(n-1) + Fib(n-2)
return A[n]
```

Dynamic Programming Fibonacci

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

function Fib (n)

$$A[0] := A[1] := 1;$$

for $i := 2$ to n do
 $A[i] := A[i-1] + A[i-2]$

The Dynamic Programming Algorithm

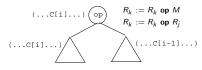
Computing Costs

• There is a linear-time, dynamic programming, bottom-up algorithm for computing the costs.

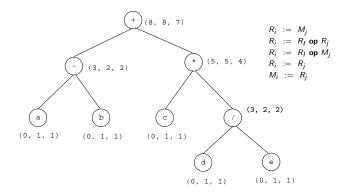
Compute C[i] at node n

- Consider each instruction R_k := E where E matches the subtree, and choose the minimum C[i], where C[i]=The sum of
 - C[i] of n's left subtree
 - 2 C[i-1] of *n*'s right subtree
 - Ithe cost of the instruction at n

$$\begin{array}{c|c} R_i := R_i \text{ op } R_j \\ R_i := R_i \text{ op } M_j \end{array} \begin{vmatrix} R_i := M_j \\ R_i := R_j \end{vmatrix} M_i := R_j$$



Computing Costs – Example I (a)



Computing Costs – Example I (b)

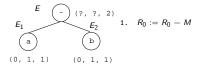
$$\begin{bmatrix} E & & & & \\ & & &$$

- E_1 into R_0 (2 regs avail); E_2 into R_1 (1 reg avail); Use $R_0 := R_0 - R_1$ at E; Cost= $E_1[2] + E_2[1] + 1 = 1 + 1 + 1 = 3$
- 2 E_2 into Memory (2 regs avail); E_1 into R_0 (2 regs avail); Use $R_0 := R_0 M$ at E; Cost= $E_2[0] + E_1[2] + 1 = 0 + 1 + 1 = 2$

▲日▼▲□▼▲□▼▲□▼ □ ののの

•
$$C[2] = \min(3, 2) = 2.$$

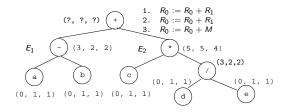
Computing Costs – Example I (c)



$$\begin{array}{c|c} R_i := R_i \text{ op } R_j & R_i := M_j & M_i := R_j \\ R_i := R_i \text{ op } M_j & R_i := R_j & \end{array}$$

- E_2 into Memory (1 reg available); E_1 into R_0 (1 reg available); Use $R_0 := R_0 M$ at E; $Cost=E_2[0] + E_1[1] + 1 = 0 + 1 + 1 = 2$
 - Only one instruction to choose from.
 - C[1] = 2.
 - The min cost of computing E into memory is the min cost of computing E into a register (= min(2,2)) plus 1 (=3).

Computing Costs – Example I (d)

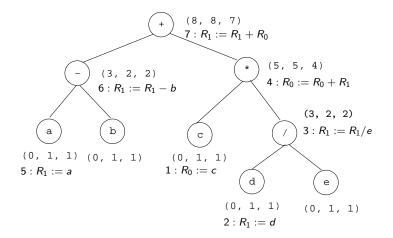


- E_1 into R_0 (2 regs avail); E_2 into R_1 (1 reg avail); Use $R_0 := R_0 + R_1$ at E; Cost= $E_1[2] + E_2[1] + 1 = 2 + 5 + 1 = 8$
- 2 E_2 into R_1 (2 regs); E_1 into R_0 (1 reg); Use $R_0 := R_0 + R_1$ at E; Cost= $E_2[2] + E_1[1] + 1 = 4 + 2 + 1 = 7$
- Solution E_2 into Memory (2 regs); E_1 into R_0 (2 regs); Use $R_0 := R_0 + M$ at E; $\text{Cost} = E_2[0] + E_1[2] + 1 = 5 + 2 + 1 = 8$

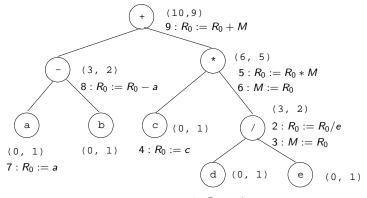
▲日▼▲□▼▲□▼▲□▼ □ ののの

•
$$C[2] = \min(8,7,8) = 7$$

Generating Code – Example I (e)



Dynamic Programming – Example II



 $1: R_0 := d$

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Summary

- This lecture is taken from the Dragon book: 567–580.
- Read "Emmelmann, Schröer, Landwehr: *BEG A generator* for *Efficient Back Ends*", PLDI '89.
- Additional material: "Aho,Ganapathi,Tjiang: Code Generation Using Tree Matching and Dynamic Programming, TOPLAS, Vol 11, No. 4, Oct. 1989, pp 491-516.
- For information on Dynamic Programming: see "*Algorithms*", by **Cormen, Leiserson, Rivest**, p. 310.

Summary

Homework I

 Use the dynamic programming algorithm to generate optimal code for the assignment

$$g := a * (b+c) + d * (e-f).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• Assume that two registers (R0, R1) are available.

Machine Model

 $R_i := M_j$ $R_i := R_i \text{ op } R_j$ $R_i := R_i \text{ op } M_j$ $R_i := R_j$ $M_i := R_j$

Homework II

• Use the dynamic programming algorithm to generate code for the expression tree below using (a) 1 and (b) 2 registers. For each node show the cost vector and the instruction(s) generated.

