Tamper Resistant Software
Design and Implementation

David Aucsmith et al
Presented by : Mohan Rajagopalan

November 17,1999

1 Abstract

We introduce the notion of Tamper Resistant Software. Tamper Resistant Soft-
ware is software that is resistant to observation and modification. This enables
to a certain extent and within bounds to trust that the software operates as
intended even when under a malicious attack. We provide tamper-resistance
using Integrity Verification Kernels. These are segments of code which are
self-modifying, self decrypting and installation unique. This code segment com-
municates with other such code, thus creating an interlocking trust model.

2 Classification of Threat

Threat to a software system due to malicious users may be broadly classified
into three categories based on the nature of malicious agent. The first one, the
simplest to detect and handle is when the perpetrator breaches communications
access controls to attack the system. The malicious agent is still under the
restrictions of the communication protocol. A good example of this genre would
be a standard hacker type attack. Robust access control mechanism that isolates
the system hardware and software totally form the user is enough to coutner
this attack.

The second, comparitively more serious attack would be like a computer
virus. Such attacks originate as software running on the platform. Thought
the attackers have breached the communcations, they must still depend on the
BIOS and OS interfaces. Such attacks are generally the aftermath of a class
I attack, and forebode class 3 attacks. Detection of these types of attacks is
facilitated by the fact that the perpetrators attacks classes of files.

Class 3 attacks are the most difficult to resolve and detect as the perpetrator
is an insider.The perpetrator may modify software or hardware for the system
at will. The only form of prevention for this type of attacks is to raise the



technoogical bar to such an extent that the perpetrator would end up wasting
so much time and resources that it would be a poor investment. The technical
bar coulbe be varied from no-specialized-analysis-tools to specialized-hardware-
analysis tools.

This presentation is aimed at discussing techniques applied to counter class
2 & 3 type threat.

3 Design Principles

In order to make software immune to observation and modification we try to
smudge and generally mess up the readability of the code. Another aspect would
be to introduce a unique secret component to each software item which would
be crucial to the running of the software. Conventaionally 4 mutually exclusive
principles were developed.

3.1 Dispersion of secrets in space and time

Secret components are evenly distributed throughtout the workspace. This pre-
vents the perpetrator from ”being lucky” and discovering the entire secret com-
ponent in a single attempt. Another transform would be temporal changes i.e.
certain secrets are observed at certain times.

3.2 Obfuscation and Interleaving

Converting a structured, modular program to a less readable state. The gen-
eral complexity of the program is increased by interleaving tasks and rewriting
commonly occuring code in more un-common format.

3.3 Installation Unique Code

To prevent class attacks we must ensure that code has a unique component.
This would deter a virus type class attack.

3.4 Interlocking Trust

Each segment depends not only on itself but also on other segments to effectively
perform its task. Thus each segment of code would be made responsible for
maintaining and verifying the integrity of other segments.

4 Integrity verification kernel

An integrity verification kernel is a small,embedded, armored segment of code
which either individually or in conjunction with other similar segments guaran-



tees integrity of state. The IVK conforms to and implements all the previously
mentioned design principles. Tasks are interleaved, distributed within the IVK.
Corresponding code is obfuscated, and made installation unique. A encryption
or security standard will always be cracked if it follows a deterministic algo-
rithms. IVK tries to simulate non-deterministic behaviour as far as possible.

4.1 Architechture

The IVK would be modelled as a collection of equal sized cells. All cells except
for the first are encrypted usinga pseudo random generator function which takes
as input one of the parameters passed in throught the entry point. The first cell
is called entry point. The cells are not executed sequentially but in a pseudo
random order which is generated using the result of execution of the cells.

The process of encrypting all cells but the first one is termed as setting up the
initial state. Once this is done a decrypt and jump function is executed to XOR
each cell in upper memory with a partner in lower memory and a substitution
key. The partners are selected based on a transposition key. Thus the value of
each lower memory cell is the result of a substitution-transposition operation.
The decrypt and jump ensures that at any given time only one of the cells in
either lower of upper memeory is in plaintext format. This operation takes in
two random bit strings which are the substitution and transposition keys.

Once the decrypt and jump function has completed execution it may now
use an accumulator function to store a comuter hash table value. This value
can then be used by the next cell to verify its and the creators integrity.

4.2 Creation

IVKs are created using specialized tools. One of the tools is used when gen-
erating the IVK and another just prior to installation. The first step would
be generation of code to compute a ”cryptographic hash follwed by modular
exponentiation”. The public keys would be hard coded into this code.

The next step would be the aggregation with standard pre-written C code.
The pre-written code would contain IVK’s entry code, the generator code, ac-
cumulator code, and other tamper detection code.

This code is compiled with a standard compiler to produce relocatable object
code. This object code processed and subjected to peephole randomization,
branch flow analysis, cell creation and obfuscation engine creation.

The last step is to copy the IVK code to the reserved part in the compiled
program.



5 InterLocking Trust

Although an IVK provides sufficient deterence to a perpetrator, we interleave
integrity checking among various IVKs so as to provide a trust relationship be-
tween those. The references assume that there is a System Integrity program
containing a special IVK called the entry-IVK. The eIVK has a published in-
terface and can be used by any other IVK using the IK protocol. The IVK
protocol is the mechanism by which the IVK maintains the interlocking trust
amongst IVKs.

The effect of going this extra step further and adding the IVK is to increase
the ammount of the code the perpetrator will have to modify in order to make a
small change. Also since it will be really difficult to make changes to the system
IVK we guarantee enough deterence to the client.

6 Technological Expansions

This presentation provides an insight into the functioning of tamper proof soft-
ware with the use of Integrity verfication kernels. The design may be extended
into two broad categories : active defense and hardware assisted protection.
Hardware assisted some part of the hardware (eg. ROM) to participate in the
integrity maintenence routines. The active defense approach tries to fight back
when it monitors a breach in security.



