
CSc 553

Principles of Compilation

25 : Instruction Scheduling II

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

collberg@gmail.com


Introduction



The UltraSparc-IIi I

The integer unit has 2 ALUs for arithmetic, shift, and logical
operations. Each has a 9-stage pipeline.

The Load/Store unit can issue one load or store per cycle.

The Floating point unit has five separate functional units.
Two FP instructions can be issued per cycle. Most FP
instructions have a throughput of 1 cycle, and a latency of 3
cycles.

There’s also a graphics unit that can issue 2 instructions per
cycle.

In total, up to 4 instructions can be issued per cycle.



The UltraSparc-IIi II

Unit (LSU)

Instruction
Buffer

Grouping
Logic

Instruction Cache
(I−Cache)

External
Cache

(E−Cache)

Integer
Executiom

Unit (IEU)

Integer
Register

File

FP Register
File (FPU)

Graphics Unit (GRU)

FP Multiply Unit

FP Divide Unit

FP Add Unit

Load Store

IEU1IEU0



Superscalar Dispatch

Instructions are grouped, fetched, and issued as a block of
max k instructions.

Grp Cycle Instruction Unit

1 1 IntAdd · · · ALU0

1 IntAdd · · · ALU1

1 LoadOp · · · LSU

1 FPOp · · · FPU0

2 2 IntAdd · · · ALU0

2 IntAdd · · · ALU1

2 LoadOp · · · LSU

3 3 LoadOp r1 ← · · · LSU

4 5 IntAdd r2 ← · · · r1 ALU0

5 IntMul · · · MUL

5 41 IntAdd · · · ALU1



The UltraSparc-IIi III

Group Instruction Unit

Grp1 add %o1,55,%o2 ECU0

shl %g2,2,%g2 ECU1

ld [%fp+8],%l2 LSU

fadd %f2,%f2,%f4 FP-Add

Grp2 sub %l1,5,%l1 ECU0

add %l1,20,%o2 ECU1

ld [%fp+8],%l2 LSU

The first 3 slots of a group can hold most types of
instructions, except there can be only one ECU0 and one ECU1

instruction per group.

The fourth slot can only hold a branch or an FP instruction.



The UltraSparc-IIi IV

ctions

Slot 1

Slot 2

Slot 3

Slot 4

Slot 1

Slot 2

Slot 3

Slot 4

Slot 1

Slot 2

Slot 3

Slot 4

32−byte
boundary

Integer instructions
only in first 3 slots

uctions per group.

comparison per group.
Max 1 shift, max 1

Max 2 integer instr−

Load/store instructions
only in first 3 slots.

group.
Max 1 load/store per

group.
Max 1 branch per

Max 2 FP instructions
per group. 1 A−class,
1 M−class.

Only FP or branch
instructions in 4th
slot.

G
r
o
u
p
1

G
r
o
u
p
3

G
r
o
u
p
2

32 byte
I−Cache
line

8 32−bit
instru−



The UltraSparc-IIi IEU I

Max 2 integer instructions can be issued per cycle. They’re
dispatched only if they’re in the first 3 instruction slots of the
group.

There are two integer pipelines, IEU0 and IEU1.

Some instructions can only go to one pipeline. ADD, AND,
ANDN, OR, ORN, SUB, XOR, XNOR, SETHI can go to either.

IEU0 has special hardware for shift instructions. Two shift
instructions can’t be grouped together.



The UltraSparc-IIi IEU II

IEU1 has special hardware for instructions that set condition
codes: ADDcc, ANDcc, ANDNcc, ORcc, ORNcc, SUBcc, XORcc,
XNORcc. CALL, JUMPL, FCMP also use the IEU1.

Two instructions that use the IEU1 can’t be grouped together.
For example, only one instruction that sets condition codes
can be issued per cycle.

Some instructions execute for several cycles: MULScc inserts 1
bubble after it’s dispatched. SDIV inserts 36 bubbles, UDIV
insterts 37 bubbles, DIVX insterts 68 bubbles.



The UltraSparc-IIi IEU III

Some instructions must complete before another instruction
can be dispatched: Depending on the value of the
multiplicand, SMUL inserts max 18 bubbles, UMUL 19 bubbles,
MULX 34 bubbles.

Some instructions are single group, they’re always issued by
themselves: LDD, STD, ADDC, SUBC, , MOVcc, FMOVcc, MOVr,
SAVE, RESTORE, UMUL, SMUL, MULX, UDIV, SDIV, UDIVX,
SDIVX.



The UltraSparc-IIi IEU IV

IEU instructions that write to the same register can’t be
grouped together:

Group Instruction Unit

Grp1 add %o1,55,%i6 ECU0

Grp2 ldx [%l6+0],%i6 LSU

If IEU instruction (a) reads a register that instruction (b)
writes, they can’t be grouped together:

Group Instruction Unit

Grp1 add %o1,55,%i6 ECU0

Grp2 ldx [%i6+0],%o3 LSU

In other words, there’s a one cycle delay between an
instruction that computes a value and an instruction that uses
that value.



The UltraSparc-IIi CTI I

At most one control transfer instruction (CTI) can be
dispatched per group: CALL, BPcc, Bicc, FB(P)cc, BPr,
JMPL.

BPcc are the branch on integer condition codes with

prediction instructions: BPA, BPG, BPGE, · · · .

If the branch is predicted taken, the branch instruction and
the instruction at the branch target can be in the same group:

Group Instruction Unit

Grp1 setcc ECU1

BPcc CTI

FADD FPU (delay slot)
FMUL FPU (branch target)



The UltraSparc-IIi CTI II

If the branch is predicted not taken, the branch instruction
and the following instruction can be in the same group:

Group Instruction Unit

Grp1 setcc ECU1

BPcc CTI

FADD FPU (delay slot)
FMUL FPU (sequential)



The UltraSparc-IIi LSU I

Load/store instructions can only be dispatched if they’re in
the first three instruction slots of a group.

There can be one load/store dispatched per group.

An instruction that references the result of a load cannot be
in the load-group or the next group:

Group Instruction Unit

Grp1 LDDF [r1],f6 LSU

Grp2

Grp3 FMULD f4,f6,f8 FPU

In other words, there’s a two cycle load-delay.



The UltraSparc-IIi FPU I

FP instructions fall in two classes, A and M. An A and an M
instruction can be in the same group, but not two A or two M
instructions.

The A class: FxTOy, FABS, FADD, FAND, FCMP, FMOV, FNEG,
FSUB.

The M class: FCMP, FDIST, FDIV, FMUL, FSQRT.

FPU instructions that write to the same register can’t be
grouped together:

Group Instruction Unit

Grp1 FADDD f2,f2,f6 FPU

Grp2 LDF [%l6+0],f6 LSU



The UltraSparc-IIi FPU I

A FP store can be in the same group as the instruction that
computes the value:

Group Instruction Unit

Grp1 FADDD f2,f2,f6 FPU

STD f6,[%l6+0] LSU

Most FP instructions have a latency of 3 cycles. I.e., the
result generated by instruction (a) cannot be referenced by
instruction (b) until 3 cycles later:

Group Instruction Unit

Grp1 FADDD f2,f4,f6 FPU

Grp2

Grp3

Grp4 FMULD f4,f6,f8 FPU

FDIVD and FSQRTD have 22-cycle latencies.



Instruction Scheduling

The purpose of instruction scheduling is

1 to avoid pipeline stalls due to a datum not being available
when needed, and

2 to keep all functional units busy, i.e. making sure that every
functional unit has at least one instruction ready to execute,
and

3 to fill branch delay slots.

We’ll consider an algorithm, List Scheduling, that produces a
toplogical sort of the dependence graph, while minimizing the
execution time of the basic block.



Dependence Graph



Building the Dependence Graph I

There’s an edge a→ b between instructions a and b of the
dependence graph if

1 a writes to a register or location that b uses:

(a) r1 ← · · ·

(b) · · · ← r1
2 a uses a register or location that b writes to:

(a) · · · ← [r1 + 16]
(b) [r1 + 16]← · · ·

3 a and b write to the same register or location:

(a) r1 ← · · ·

(b) r1 ← · · ·

4 we don’t know if a can be moved after b:
(a) [r1 + 16]← · · ·
(b) · · · ← [r2 + 32]



Building the Dependence Graph II

The edge a→ b is labeled with an integer latency,

the delay required between the initiation times of a

and b, minus the execution time required by a

before any other instruction can begin executing.

If b can begin executing in the cycle after a began executing,
the latency is 0:

Cycles

0

1 2 30

a

b a b

If two cycles have to elapse between starting a and starting b,
the latency is 1:

Cycles

1

1 2 30

a b

a

b



Dependence Graph Example

Assume that a load has a latency of one cycle and takes two
cycles to complete.

(1) load r2, [r1+4]

(2) load r3, [r1]

(3) add r4, r2, r3

(4) sub r5, r2, 1

1

1

3 4

2

1 1

Note:
When building the graph we must take implicit resources like
condition codes into account:

5 There’s an edge a→ b if a sets a condition code and b

brances on it.



List Scheduling Algorithm



List Scheduling Algorithm I

Consider the dependence graph below. Let ExecTime[6]=2,
and ExecTime=1 for all other instructions.

Start by labeling the nodes with the maximum possible delay

from the node to the end of the block.

delay[n] =







ExecTime[n]if n is a leaf
max

succs m of n
(latency(n,m) + delay[m]) otherw.

delay=5

4

5delay=1 6 delay=2

21 3

delay=3

1

0

delay=5

delay=3

20

2



Example I

Consider the dependence graph below. Let ExecTime[6]=2,
and ExecTime=1 for all other instructions.

delay=5=latency(3,4)+delay[4]=2+3=5

4

5 6

2

1

latency(4,5)+delay[5]=2+1=3

latency(4,6)+delay[6]=0+2=2

3

delay=3=latency(2,4)+delay[4]=0+3=3

delay=ExecTime[5]=1

2

delay=ExecTime[6]=2

0

1

delay=5=latency(1,2)+delay[2]=1+3=4

0

delay=3=max

2



List Scheduling Algorithm II

Next, traverse the graph from the root to the leaves.

Select nodes to schedule.

Keep track of the current time, CurTime.

ETime[n] is the earliest time node n should be scheduled to
avoid a stall.

Candidates is the set of candidates (nodes which can be
scheduled).

MCands is the set of candidates with the maximum delay time
to the end of the block.

ECands is the set of candidates whose earliest start times are
≤ CurTime.



REPEAT

Candidates := nodes in DAG with indegree=0;
MCands := Candidates with max Delay;

ECands := Candidates whose ETime ≤ CurTime;

IF there’s just one m ∈ MCands THEN n := m

ELSIF there’s just one m ∈ ECands THEN n := m

ELSIF there’s more than one m ∈ MCands THEN

n := Heuristics(MCands)

ELSIF there’s more than one m ∈ ECands THEN

n := Heuristics(ECands) ENDIF;

Schedule n;

CurTime := CurTime + ExecTime[n];

FOR every successor i of n DO

ETime[i] := max(ETime[n],CurTime+Latency(n,i))



List Scheduling Algorithm IV

As usual, there are many possible heuristics to choose from:

PROCEDURE Heuristics (M : SET OF Nodes) : Node

Pick the n from MCands with minimum ETime[n].

Pick the n with maximum total delay to the leaves.

Pick the n that adds the most new candidates.

Pick the n that originally came first in the basic block.



1 2 3 4 5 6 70 8

Cycles
3

4

2

65

1 D=4

02

D=3

0

1

D=3

D=1 D=2

4

32

65

1 D=4

02

D=3

2

D=5

0

1

D=3

D=1 D=2

MCC

C=Candiate M=MCandidate
D=Delay ExecTime[5]=2

MaxDelay=5
ExecTime[*]=1

CurTime
ETime[4]=CurTime+Latency(3,4)

=1+2=3

1 2 3 4 5 6 70 8

Cycles

CurTime



ETime[4]

1 2 3 4 5 6 70 8

Cycles
3

CurTime
4

2

65

1 D=4

02

D=3

0

1

D=3

D=1 D=2

C
M

1 2 3 4 5 6 70 8

Cycles
3 1

CurTime
4

2

65
02

D=3

0
D=3

D=1 D=2

ETime[4]

ETime[2]=CurTime+Latency(1,2)
=2+1=3



M

1 2 3 4 5 6 70 8

Cycles
3 1

CurTime
4

2

65
02

D=3

0
D=3

D=1 D=2

1 2 3 4 5 6 70 8

Cycles
3

4

65
02

D=3

D=1 D=2

1 2

CurTime

ETime[4]=CurTime+Latency(2,4)
=3+0=3

ETime[4]

ETime[2]=3

C



D=2

4

65
02

D=3

D=1 D=2

1 2 3 4 5 6 70 8

Cycles
3 1 2

65

4

CurTime

ETime[5]=CurTime+Latency(4,5)
=4+2=6

ETime[6]=CurTime+Latency(4,6)
=4+0=4

1 2 3 4 5 6 70 8

Cycles
3 1 2

CurTime ETime[4]=3

C M

D=1



1 2 3 4 5 6 70 8

Cycles
3 1 2 4 6

CurTime ETime[5]=6

5

D=1

1 2 3 4 5 6 70 8

Cycles
3 1 2 4

CurTime ETime[5]=6ETime[6]=4
65

D=1 D=2
C C M



1 2 3 4 5 6 70 8

Cycles
3 1 2 4 6

ETime[5]=6CurTime
5

D=1

C M

1 2 3 4 5 6 70 8

Cycles
3 1 2 4 6

CurTime

5



List Scheduling Algorithm V

How do we deal with superscalar architectures?

We can easily modify the heuristic to handle p > 1 pipelines:

PROCEDURE Heuristics (M : SET OF Nodes) : Node

Pick a node n from M such that
1 instruction n can execute on pipeline Pi , and
2 pipeline Pi hasn’t had an instruction scheduled for it recently.



Filling Delay Slots I

Typically, a basic block ends with a branch:

(1) Instr1

· · ·

(n-1) Branch

(n) Delay Slot

We pick an instruction (i) from the basic block to fill the
delay slot, such that

1 (i) is a leaf of the dependence graph (otherwise, some other
instruction b depends on it and would have to be executed
after the branch), and

2 the branch must not depend on (i) (e.g. (i) can’t set the
condition codes that are branched on), and

3 (i) is not a branch itself.



Filling Delay Slots II

If that doesn’t work, we can try to move an instruction from
the target basic block into the delay slot:

(1) Instr1

· · ·

(n-1) Branch L

(n) Delay Slot

· · ·

L: Instrk ⇐ move to delay slot!

We prefer a single-cycle instruction (like an integer add) over
a multi-cycle (like a delayed load).

If we can’t find a suitable instruction, insert a nop.



Filling Delay Slots III

Calls are similar:
(1) ArgReg1 ← · · ·

(2) ArgReg2 ← · · ·

· · ·

(n-1) Call P

(n) Delay Slot

There’s usually an instruction (i) that moves an argument
into one of the argument-passing registers. We prefer to put
that instruction in the delay slot.

If not, we can try to move an instruction from the next basic

block (the one following the call) into the slot:

(n-1) Call P

(n) Delay Slot

(n+1) Instrk ⇐ move to delay slot!

Failing that, we insert a nop.



Readings and References

Steven Muchnick, Advanced Compiler Design and

Implementation, Section 9.2, pp. 269–274 and Chapter 17,
pp. 531–547.

Sun Technical manuals for UltraSparc-IIi (available from
www.sun.com):

1 Chapter 1: UltraSparc-IIi Basics
2 Chapter 2: Processor Pipeline
3 Chapter 21: Code Generation Guidelines
4 Chapter 22: Grouping Rules and Stalls.


