
CSc 553

Principles of Compilation

X11 : 11 Cocktail and BEG

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

collberg@gmail.com

Code Generation
with BEG

BEG and Cocktail I

We’ll talk about a code generator generating system called
BEG.

BEG is part of a larger compiler construction toolset called
Cocktail. Cocktail has tools that construct parsers,
scanners, semantic analysers, intermediate code generators
and machine code generators.

Most of the Cocktail tools are now commercial products,
but there are still some free early versions around on the net.

BEG is a program which takes as input a specification
consisting of code generation rules, a description of the
target architecture, and a description of the intermediate
representation.

BEG and Cocktail II

Based on the machine description BEG produces a code
generator which operates by pattern-matching on the
intermediate representation.

One can choose between several (at least two...) types of
register allocators.

The code generator constructed by BEG takes as its input a
sequence of expression trees. Output can be just about
anything; we will produce textual assembly code.

The code generator takes care of (almost) all aspects of code
generation: instruction selection, register allocation, register
assignment, and register spilling.

The next slide shows the overall structure of a compiler built
by Cocktail.

NIL

IF, Ident:a, <,

IntConst:1, THEN, Ident:b

:=, IntConst:2, END,...

Lexical
Analysis

Syntactic
Analysis

Semantic
Analysis

Optimiz−
ation

Machine
Code
Generat.

then else nextexpr

If−Stat

Ident

id:a type

Assign−Stat

des expr nextRightOp:<Left type

Binary

IntConst

val:1 type

Ident

id:b type
IntConst

val:2 type

Branch(Op:>=, Lab:L1)

Load IntConst(val:1)

GlobalVar(id:a)

Store

name: T

high: 10

type

low: 2

ARRAY

Real

Boolean

Integer

then else nextexpr

If−StatType Next

id:T

Binary

RightOp:<Left

val:1

IntConst

id:a

Ident

Assign−Stat

des expr next

Ident

id:b

IntConst

val:2

ld

cmp

bge

set a, %l0

[%l0], %l0

%l0, 1

L1

set

set

st %l1, [%l0]

b, %l0

2, %l1

intermediate code
Generation of

TYPE T =

ARRAY[2..10] OF REAL
...

...
IF a<1 THEN b:=2 END

NIL

...

NIL

Analysis
Synthesis

Symbol
TableNIL

...

TYPE, Ident:T, ARRAY, [,...

Cocktail Tools

Code Gen.

rex

lalr

ast

ast

ag

puma

puma

beg

Symbol Table

ADT

Type Checker

Machine Code

Generator

Description of

Static Semantics

Description of

Symbol Table

Data Structures

Abstract Syntax

Description of

Description of

syntax.

Descr. of

Lexical items.

Type Checking

Rules

Description of

IR and Machine

Architecture

to IR Mapping

Abs. Syntax

Tool OutputInput

Parser

Scanner

Tree ADT

Evaluator

Intermediate

Attribute

Abs. Syntax

Cocktail Generated Files

cg −xz

astcg −dim4

puma −di

puma −di

cg −4

cg −DI

cg −dim

beg

Types.puma

Gustave.scan

Gustave.pars

Gustave.cg

InterCode.puma

SymbolTable.cg

Sparc.cgd

Types.md/mi

rpp rexGustave.rex

Scanner.Tab

Scanner.md/mi

Parser.lalr lalr
Parser.md/mi

Parser.Tab

Scanner.rpp

EmitInstr.md/mi
AsmFile.md/mi

Semantics.md/mi

Tree.TS

Tree.md/mi

InterCode.md/mi

SymbolTable.TS

SymbolTable.md/mi

ag

ast

Emit.md/mi
RegAlloc.md/mi

GcgTab.md/mi

IR.md/mi

Sparc.md/mi

GcgBase.md/mi

Input to Beg

Input to the Code Generator

(Sequence of Expression Trees)

set L,%o0

ld %o0,%l1

add %l1,%l2,%l2

...

...

Output from the

Code Generator

Tree Pattern

Matcher

Register

Allocator

Code Generator

Beg

Intermediate Code

Description

Architecture

Description

Code Generation

Rules

Choice of Reg Alloc

Register Spiller

The Phases of Beg I

The code generator generated by BEG runs in three phases.

The first phase uses pattern matching to construct a minimal

cover of the input tree: the code generator will find the set of
code generator rules which will produce the cheapest (fastest)
code sequences. BEG does this by covering the input tree
with the cheapest sequence of patterns.

The second phase allocates register.

The third phase generates the actual code.

Another way of thinking about a minimal cover is to say that
the selected patterns reduce the input tree to the empty tree

by deleting matched parts of the input tree.

Beg Phase 2

Find a

minimal

cover

Beg Phase 1

Interm. Code Gen.

Lexical Analysis,

Semantic Analysis

Syntactic Analysis,

Source

Rule 2

Rule 8

Rule 5

Cover Tree

Cost=1+3+2=6

Emit

Code

Beg Phase 3
Machine Code

SET 1,R0

ADD R0,R2
...
...
...

Good Beg

Reg Alloc

Fast Beg

Reg Alloc

Cost=1

SET 1, Reg1

Rule 2

ADD Reg1, Reg2

Rule 1

Cost=2
Cost=3

ST Reg1,[Reg2+C]

Rule 3R
U
L
E
S

B
E
G

Rule 2

Rule 5 R0

R1

R0

Interm. Code Expr. Tree

Rule 8

Intermediate Code

When we build the code generator with BEG, BEG generates a
module Sparc.md/mi which is the interface to the code
generator.

At compile-time we call procedures in this module to build the
intermediate code tree.

The code generator generated by BEG assumes that the
intermediate code is in a tree format. The structure of the
tree-nodes is described by a specification.

RULES

BEG

Interface to the

Code Generator

Register

Allocator

Instruction

Selector

The Code

Generator

PROCEDURE GlobalVar (
id : Identifier;

VAR result : IntExp);

PROCEDURE Plus (

op1, op2 : IntExp;

VAR result : IntExp);

DEFINITION MODULE Sparc;

TYPE IntExp;

END Sparc;

Sparc.cgd

The Code Generator Specification

Sparc.md

Plus IntExp + IntExp −> IntExp;

GlobalVar (id) −> IntExp;

INTERMEDIATE_CODE

CODE_GENERATOR_DESCRIPTION Sparc;

END CODE_GENERATOR_DESCRIPTION Sparc.

REGISTERS

Intermediate Code II

Integer (value: INTEGER) -> IntExp;

GlobalVar (id: Identifier) -> IntExp;

Load IntExp -> IntExp;

Store IntExp * IntExp;

Plus IntExp + IntExp -> IntExp;

id = "A"

GlobalVar

Store

Plus

Load Integer

value=314

id = "A"

GlobalVar

The + (∗)-sign makes the operator (non-)commutative (Plus
is commutative since a + b ≡ b + a).
Parentheses indicate input attributes, data passed from the
front end to the code generator.

Cover Trees I

There are several alternative ways of thinking about the actions
taken by BEG during code generation:

1 Find a set of patterns that covers the input tree, such that the
total cost is minimized.

2 Build a tree (identical to the input tree) out of the available
patterns, such that the total cost of the new tree is minimized.

3 Apply the patterns to the input tree, replacing the matched
part of the tree with the right hand side of the pattern, until
the tree is consumed. Chose the set of patterns with minimal
cost.

Patterns:

reg

+

sp 4 load

+

sp 4

+

:=

Rule 2 reg
+

sp 4

:=

Rule 1 Rule 3
+

sp 4 load

+

sp 4

1

+

:=
Definition 3:

sp

reg+

4

Rule 3 :=

load reg

+

+

sp 4

Rule 1

1

Rule 2 +

sp 4 load

+

sp 4

1

+

:=

+ +

Definition 2:

+

sp 4 load

+

sp 4

1

+

:= Rule 3

Rule 1

Rule 2

+

sp 4 load

+

sp 4

1

+

:=
Definition 1:

load reg

+

+

sp 4

reg

ld [sp+4],Reg1

add Reg1,Reg2,Reg3

reg1

set 1,Reg1

Rule 2 Cost=1

reg+

sp 4

Rule 3 :=

Cost=2

st Reg1,[sp+4]

Rule 1

Cost=2

r

Reg

a

Address

Store

r

st r,[a]

Reg

r
Load

Address

a

ld [a], r

GlobalVar
id

Reg

ra

set a.id, r

Reg

ra

set a.value, r

value

Integer

a

Address COST 0;
EVAL{a.val:=0;} EMIT{a.reg:=r;};
RULE Reg.r −> Address.a

COST 1;

RULE Load Address.a −> Reg.r

EMIT{Write("ld" "[" a "]" "," r);};

COST 1;

RULE Store Address.a Reg.r

EMIT{Write("st" r, "[" a "]");};

RULE GlobalVar.a −> Reg.r

COST 2;

EMIT{Write("set" a.id "," r);};

COST 2;

RULE Integer.a −> Reg.r

EMIT{Write("set" a.value "," r);};

Reg Reg

Reg
RULE Plus Reg.a Reg.b −> Reg.c

COST 1;

EMIT{Write("add" a "," b "," c);};

Rule 1:

ba

Plus

add a,b,c

c

Reg

Rule 3:

Rule 4:

Rule 5:

(Chain−)Rule 6:

Rule 2:

Beg Example I (b) – Explanation

These simple rules all contain three parts: a pattern, a cost,
and an emit-part. The pattern-part describes a sub-tree
which the rule matches, the emit-part describes the
instructions to be generated by the rule, and the cost-part
describes the cost of executing these instructions.

Explanations:

Rule 1, for example, states that on the Sparc there is an
add-instruction which adds two registers into a third,
and which executes in one (1) machine cycle.

Beg Example I (c) – Explanation

Rule 2 says that we can load the value at a given address
into a register using the ld-instruction. Address is a
Sparc addressing mode which has several different
forms.

Rule 5 shows how we can load an integer value into a
register using the set pseudo-operation.

Rule 6 is known as a chain-rule. It generates no code but
simply states how we may transform a value from
one form to another. In this case the rule states how
we can transform a register into the addressing mode
Address. The Modula-2-code in the EVAL-part is
executed during the code generator’s cover phase,
whereas the code in the EMIT-part is executed
during the output phase.

Chain Rules (Storage Class Transformations):

Store

RegisterAddress

Top−level pattern
(no result

non−terminal)

Integer
Value=5

Register

Operator
Attributes

Register Register

Register

Result
Non−terminal

Plus

"add R1,R2,R3"

Operator Node

Non−terminal nodes

Register

Register FloatReg AddrReg

Address

Reg1+Reg2

Reg+Offs

Address

Reg1+Reg2

Reg+Offs

"st Reg,[Address]"

"set Value, Reg"

Non−terminals (Storage Classes):

Beg Tree Patterns II

A Beg pattern is normally a sub-tree where the leaves are
non-terminals.

A non-terminal represents a storage class on the machine, i.e.
a register or some other addressing mode.

Most patterns have a result non-terminal, which describes the
type of storage class in which the instruction returns its result.

Top-level patterns are distinguished by the fact that they do
not have a result non-terminal. They therefore only match the
root of an input expression tree.

Beg Tree Patterns III

A chain rule transforms a value from one storage class to
another. Often this can be done without generating any code.
For example, if one instruction returns its result in a register,
and the next instruction requires its argument in an address
(e.g. a Sparc addressing mode which is either a register, the
sum of two registers, or the sum of a register and a small
offset), then we can use a chain rule that maps a register
non-terminal to an address (without producing any code)
rather than introducing an explicit rule for each instruction of
that kind.

We can use the same technique to handle machines with more
than one register class (Address and Data Registers for the
MC68XXX architecture, for example).

BEG Example I (d)

Rule 6

id = "A"

GlobalVar

Load Integer

value=314

Plus

Store

id = "A"

GlobalVar

Rule 3

Rule 1

Rule 2

Rule 5

Rule 4

Rule 6

Rule 4

set A, %l0

ld [%l0], %l0

set 314, %l1

add %l0, %l1, %l0

set A, %l1

st %l0, [%l1]

Write("," r);};

Reg

GlobalVar
id

Reg

r
RULE GlobalVar.a −> Reg.r

COST 2;

EMIT{Write("set" a.id "," r);};

Rule 4:
a

set a.id, r

Reg Address COST 0;
EVAL{a.val:=0;} EMIT{a.reg:=r;};
RULE Reg.r −> Address.a

(Chain−)Rule 6:
r a

Load

id = "A"

GlobalVar

Load

id = "A"

GlobalVar

Rule 4

Rule 2

Rule 6

Definition 1 (Cover the tree):

Rule 4 Load

Address

Load

Reg

Rule 6

Reg

Rule 2Load

id = "A"

GlobalVar

Definition3 (Consume the tree):

Rule 2:

Load

Address

a

ld [a], r

r

COST 1;

RULE Load Address.a −> Reg.r

EMIT{Write("ld" "[" a "]");

Write("," c);};

Load Integer

value=314

Plus

Load Integer

value=314

Plus

Rule 5

Rule 1

Reg

Plus

RegRegInteger

value=314
Reg

Plus

set a.value, r add a,b,c

Rule 1Rule 5

Reg

Reg Reg

c

ba

Plus

add a,b,c

Reg
a

set a.value, r

value

Integer
r

COST 2;

RULE Integer.a −> Reg.r

EMIT{Write("set" a.value);
Write("," r);};

Definition 3 (Consume the tree):

Definition 1 (Cover the tree):

Rule 1:

Rule 5:

RULE Plus Reg.a Reg.b −> Reg.c

COST 1;

EMIT{Write("add" a "," b);

Building Beg Specifications

Done!

Describe

Registers

Describe

Addressing

Modes

Construct

Chain Rules

Add Rules

for Special

Instructions

Efficient

Rule−set?

NoYes

Describe

Intermediate

Code

Add Rules

for Common

Instruction

Complete

Rule−set?

No

Yes

A working BEG specification can be extended with new rules
that produce better code in special cases.

a

id = "A"

GlobalVar

Integer

value=314

Plus

Store

Reg

Reg

a

Address

Store

r

st r,[a]

Integer

value

Reg

c

Reg

COST 1;

RULE Store Address.a Reg.r

EMIT{Write("st" r, "[" a "]");};

Rule 3:

Rule 7

Rule 6 Rule 3

Rule 4

Rule 2

Rule 7:

CONDITION{(v.value>=−4195) &

(v.value<=4195)};
COST 1;

EMIT{Write("add" a "," v.value
 "," c);};

Plus

add a,v,c

r

RULE Plus Reg.a Integer.v−>Reg.c

Without Rule 7:

set A, %l0

ld [%l0], %l0

set 314, %l1

add %l0, %l1, %l0

set A, %l1

st %l0, [%l1]

With Rule 7:

set A, %l0

ld [%l0], %l0

add %l0, 314, %l0

set A, %l1

st %l0, [%l1]

Structure of
BEG Specifications

Structure of Sparc.cgd

The main BEG specification for the Sparc architecture is
stored in a file Sparc.cgd. It has the following global
structure:

CODE GENERATOR DESCRIPTION Sparc;
INTERMEDIATE REPRESENTATION

NONTERMINALS IntExp;
OPERATORS

Intermediate code format

REGISTERS

Description of registers

AVAIL (Available registers);
NONTERMINALS

Description of addressing modes

Code generation rules

INSERTS

Code to be inserted in generated modules

END CODE GENERATOR DESCRIPTION · · · .

Intermediate Format

This is how the tree-nodes are described:

CODE GENERATOR DESCRIPTION Sparc;
INTERMEDIATE REPRESENTATION;
NONTERMINALS IntExp;

OPERATORS

Integer (value : INTEGER)-> IntExp;
GlobalVar (id : Identifier) -> IntExp;
Load IntExp -> IntExp;
Store IntExp ∗ IntExp;
Plus IntExp + IntExp -> IntExp;

...

END CODE GENERATOR DESCRIPTION · · · .

Sparc Architecture

We need to know the addressing modes the machine has and
which registers are available.

1 Integer Register

global (%g0, %g1,..., %g7)
local (%l0, %l1,..., %l7)
input (%i0, %i1,..., %i7)
output (%o0, %o1,..., %o7)

2 Floating Point Register

(%f0, %f1,..., %f31)
3 Address

reg1 + reg2

reg1 + const13

const13

4 Register or Immediate

reg1

const13

Registers and Addr. Modes

CODE GENERATOR DESCRIPTION Sparc;
REGISTERS

l0,l1,l2,l3,l4,l5,l6,l7, ..., i5,i6,i7;
AVAIL (l0..l7,i0..i5,i7,o0..o5,g1..g6);
NONTERMINALS

Register REGISTERS (l0,l1,l2,...,i5,...);
Greg REGISTERS (g1,g2,g3,g4,...);
Address ADRMODE

COND ATTRIBUTES

(val : INTEGER)
(reg1 : Register; reg2 : Register);

RegOrImm ADRMODE

COND ATTRIBUTES

(val : INTEGER)
(reg : Register);

IntConst13 COND ATTRIBUTES

(val : INTEGER);
END CODE GENERATOR DESCRIPTION · · · .

BEG Rules

RULE Pattern consisting of register classes, addressing modes,
operators, etc.

CONDITION Condition evaluated during cover phase. If result is FALSE
rule will not be used.

COST Cost (in number of cycles) of using rule.

CHANGE Registers affected by generated code.

EVAL Code to evaluate attributes, build addressing modes, etc.

EMIT Code to generate target code.

RULE arg1 arg2 ... arg
n

-> result
CONDITION { Boolean Modula-2-expression };
COST Integer;
CHANGE (Affected registers);
EVAL { Cover phase Modula-2-code };
EMIT { Output phase Modula-2-code };

Advanced BEG Rules I

Admissible Registers I:

RULE Mult Reg.a(o0) Reg.b(o1)->Reg.c(o0)

COST 4;

EMIT {Write("mul...");}

The mul instruction requires its arguments to be in registers
%o0 and %o1, and returns its result in register %o0.

Admissible Registers II:

RULE Instr Reg.a(o0..06) -> Reg.b(o0)

COST 4;

EMIT {Write("...");}

In order to use this rule, Beg has to make sure that the
argument is in one of the specified registers.

Advanced BEG Rules II

Registers Affected by Side-Effects:

RULE Call.c Arg;

COST 2;

CHANGE (g1..g6);

EMIT {Write("call...");}

A procedure call affects all global registers.

Computed Registers:

RULE Instr Reg.a -> Reg.c({Mod-2 Expr})
COST 4;

EMIT {Write("...");}

The expression returns a suitable register. This is useful when
passing parameters in registers.

Advanced BEG Rules III

Constant Folding:

The Modula-2 code in in the EVAL part of a rule is executed
during the cover phase. It can therefore be used to evaluate
(fold) constant expressions.

For example, an expression a + 2 ∗ 3 would be translated into
code for a + 6, with 2 ∗ 3 evaluated at compile time.

Rule 9:

RULE Plus Integer.a Integer.b

-> Integer.c

COST 0;

EVAL {c.value := a.value + b.value}

Advanced BEG Rules IV

Complex Patterns:

A BEG rule can be given an arbitrarily complex pattern. The
pattern part of a rule is actually a preorder traversal of a tree
pattern.

The following example shows how we can specify a
multiply-and-add instruction:

d

RegPlus

Reg

a

Mult

Reg

b

Reg

c

Rule 10:

RULE Plus Reg.a Mult Reg.b Reg.c -> Reg.d

COST 2;

EMIT {write("MADD ...");}

Inserting Modula-2 Code I

The last part of a BEG specification consists of instructions
that inserts extra code into the generated modules.

Often this code consists of IMPORT statements that makes
it possible for the generated modules to find types and
procedures defined by us.

For every module M generated by BEG, you can insert code
into its definition and implementation modules. This is done
in so called insertion points (Ip):

IpM_d { Code inserted into M.def,

after IMPORT statements. }

IpM_i { Code inserted into M.mod }

There are special insertion points called IpInOut (for
inserting IO routines) and IpNoReg (for inserting code to call
when register allocation fails).

Inserting Modula-2 Code II

CODE GENERATOR DESCRIPTION Sparc;

INSERTS

IpInOut {
FROM AsmFile IMPORT

Create,...,FatalError;

}
IpIR d {

FROM GcgBase IMPORT

Identifier, Condition;

}
IpIR i {

FROM GcgBase IMPORT Identifier, ...,

PrintCondition;

}
IpNoReg {

FatalError ("Reg alloc failed.");

HALT;

}

Example: IBM370

Example – IBM370 I

CODE_GENERATOR_DESCRIPTION IBM370;

INTERMEDIATE_REPRESENTATION

NONTERMINALS Value;

OPERATORS

Constant (v : INTEGER) -> Value;

Plus Value + Value -> Value;

Mult Value + Value -> Value;

AddressPlus Value * Value -> Value;

BlockBase -> Value;

Content Value -> Value;

Assign Value * Value;

Example – IBM370 II

REGISTERS

R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,

R12,R13,R14,R15,

D0(R0,R1),D2(R2,R3),D4(R4,R5),D6(R6,R7),

D8(R8,R9),D10(R10,R11),D12(R12,R13),

D14(R14,R15), F0,F1,F2,F3,F4,F5,F6,F7,

DF0(F0,F1),DF2(F2,F3),DF4(F4,F5),DF6(F6,F7);

NONTERMINALS

Register REGISTERS (R0,R1,R2,R3,R4,R5,R6,R7,

R8,R9,R10,R11,R12);

Double REGISTERS (D0,D2,D4,D6,D8,D10);

RegSum ADRMODE (r:Register; s:Register);

Example – IBM370 III

RULE AddressPlus

Register.i (R1..R15)

Register.b (R1..R15) -> RegSum;

COST 0;

EMIT {RegSum.r := i; RegSum.s :=b};

RULE Double -> Register(R1,R3,R5,R7,R9,R11);

COST 0; TARGET Double;

RULE Register (R0,R2,R4,R6,R8,R10) ->

Double.d (D0,D2,D4,D6,D8,D10);

COST 2;

TARGET Register;

EMIT {Write("SRDA ", d, 32);}"

Example – IBM370 IV

RULE Constant -> Register.r;

COST 5;

EMIT {Write("L ", r, "=A(", Constant.v,")")};

RULE Plus Register.s Register.r -> Register;

COST 2;

TARGET r;

EMIT {Write("AR ", r, s);}

RULE Mult Register.a(R1,R3,R5,R7,R9,R11)

Register.b

-> Double.d (D0,D2,D4,D6,D8,D10);

COST 20; TARGET a;

EMIT {Write("MR ", d, b);}

Summary

Readings and References

Read the Tiger Book, Chapter 9, Instruction Selection.

Read “Emmelmann, Schröer, Landwehr: BEG – A generator

for Efficient Back Ends”, PLDI ’89.

Or, read the Dragon Book, pp. 572–580.

Summary

In the Sparc example, the val-attributes in the Address,
RegOrImm, and IntConst13 addressing modes are specified
as condition attributes. This means that this attribute gets
its value during the code generator’s cover phase. The register
attributes, on the other hand, get their values during the
output phase.

