CSc 553

Principles of Compilation

33 : Loop Dependence

Department of Computer Science University of Arizona

Data Dependence Analysis

Data Dependence Analysis I

- Data dependence analysis determines what the constraints are on how a piece of code can be reorganized.
- If we can determine that no data dependencies exist between the different iterations of a loop we may be able to run the loop in parallel or transform it to make better use of the cache.
- For the code below, a compiler could determine that statement S_{1} must execute before S_{2}, and S_{3} before S_{4}. S_{2} and S_{3} can be executed in any order:
$S_{1}: \quad \mathrm{A}:=0$;
$S_{2}: \quad \mathrm{B}:=\mathrm{A}$;
$S_{3}: \quad \mathrm{C}:=\mathrm{A}+\mathrm{D}$;
$S_{4}: \quad$ D $:=2$;

Dependence Graphs I

- There can be three kinds of dependencies between statements: flow dependence
- Also, true dependence or definition-use dependence.
(i) $\quad \mathrm{X} \quad:=\ldots$
(j) $\quad \cdots:=\mathrm{X}$
- Statement (i) generates (defines) a value which is used by statement (j). We write (i) $\longrightarrow(\mathrm{j})$.
_ anti-dependence
- Also, use-definition dependence.
(i)
... : $=\mathrm{X}$
(j) $\quad X \quad:=\cdots$

Dependence Graphs II

- Statement (i) uses a value overwritten by statement (j). We write (i) $\longrightarrow(j)$.

- Also, definition-definition dependence.

(i)	X	$:=\ldots$
(j)	X	$:=\ldots$

- Statements (i) and (j) both assign to (define) the same variable. We write (i) $\rightarrow(\mathrm{j})$.
- Regardless of the type of dependence, if statement (j) depends on (i), then (i) has to be executed before (j).

Data Dependence Analysis I

The Dependence Graph:

$$
\begin{array}{ll}
S_{1}: & \mathrm{A}:=0 ; \\
S_{2}: & \mathrm{B}:=\mathrm{A} ; \\
S_{3}: & \mathrm{C}:=\mathrm{A}+\mathrm{D} ; \\
S_{4}: & \mathrm{D}:=2 ;
\end{array}
$$

- In any program without loops, the dependence graph will be acyclic.
- Other common notations are

$$
\begin{array}{lllcll}
\text { Flow } & \longrightarrow & \equiv & \delta & \equiv & \delta^{f} \\
\hline \text { Anti } & \longrightarrow & \equiv & \bar{\delta} & \equiv & \delta^{a} \\
\hline \text { Output } & \rightarrow & \equiv & \delta^{\circ} & \equiv & \delta^{\circ}
\end{array}
$$

Loop Fundamentals

Loop Fundamentals I

- We'll consider only perfect loop nests, where the only non-loop code is within the innermost loop:

$$
\begin{aligned}
& \text { FOR } i_{1}:=1 \text { TO } n_{1} \text { DO } \\
& \text { FOR } i_{2}:=1 \text { TO } n_{2} \text { DO } \\
& \ldots \\
& \text { FOR } i_{k}:=1 \text { TO } n_{k} \text { DO } \\
& \text { statements } \\
& \text { ENDFOR }
\end{aligned}
$$

ENDFOR

ENDFOR

- The iteration-space of a loop nest is the set of iteration vectors (k-tuples): $\langle 1,1,1, \cdots\rangle, \cdots,\left\langle n_{1}, n_{2}, \cdots, n_{k}\right\rangle$.

Loop Fundamentals II

$$
\begin{aligned}
& \text { FOR } i:=1 \text { TO } 3 \text { DO } \\
& \text { FOR } j:=1 \text { TO } 4 \text { DO } \\
& \text { statement } \\
& \text { ENDFOR } \\
& \text { ENDFOR }
\end{aligned}
$$

Iteration-space:
$\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle$,
$\langle 2,1\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 2,4\rangle$,
$\langle 3,1\rangle,\langle 3,2\rangle,\langle 3,3\rangle,\langle 3,4\rangle\}$.

Represented graphically:

Loop Fundamentals III

- The iteration-space is often rectangular, but in this case it's trapezoidal:

$$
\begin{aligned}
& \text { FOR } i:=1 \text { TO } 3 \text { DO } \\
& \text { FOR } j:=1 \text { TO } i+1 \text { DO } \\
& \text { statement } \\
& \text { ENDFOR } \\
& \text { ENDFOR }
\end{aligned}
$$

Iteration-space:
$\{\langle 1,1\rangle,\langle 1,2\rangle$,
$\langle 2,1\rangle,\langle 2,2\rangle,\langle 2,3\rangle$,
$\langle 3,1\rangle,\langle 3,2\rangle,\langle 3,3\rangle,\langle 3,4\rangle\}$

Represented graphically:

Loop Fundamentals IV

- The index vectors can be lexicographically ordered. $\langle 1,1\rangle \prec\langle 1,2\rangle$ means that iteration $\langle 1,1\rangle$ precedes $\langle 1,2\rangle$.
- In the loop

$$
\begin{aligned}
& \text { FOR } i:=1 \text { TO } 3 \text { DO } \\
& \text { FOR } j:=1 \text { TO } 4 \text { DO } \\
& \text { statement } \\
& \text { ENDFOR } \\
& \text { ENDFOR }
\end{aligned}
$$

the following relations hold: $\langle 1,1\rangle \prec\langle 1,2\rangle,\langle 1,2\rangle \prec\langle 1,3\rangle$, $\langle 1,3\rangle \prec\langle 1,4\rangle,\langle 1,4\rangle \prec\langle 2,1\rangle,\langle 2,1\rangle \prec\langle 2,2\rangle, \cdots,\langle 3,3\rangle \prec\langle 3,4\rangle$.

- The iteration-space, then, is the lexicographic enumeration of the index vectors. Confused yet?

Loop Transformations

Loop Transformations I

- The reason that we want to determine loop dependencies is to make sure that loop transformations that we want to perform are legal.
- For example, (for whatever reason) we might want to run a loop backwards:

$$
\begin{aligned}
& \text { FOR } i:=1 \mathrm{TO} \mathrm{4} \mathrm{DO} \\
& \mathrm{~A}[i]:=\mathrm{A}[i+1]+5 \Rightarrow \\
& \text { ENDFOR }
\end{aligned}
$$

- The original array is:

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
0	0	0	0	0

Loop Transformations II

- After the original loop the array holds:

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
5	5	5	5	0

- After the transformed loop the array holds:

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
20	15	10	5	0

- It is clear that, in this case, reversing the loop is not a legal transformation. The reason is that there is a data dependence between the loop iterations.
- In the original loop A [i] is read before it's assigned to, in the transformed loop A [i] is assigned to before it's read.

Loop Transformations III

- The dependencies are easy to spot if we unroll the loop:

$$
\begin{aligned}
& S_{1}: \mathrm{A}[1] \quad:=\mathrm{A}[2]+5 \\
& S_{2}: \mathrm{A}[2]:=\mathrm{A}[3]+5 \\
& S_{3}: \mathrm{A}[3]:=\mathrm{A}[4]+5 \\
& S_{4}: \mathrm{A}[4]:=\mathrm{A}[5]+5 \\
& \Uparrow \text { Unroll } \\
& \text { FOR } i:=1 \text { TO 4 DO } \\
& \mathrm{A}[i]:=\mathrm{A}[i+1]+5 \\
& \text { ENDFOR }
\end{aligned}
$$

$$
\begin{array}{ll}
& \Downarrow \text { Reverse \& Unroll } \\
S_{4}: & \mathrm{A}[4]:=\mathrm{A}[5]+5 \\
S_{3}: & \mathrm{A}[3]:=\mathrm{A}[4]+5 \\
S_{2}: & \mathrm{A}[2]:=\mathrm{A}[3]+5 \\
S_{1}: & \mathrm{A}[1]:=\mathrm{A}[2]+5
\end{array}
$$

- Graphically:

Loop Dependencies I

- Hence, in this loop

$$
\begin{aligned}
& \text { FOR } i \text { := } 1 \text { TO } 4 \text { DO } \\
& S_{1}: \quad \cdots:=\mathrm{A}[i+1] \\
& S_{2}: \mathrm{A}[i]:=\ldots \\
& \text { ENDFOR }
\end{aligned}
$$

there's an anti-dependence from S_{1} to S_{2} :

- In this loop

$$
\begin{aligned}
& \text { FOR } i:=1 \text { TO } 4 \text { DO } \\
& S_{1}: \mathrm{A}[i]:=\cdots \\
& S_{2}: \cdots:=\mathrm{A}[i-1] \\
& \text { ENDFOR }
\end{aligned}
$$

there's a flow-dependence from S_{1} to S_{2} :

Loop Dependence Analysis

Loop Dependence Analysis I

- Are there dependencies between the statements in a loop, that stop us from transforming it? A general, 1-dim loop:

$$
\begin{aligned}
& \text { FOR } i:=\text { From TO To DO } \\
& S_{1}: \text { A }[f(i)]:=\cdots \\
& S_{2}: \cdots:=\mathrm{A}[g(i)] \\
& \text { ENDFOR }
\end{aligned}
$$

- $f(i)$ and $g(i)$ are the expressions that index the array A . They're often of the form $c_{1} * i+c_{2}$ (c_{i} are constants).
- There's a flow dependence $S_{1} \longrightarrow S_{2}$, if, for some values of I^{d} and I^{u}, From $\leq I^{d}, I^{u} \leq$ To, $I^{d}<I^{u}, f\left(I^{d}\right)=g\left(I^{u}\right)$, i.e. the two index expressions are the same.
- I^{d} is the index for the definition $\left(\mathrm{A}\left[I^{d}\right]:=\cdots\right)$ and I^{u} the index for the use $\left(\cdots:=A\left[I^{u}\right]\right)$.

Loop Dependence Analysis II

$$
\begin{aligned}
& \text { FOR } i:=1 \text { TO } 10 \text { DO } \\
& S_{1}: \mathrm{A}[8 * i+3]:=\cdots \\
& S_{2}: \cdots:=\mathrm{A}[2 * i+1] \\
& \text { ENDFOR }
\end{aligned}
$$

- $f\left(I^{d}\right)=8 * I^{d}+3, g\left(I^{u}\right)=2 * I^{u}+1$
- Does there exist $1 \leq I^{d} \leq 10,1 \leq I^{u} \leq 10, I^{d}<I^{u}$, such that $8 * I^{d}+3=2 * I^{u}+1$? If that's the case, then $S_{1} \longrightarrow S_{2}$.
- Yes, $I^{d}=1, I^{u}=5 \Rightarrow 8 * I^{d}+3=11=2 * I^{u}+1$.
- There is a loop carried dependence between statement S_{1} and S_{2}.

Simple Dependence Tests

The GCD Test

- Does there exist a dependence in this loop? I.e., do there exist integers I^{d} and I^{u}, such that $c * I^{d}+j=d * I^{u}+k$?

$$
\begin{aligned}
& \text { FOR } I:=1 \text { TO } n \text { DO } \\
& S_{1}: \text { A }[c * I+j]:=\cdots \\
& S_{2}: \cdots:=\mathrm{A}[d * I+k]
\end{aligned}
$$

ENDFOR

- $c * I^{d}+j=d * I^{u}+k$ only if $\operatorname{gcd}(c, d)$ evenly divides $k-j$, i.e. if $(k-j) \bmod \operatorname{gcd}(c, d)=0$.
- This is a very simple and coarse test. For example, it doesn't check the conditions $1 \leq I^{d} \leq n, 1 \leq I^{u} \leq n, I^{d}<I^{u}$.
- There are many other much more exact (and complicated!) tests.

The GCD Test - Example I

- Does there exist a dependence in this loop?

$$
\begin{aligned}
& \text { FOR } \mid:=1 \text { TO } 10 \text { DO } \\
& S_{1}: \text { A }[2 * I]:=\cdots \\
& S_{2}: \cdots:=\mathrm{A}[2 * \mathrm{I}+1] \\
& \text { ENDFOR }
\end{aligned}
$$

- $c * I^{d}+j=d * I^{u}+k$ only if $\operatorname{gcd}(c, d)$ evenly divides $k-j$, i.e. if $(k-j) \bmod \operatorname{gcd}(c, d)=0$.
- $c=2, j=0, d=2, k=1$.
- $(1-0) \bmod \operatorname{gcd}(2,2)=1 \bmod 2=1$
- $\Rightarrow S_{1}$ and S_{2} are data independent! This should be obvious to us, since S_{1} accesses even elements of A , and S_{2} odd elements.

The GCD Test - Example II

$$
\begin{aligned}
\text { FOR } I & :=1 \mathrm{TO} 10 \mathrm{DO} \\
S_{1}: & \mathrm{A}[19 * \mathrm{I}+3]:=\cdots \\
S_{2}: & \cdots:=\mathrm{A}[2 * \mathrm{I}+21]
\end{aligned}
$$

ENDFOR

- $c * I^{d}+j=d * I^{u}+k$ only if $\operatorname{gcd}(c, d)$ evenly divides $k-j$, i.e. if $(k-j) \bmod \operatorname{gcd}(c, d)=0$.
- $c=19, j=3, d=2, k=21$.
- $(21-3) \bmod \operatorname{gcd}(19,2)=18 \bmod 1=0$
- \Rightarrow There's a flow dependence: $S_{1} \longrightarrow S_{2}$.
- The only values that satisfy the dependence are $I^{d}=2$ and $I^{u}=10: 19 * 2+3=41=2 * 10+21$. If the loop had gone from 3 to 9 , there would be no dependence! The gcd-test doesn't catch this.

The GCD Test - Example III

$$
\begin{aligned}
& \text { FOR } I:=1 \text { TO } 10 \text { DO } \\
& S_{1}: \mathrm{A}[8 * i+3]:=\cdots \\
& S_{2}: \cdots:=\mathrm{A}[2 * i+1]
\end{aligned}
$$

ENDFOR

- $c * I^{d}+j=d * I^{u}+k$ only if $\operatorname{gcd}(c, d)$ evenly divides $k-j$, i.e. if $(k-j) \bmod \operatorname{gcd}(c, d)=0$.
- $c=8, j=3, d=2, k=1$.
- $(1-3) \bmod \operatorname{gcd}(8,2)=-2 \bmod 2=0$
- \Rightarrow There's a flow dependence: $S_{1} \longrightarrow S_{2}$.
- We knew this already, from the example in a previous slide. $I^{d}=1, I^{u}=5 \Rightarrow 8 * I^{d}+3=11=2 * I^{u}+1$.

Dependence Distance

Dependence Directions I

$$
\begin{aligned}
& \text { FOR I }:=2 \text { TO } 10 \mathrm{DO} \\
& S_{1}: \mathrm{A}[\mathrm{I}]:=\mathrm{B}[\mathrm{I}]+\mathrm{C}[\mathrm{I}] ; \\
& S_{2}: \mathrm{D}[\mathrm{I}]:=\mathrm{A}[\mathrm{I}]+10 ; \\
& \text { ENDFOR }
\end{aligned}
$$

- On each iteration, S_{1} will assign a value to A [i], and S_{2} will use it.
- Therefore, there's a flow dependence from S_{1} to $S_{2}: S_{1} \delta S_{2}$.
- We say that the data-dependence direction for this dependence is $\#$, since the dependence stays within one iteration.
- We write: $S_{1} \delta_{=} S_{2}$.

Dependence Directions II

$$
\begin{aligned}
\text { FOR I }:=2 & \text { TO } 10 \mathrm{DO} \\
S_{1}: \mathrm{A}[\mathrm{I}] & :=\mathrm{B}[\mathrm{I}]+\mathrm{C}[\mathrm{I}] ; \\
S_{2}: \mathrm{D}[\mathrm{I}] & :=\mathrm{A}[\mathrm{I}-1]+10 ;
\end{aligned}
$$

ENDFOR

- On each iteration, S_{1} will assign a value to $\mathrm{A}[\mathrm{i}]$, and S_{2} will use this value in the next iteration.
- E.g., in iteration $3, S_{1}$ assigns a value to A [3]. This value is used by S_{2} in iteration 4.
- Therefore, there's a flow dependence from S_{1} to $S_{2}: S_{1} \delta S_{2}$.
- We say that the data-dependence direction for this dependence is \langle, since the dependence flows from i-1 to i.
- We write: $S_{1} \delta_{<} S_{2}$.

Dependence Directions III

$$
\begin{aligned}
& \text { FOR I := } 2 \text { TO } 10 \text { DO } \\
& S_{1}: \mathrm{A}[\mathrm{I}]:=\mathrm{B}[\mathrm{I}]+\mathrm{C}[\mathrm{I}] ; \\
& S_{2}: \mathrm{D}[\mathrm{I}]:=\mathrm{A}[\mathrm{I}+1]+10 \text {; }
\end{aligned}
$$

ENDFOR

- On each iteration, S_{2} will use a value that will be overwritten by S_{1} in the next iteration.
- E.g., in iteration 3, S_{2} uses the value in A [4]. This value is overwritten by S_{1} in iteration 4.
- Therefore, there's a anti dependence from S_{2} to $S_{1}: S_{2} \bar{\delta} S_{1}$.
- We say that the data-dependence direction for this dependence is \ll, since the dependence flows from i to $i+1$.
- We write: $S_{2} \bar{\delta}_{<} S_{1}$.

Loop Nests

Loop Nests I

$$
\begin{aligned}
& \text { FOR } \mid:=0 \text { TO } 9 \text { DO } \\
& \text { FOR } J:=1 \text { TO } 10 \text { DO } \\
& S_{1}: \cdots:=\mathrm{A}[I, J-1] \\
& S_{2}: \text { A }[I, J]:=\cdots \\
& \text { ENDFOR } \\
& \text { ENDFOR }
\end{aligned}
$$

- With nested loops the data-dependence directions become vectors. There is one element per loop in the nest.
- In the loop above there is a flow dependence $S_{2} \longrightarrow S_{1}$ since the element being assigned by S_{2} in iteration I ($\mathrm{A}[I, J]$) will be used by S_{1} in the next iteration.
- This dependence is carried by the J loop.
- We write: $S_{2} \delta_{=,<} S_{1}$.

Loop Nests II - Example

$$
\begin{aligned}
& \text { FOR } I:=1 \text { TO N DO } \\
& \text { FOR } J:=2 \mathrm{TO} \mathrm{~N} \mathrm{DO} \\
& S_{1}: \mathrm{A}[I, J]:=\mathrm{A}[I, J-1]+\mathrm{B}[I, J] ; \\
& S_{2}: \mathrm{C}[I, J]:=\mathrm{A}[I, J]+\mathrm{D}[I+1, J] ; \\
& S_{3}: \mathrm{D}[I, J]:=0.1 ;
\end{aligned}
$$

ENDFOR

ENDFOR
$S_{1} \delta_{=,<} S_{1} S_{1}$ assigns a value to $\mathrm{A}[I, J]$ in iteration (I, J) that will be used by S_{1} in the next iteration $(I, J+1)$. The dependence is carried by the J loop.
$S_{1} \delta_{=,=} S_{2} S_{1}$ assigns a value to $\mathrm{A}[I, J]$ in iteration (I, J) that will be used by S_{2} in the same iteration.
$S_{2} \bar{\delta}_{<,=} S_{3} S_{2}$ uses the value of $\mathrm{D}[I+1, J]$ in iteration (I, J). It will be overwritten by S_{3} in the next l-iteration. The I-Ioon carries the denendence

Model

A Model of Dependencies

- Suppose we have the following loop-nest:

$$
\begin{aligned}
& \text { for } i:=1 \text { to } x \text { do } \\
& \qquad \begin{array}{l}
\text { for } j:=1 \text { to } y \text { do } \\
s_{1}: A[a * i+b * j+c, d * i+e * j+f]=\cdots \\
s_{2}: \cdots=A\left[g * i^{\prime}+h * j^{\prime}+k, l * i^{\prime}+m * j^{\prime}+n\right]
\end{array}
\end{aligned}
$$

- Then there is a dependency between statements s_{1} and s_{2} if there exist iterations (i, j) and $\left(i^{\prime}, j^{\prime}\right)$, such that

$$
\begin{aligned}
& a * i+b * j+c=g * i^{\prime}+h * j^{\prime}+k \\
& d * i+e * j+f=I * i^{\prime}+m * j^{\prime}+n
\end{aligned}
$$

or

$$
\begin{aligned}
& a * i-g * i^{\prime}+b * j-h * j^{\prime}=k-c \\
& d * i-I * i^{\prime}+e * j-m * j^{\prime}=n-f
\end{aligned}
$$

A Model of Dependencies

- This is equivalent to an integer programming problem (a system of linear equations with all integer variables and constants) in four variables:

$$
\left[\begin{array}{llll}
a & -g & b & -h \\
d & -l & e & -m
\end{array}\right] \times\left[\begin{array}{l}
i \\
i^{\prime} \\
j \\
j^{\prime}
\end{array}\right]=\left[\begin{array}{l}
k-c \\
n-f
\end{array}\right]
$$

- If the loop bounds are known we get some additional constraints:

$$
\begin{array}{ll}
1 \leq i \leq x, & 1 \leq i^{\prime} \leq x \\
1 \leq j \leq y, & 1 \leq j^{\prime} \leq y
\end{array}
$$

- In other words, to solve this dependency problem we look for integers $i, i^{\prime}, j, j^{\prime}$ such that the equation and constraints above are satisfied.

Homework

Exam I/a (415.730/96)

(1) What is the gcd-test? What do we mean when we say that the gcd-test is conservative?
(2) List the data dependencies $(\longrightarrow, \longrightarrow, \longrightarrow)$ for the loops below.

$$
\begin{aligned}
& \text { FOR i := } 1 \text { TO } 7 \text { DO } \\
& S_{1}: \quad \cdots \quad:=\mathrm{A}[2 * i+1] \text {; } \\
& S_{2}: \quad \cdots \quad:=\mathrm{A}[4 * i] \text {; } \\
& S_{3}: \quad \mathrm{A}[8 * i+3] \quad:=\cdots \text {; } \\
& \text { END; } \\
& \text { FOR } i \text { := } 1 \text { TO n DO } \\
& S_{1}: X \quad:=\mathrm{A}[2 * i]+5 \text {; } \\
& S_{2}: \quad \mathrm{A}[2 * i+1] \quad:=\mathrm{X}+\mathrm{B}[i+7] ; \\
& S_{3}: \mathrm{A}[i+5] \quad:=\mathrm{C}[10 * i] \text {; } \\
& S_{4}: B[i+10] \quad:=C[12 * i]+13 \text {; } \\
& \text { END; }
\end{aligned}
$$

Exam II (415.730/97)

- Consider the following loop:

$$
\begin{aligned}
& \mathrm{FOR} i:=1 \mathrm{TO} n \mathrm{DO} \\
& S_{1}: \mathrm{B}[i]:=\mathrm{C}[i-1] * 2 ; \\
& S_{2}: \mathrm{A}[i]:=\mathrm{A}[i]+\mathrm{B}[i-1] ; \\
& S_{3}: \mathrm{D}[i]:=\mathrm{C}[i] * 3 ; \\
& S_{4}: \mathrm{C}[i]:=\mathrm{B}[i-1]+5 ; \\
& \text { ENDFOR }
\end{aligned}
$$

(1) List the data dependencies for the loop. For each dependence indicate whether it is a flow- (\longrightarrow), anti- (\longrightarrow), or output-dependence $(-\infty)$, and whether it is a loop-carried dependence or not.
(2) Show the data dependence graph for the loop.

Summary

Readings and References

- Padua \& Wolfe, Advanced Compiler Optimizations for Supercomputers, CACM, Dec 1996, Vol 29, No 12, pp. 1184-1187,
http://www.acm.org/pubs/citations/journals/cacm/1986-29-12/p1184-padua/.

Summary I

- Dependence analysis is an important part of any parallelizing compiler. In general, it's a very difficult problem, but, fortunately, most programs have very simple index expressions that can be easily analyzed.
- Most compilers will try to do a good job on common loops, rather than a half-hearted job on all loops.
- Integer programming is NP-complete.

Summary II

- When faced with a loop

$$
\begin{aligned}
& \text { FOR } i:=\text { From TO To DO } \\
& S_{1}: \text { A }[f(i)]:=\cdots \\
& S_{2}: \cdots:=\mathrm{A}[g(i)] \\
& \text { ENDFOR }
\end{aligned}
$$

the compiler will try to determine if there are any index values I, J for which $f(I)=g(J)$. A number of cases can occur:
(1) The compiler decides that $f(i)$ and $g(i)$ are too complicated to analyze. \Rightarrow Run the loop serially.
(2) The compiler decides that $f(i)$ and $g(i)$ are very simple (e.g. $f(i)=i, f(i)=c * i, f(i)=i+c, f(i)=c * i+d)$, and does the analysis using some built-in pattern matching rules. \Rightarrow Run the loop in parallel or serially, depending on the outcome.

Summary III

- contd.
(3) The compiler applies some advanced method to determine the dependence. \Rightarrow Run the loop in parallel or serially, depending on the outcome.
- Most compilers use pattern-matching techniques to look for important and common constructs, such as reductions (sums, products, min \& max of vectors).
- The simplest analysis of all is a name analysis: If every identifier in the loop occurs only once, there are no dependencies, and the loop can be trivially parallelized:

FOR i := From TO To DO

$$
\begin{aligned}
& S_{1}: \mathrm{A}[f(i)]:=\mathrm{B}[g(i)]+\mathrm{C}[h(i)] ; \\
& S_{2}: \mathrm{D}[j(i)]:=\mathrm{E}[k(i)] * \mathrm{~F}[m(i)] ;
\end{aligned}
$$

ENDFOR

