
CSc 553

Principles of Compilation

37 : Parallelizing Compilers II

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

collberg@gmail.com

An Example (a)

FOR i := 2 TO 7 DO

a[i] := a[i]+c; b[i] := a[i-1]*b[i];

i Time Statement

2 1© a[2]:=a[2]+c

2© b[2]:=a[1]*b[2]

3 3© a[3]:=a[3]+c

4© b[3]:=a[2]*b[3]

4 5© a[4]:=a[4]+c

6© b[4]:=a[3]*b[4]

5 7© a[5]:=a[5]+c

8© b[5]:=a[4]*b[5]

6 9© a[6]:=a[6]+c

A© b[6]:=a[5]*b[6]

7 B© a[7]:=a[7]+c

C© b[7]:=a[6]*b[7]

An Example (b)

Schedule the iterations of the following loop onto three CPUs
(P1,P2,P3) using cyclic scheduling.

FOR i := 2 TO 7 DO

S1: a[i] := a[i] + c;

S2: b[i] := a[i-1]*b[i];

ENDFOR

CPU i S1 S2

P1 2 a[2]:=a[2]+c b[2]:=a[1]*b[2]

5 a[5]:=a[5]+c b[5]:=a[4]*b[5]

P2 3 a[3]:=a[3]+c b[3]:=a[2]*b[3]

6 a[6]:=a[6]+c b[6]:=a[5]*b[6]

P3 4 a[4]:=a[4]+c b[4]:=a[3]*b[4]

7 a[7]:=a[7]+c b[7]:=a[6]*b[7]

An Example (c)

The three CPUs run asynchronously at different speeds. So,
when P2 is executing b[6]:=a[5]*b[6] at time T=8, P1

has yet to execute a[5]:=a[5]+c .

Hence, P2 will be using the old (wrong) value of a[5].

of a[5]!

a[2]:=a[2]+c

b[2]:=a[1]*b[2]

T=9

T=1

T=7

a[4]:=a[4]+c

b[4]:=a[3]*b[4]

T=2

T=4

T=8

T=5

b[3]:=a[2]*b[3]

a[6]:=a[6]+c

b[6]:=a[5]*b[6]

a[3]:=a[3]+c

T=3

T=6 Wrong value

a[5]:=a[5]+c

P1

P3

P2

An Example (d)

Statement i/S1 : a[i]:=a[i]+c must run before statement

i + 1/S2 : b[i]:=a[i-1]*b[i] in the next iteration.

C©

1©

3©

5©

7©

9©

B©

2©

4©

6©

8©

A©

i = 7/S2 : b[7]:=a[6]*b[7]

i = 3/S2 : b[3]:=a[2]*b[3]

i = 4/S1 : a[4]:=a[4]+c

i = 6/S2 : b[6]:=a[5]*b[6]

i = 5/S1 : a[5]:=a[5]+c

i = 4/S2 : b[4]:=a[3]*b[4]

i = 6/S1 : a[6]:=a[6]+c

i = 2/S2 : b[2]:=a[1]*b[2]

i = 7/S1 : a[7]:=a[7]+c

i = 5/S2 : b[5]:=a[4]*b[5]

i = 2/S1 : a[2]:=a[2]+c

i = 3/S1 : a[3]:=a[3]+c

Parallelizing Options I

Approaches to fixing the problem:
1 Give up, and run the loop serially on one CPU.
2 Rewrite the loop to make it parallelizable.
3 Insert synchronization primitives.

Give up

We should notify the programmer why the loop could not be
parallelized, so maybe he/she can rewrite it him/herself.

Rewrite the loop

FOR i := 2 TO 7 DO

S1: a[i] := a[i] + c;

ENDFOR;

FOR i := 2 TO 7 DO

S2: b[i] := a[i-1]*b[i];

ENDFOR

Parallelizing Options II

Synchronize w/ Event Counters

VAR ev : EventCounter;

FOR i := 2 TO 7 DO

S1: a[i] := a[i] + c;

advance(ev); await(ev, i-1)

S2: b[i] := a[i-1]*b[i];

ENDFOR

await/advance implements an ordered critical section, a
region of code that the Workers must enter in some particular
order.

await/advance are implemented by means of an event

counter, an integer protected by a lock.

await(ev, i) sleeps until the event counter reaches i.

advance(ev) increments the counter.

Parallelizing Options III

Synchronize w/ Vectors

VAR ev : SynchronizationVector;

FOR i := 2 TO 7 DO

S1: a[i] := a[i] + c;

ev[i] := 1;

IF i > 2 THEN

wait(ev[i-1])

ENDIF;

S2: b[i] := a[i-1]*b[i];

ENDFOR

ev is a vector of bits, one per iteration. It is protected by a
lock and initialized to all 0’s.

wait(ev[i]) will sleep the process until ev[i]=1.

Initialization of the vector can be expensive.

What does a real compiler do?

pca’s Choices I (a)

Let’s see how pca treats this loop.

pca -unroll=1 -cmp -lo=cklnps -list=l.l l.c

C Program in l.c

int i,n; double a[10000], b[10000];

main () {
for(i=2; i<=n; i++) {

a[i] = a[i] + 100.0;

b[i] = a[i-1]*b[i]; }}

Listing in l.l

for i

Original loop split into sub-loops

1. Concurrent

2. Concurrent

1 loops concurrentized

pca’s Choices I (b)

Parallelized program in l.m

int main() {
int K1, K3;

K3 = ((n - 1)>(0) ? (n - 1) : (0));

#pragma parallel if(n > 51) byvalue(n)

shared(a, b) local(K1) {
#pragma pfor iterate(K1=2;n-1;1)

for (K1 = 2; K1<=n; K1++)

a[K1] = a[K1] + 100.e0;

#pragma synchronize

#pragma pfor iterate(K1=2;n-1;1)

for (K1 = 2; K1<=n; K1++)

b[K1] = a[K1-1] * b[K1];

}
i = K3 + 2;

}

pca’s Choices II (a)

Let’s try a slightly different loop....

C Program in d.c

for(i=2; i<=n; i++) {
a[i] = a[i+1] + 100.0;

b[i] = a[i-1]*b[i];

}

Listing in d.l

for i

Original loop split into sub-loops

1. Scalar

Data dependence involving this

line due to variable "a"

2. Concurrent

1 loops concurrentized

pca’s Choices II (b)

Parallelized program in d.m

for (K1 = 2; K1<=n; K1++)

a[K1] = a[K1+1] + 100.0;

#pragma parallel if(n > 102) byvalue(n)

shared(a, b) local(K1)

{
#pragma pfor iterate(K1=2;n-1;1)

for (K1 = 2; K1<=n; K1++)

b[K1] = a[K1-1] * b[K1];

}

This time pca

1 split the loop in two subloops (like before),
2 parallelized the second subloop, and
3 gave up on the first subloop, executing it serially.

Concurrentization

Concurrentization

A loop can be concurrentized iff all its data dependence
directions are =.

In other words, a loop can be concurrentized iff it has no loop
carried data dependences.

The I -loop below cannot be directly concurrentized. The loop
dependences are S1 δ=,< S1, S1 δ=,= S2, S2 δ<,= S3. Hence,
the I -loop’s dependence directions are (=,=, <).

FOR I := 1 TO N DO

FOR J := 2 TO N DO

S1: A[I , J] := A[I , J − 1] + B[I , J];
S2: C[I , J] := A[I , J] + D[I + 1, J];
S3: D[I , J] := 0.1;

ENDFOR

ENDFOR

Exam I (415.730/96)

FOR i := 1 TO n DO

FOR j := 1 TO n DO

S1: A[i , j] := A[i , j − 1] + C;

END;

END;

1 Which of the dependencies are loop-carried?

2 Which of the loops can be directly concurrentized (i.e., run in
parallel without any loop transformations or extra
synchronization)? Motivate your answer!

3 What is the difference between a pre-scheduled and a
self-scheduled loop? Under what circumstances should we
prefer one over the other?

Readings and References

Padua & Wolfe, Advanced Compiler Optimizations for

Supercomputers, CACM, Dec 1996, Vol 29, No 12, pp.
1184–1187.

Summary I

Dependence analysis is an important part of any parallelizing
compiler. In general, it’s a very difficult problem, but,
fortunately, most programs have very simple index expressions
that can be easily analyzed.

Most compilers will try to do a good job on common loops,
rather than a half-hearted job on all loops.

Summary II

When faced with a loop

FOR i := From TO To DO

S1: A[f (i)] := · · ·
S2: · · · := A[g(i)]

ENDFOR

the compiler will try to determine if there are any index values
I , J for which f (I) = g(J). A number of cases can occur:

1 The compiler decides that f (i) and g(i) are too complicated
to analyze. ⇒ Run the loop serially.

2 The compiler decides that f (i) and g(i) are very simple (e.g.
f(i)=i, f(i)=c*i, f(i)=i+c, f(i)=c*i+d), and does the
analysis using some built-in pattern matching rules. ⇒ Run
the loop in parallel or serially, depending on the outcome.

