University of
Arizona

CSc 620

Security Through Obscurity

Christian Collberg
February 18, 2002

Code Obfuscation

Copyright © 2002 C. Collberg

E/Ialicious Reverse Engineering\

e Given enough time, effort and
determination, a competent programmer
will always be able to reverse engineer
any application.

e Tools: disassemblers, decompilers,

slicers.

e Didn’t use to be a big problem since
most programs are large, monolithic,

and shipped as stripped, native code.

e It is becoming more common to
distribute software in forms that are
easy to decompile and reverse engineer.
Example: Java bytecode and the
Architecture Neutral Distribution Format
(ANDF).

University of
Arizona

CSc 620

Security Through Obscurity

Introduction

A

Copyright © 2002 C. Collberg

Reverse Engineering Java Apps.

. /

Slide 13A-1

Java applications are distributed over
the Internet as Java class files.

Java bytecode is a hardware-independent
virtual machine code that retains
virtually all the information of the

original Java source.

Hence, these class files are easy to
decompile.

Much of the computation in a Java app
takes place in standard libraries. Hence,
Java programs are often small in size.
This makes them easier to reverse

engineer.

/

Slide 13A—2

~

Intellectual Protection of Software

-~

Trusted
Native Code

Technical
Protection
(Partial)
Server-side
Execution

Intellectual Protection
Encryption

Obfuscation

(a)
Protection

Legal

Preventive
Transformation

Control
Obfuscation

Transformation target

obfuscation

Data

Layout
obfuscation

(c)

-

Slide 13A-3

University of

Arizona

CSc 620

Security Through Obscurity

Overview

B

Copyright © 2002 C. Collberg

This Talk \

We will discuss the various forms of
technical protection of intellectual
property which are available to software
developers.

We will argue that the only cost effective
approach to the protection of mobile
code is code obfuscation.

We will present a number of obfuscating
transformations, classify them, and show
the design of an automatic obfuscation
tool.

(1) Forms of technical protection against
software theft, (2) Design of a code
obfuscation tool, (3) Criteria for
classifying and evaluating obfuscating
transformations, (4) Catalogue of
obfuscating transformations, (5)

Algorithms, (6) Summary. /

Slide 13A—4

Scenario \

Alice is a small software developer who
wants to make her applications available
to users over the Internet, presumably at
a charge. Bob is a rival developer who
feels that he could gain a commercial
edge over Alice if he had access to her
application’s key algorithms and data
structures.

Alice can protect her code from Bob’s
attack using either legal or technical
protection.

Economic realities make it difficult for a
small company like Alice’s to enforce the
law against a larger and more powerful
competitor.

Alice can instead protect her code by
making reverse engineering so technically
difficult that it becomes economically

inviable.

Slide 13B-1

/ Server-Side Protection \ / Protection by Encryption \

- [somzee by
Encrypted Decompile
Object Code Bob

B e
erver

and
Request Butter J L
m Decompile | Code
Bob

Encrypted
Object Code

Decrypt

Object
Code

Response

Response ﬁ @ e Alice can encrypt her code before it is
il Erocuter sent off to the users. This only works if

the entire decryption/execution process
o If Alice just sells the services of her takes place in hardware.

lication, B ill in physical . .
app 1cat10.n, ob will never gain physica e If the code is executed in software by a
access to it and hence can’t reverse . . o
) N virtual machine interpreter, then it will
engineer it. . .

& always be possible for Bob to intercept

e To improve performance, only the and decompile the decrypted code.
\\ sensitive part is run remotely. / \ /
Slide 13B—2 Slide 13B-3

/ Protection By Native Code\ / Protection By Obfuscation I\

Compil @ Signed Native
/ ompile si a Code Compile @ Obfuscated
e tode P Object Code
Native x86 Native Sparc Verify that
Code gbgect Ubject | Decbfuscate

oce Code
[souree o Ovtuscase
Bob
&~ e

Signed Native
Code

Server

Decompile

Request

//// x86 Code

Code Code is from
trusted host
Decompile
Obfuscated
Object Code Bob m
Executer
al

L

e Alice could use of just-in-time compilers

to create native code versions of her e Alice runs her application through an
application for all popular architectures. obfuscator, that transforms the

e When downloading the application, the application into one that is functionally
appropriate version would be identical to the original but which is
transmitted. Only having access to more difficult for Bob to understand.

native code will make Bob’s task more e Obfuscation can’t completely prevent

difficult, but not impossible. reverse engineering.

e Alice must digitally sign the code, since e Bob can use an automatic deobfuscator

(unlike Java bytecodes) it cannot be

\\ verified before execution. / \

Slide 13B—4 Slide 13B-5

to undo the obfuscating transformations/

/ Protection By Obfuscation II\

e The level of security from reverse
engineering that an obfuscator adds to
an application depends on
1. the sophistication of the obfuscating

transformations,
2. the power of the deobfuscator,

3. the amount of resources available to

the deobfuscator.

e Ideally, we would like to mimic the
situation in current public-key
cryptosystems, where there is a dramatic
difference in the cost of encryption and

decryption.

e There are obfuscating transformations
that can be applied in polynomial time
but which require worst-case exponential

University of
Arizona

CSc 620

Security Through Obscurity

Architecture

C

Copyright © 2002 C. Collberg

\\ time to deobfuscate. /

Slide 13B—-6

4 N

o \G"
9
P-4 g = g
e 8 8. BN .
H oW £ 0 R
. bl oM G o
R g 8 2
T id 2510
a [} é.‘lll
ol
o
. =S
=
i o 2V
g, g S
t 2 o o
) -« ER
S8 "o 82
w|| & = N 4
g b 9 s Ll N
- n e . o N
- ES L g 8]
Nl ~ ® O
Y o P Aad
o é o B n
& g 3
o =]
ik
Tl E x
3% 8
9 & a
EREES « a
= s ln-gO el
°
o n g -
R -
w . S o Ea 8
O 4 g o
a2l 8S %a -~ g a
|l 85 3 g ~ A 6 ©° - B
o »\E nq Bl © 5T
2l 88 o =V £ 0 > S0
g 88 0 Egs ﬁﬁ?,
n o o
o 5 AR
S o Al n o n -
ol o o =T R .6
o 9 W
3 ae Eg»]
o .
PWET
£ o
00
o
—— ey ~a~
D
el
Bd Bd
- -
2|2

ransformation
Pool @

»
n
Q
o
»
o
B

potency

Application
(Java Class files)

@

low
low

-

Slide 13C-1

/ A Java Obfuscator I1

~

required level of obfuscation, maximum

Input: a set of Java class files, the

execution time/space penalty, profiling
data.

Output: a new application given as a
set of Java class files, annotated Java

source for debugging.

Internal data structures: symbol
tables, inheritance tree, CFGs, data

dependency graphs, etc.

The profiling information can be used to
guide the obfuscator so that frequently
executed parts of the application are not
obfuscated by very expensive

transformations.

The tool contains a large pool of code

transformations. /

Slide 13C—-2

/ A Java Obfuscator II1 \

e Pragmatic information: what kind of

language constructs and programming
idioms does the application contain.
Used to select appropriate

transformations.

e All types of language constructs can be
obfuscated: classes can be split or
merged, methods can be changed or
created, new control- and data
structures can be created and original
ones modified, etc.

e New constructs added to the application
are selected to be as similar as possible
to the ones in the source application.

e The transformation process is repeated
until the required potency has been
achieved or the maximum cost has been

\\ exceeded. /

Slide 13C-3

/ Obfuscating Transformation\

Let P -+ P’ be a transformation of a source
program P into a target program P’.

P-T, Pisan obfuscating transformation, if
P and P’ have the same observable behavior.

The following conditions must hold:

1. If P fails to terminate or terminates with
an error condition, then P’ may or may

not terminate.

2. Otherwise, P’ must terminate and
produce the same output as P.

e Observable behavior is defined loosely as

“behavior as experienced by the user.”

e P’ may have side-effects (creating files,
sending messages) that P does not, as
long as these side effects are not
experienced by the user. P and P’ don’t

University of
Arizona

CSc 620

Security Through Obscurity

Classification

D

Copyright © 2002 C. Collberg

\\ have to be equally efficient. /

Slide 13D-1

/ Classifying Obfuscating Transformations\

]
]
-
o L. 553
g a g L w003
o 8 | @ SlegEguT
ot o) g HlH O O]
Lp|l o pel w 9 Q0 N HE5
S| dH » £ b g - 0040
oovolaoHdl oblon b nmﬁouou
mal BL| wdg| >0 e HI®'E hd 00
84| 88| gg| o >E MeA Q5 TP
=y H O o Nl B -
2l VDl a0l Qg +£ 0
Ol H I Bw|la 0 g4 f
A
5 56 -
) A 9l Sy B
o A HOn
Ble #H0Ow
o HudE oo
HO&G)E’U»
Hldwuso ®
80 . S| 'sm b og o
q -3} ~ Hodogn
HEEEFIFEERE C} He0Tdd
HERE-E IR
ML EKCIE R RS
MEEIE AR
S|188H[8e| 8k
@A > @E|@2d
Q
H w| 0~ !
gl ® o R g|+0 al o §
g Sl o |- Sl oTEl 8|l g
o Al 8w gul-d \‘DU%HO 2 g
A 2| 0o 6 gl o Blag 878|588
I 8l a4 £ 0w 2|AT B D £
o B0 A | eHed| s s] Gg gH| 0@
o O 0W G| 0 > al g9t s 68|38
@ S| 80d [-d O ®| b0 Eldgo|lee|lao
g/ BEE(sds|asn| |8 /8|8 EE|Ek
-g < =>|=HdA4wnEC 3 OlmaEw| Mo |H A
3
o
8 E [g
o 2 i})
A w A 80 & -
Y L) S Sluo| 'R
E AR ol HA|BE|o 3w
G| oA |0oa-H - §lBo|l”uldo
S| BB | &a % o\V\v| 85|86 84
HERIERE gl &len|esles
B n o
| §§8§80 g
. HE R
A o p A S «
K a »] B -
H 2 “8 s wg 0
o nu
HERIEE IR 0 gw|gE G [
IR RIEE: R dleolAo|l ool
Aed B0l B P oA H|Hms|de| 850
% 2.8 8388880 DIEh 533688
) w'>|a 0ol ns e T|HE|Su|oE| DA

Slide 13D-2

/ Classifying Transformations\

e We primarily classify an obfuscating
transformation according to the kind of
information it targets:

layout The lexical structure of the
application, such as source code
formatting, names of variables, etc.

data The types, declarations, data
structures.

control The flow of control.
preventive
e Secondly, we classify a transformation

according to the kind of operation it
performs on the targeted information:

Aggregation Break up or create
user-defined abstractions.

Ordering randomize the order of
declarations or computations.

Slide 13D-3

Quality

e We need to be able to evaluate the
quality of an obfuscating transformation.

e We will attempt to classify each
transformation 7 according to several

criterias:

potency how much obscurity 7 adds to

the program,

resilience how difficult 7 is for a
deobfuscator to undo,

stealth how well code introduced by T
fits in with the original code,

cost how much computational overhead

T adds to the obfuscated application.

Tquai (P), the quality of a transformation 7,
is defined as the combination of the potency,
resilience, and cost of T

\Eual(P) = (71)0‘5 (P), 7;es (P), 72051: (P), 7gte

Slide 13E-1

/

~

(P))-
/

University of
Arizona

CSc 620

Security Through Obscurity

Quality

1D

Copyright © 2002 C. Collberg

-

~

What does it mean for a program P’ to

Measures of Potency

be more obscure (or complez or
unreadable) than a program P?

Any such metric must be rather vague,
since it will be based on human cognitive
abilities.

We can draw upon the vast body of
work in the Software Complezity Metrics
branch of Software Engineering.

Metrics are designed with the intent to
aid the construction of readable, reliable,

and maintainable software.

We use metrics to construct un-readable,
un-reliable, and un-maintainable

software!

The metrics count various source code
properties combining these counts into a

/

measure of complexity.

Slide 13E—2

- ol "O
/ : . kS g\
& = S "
= 2 = =
0N g ‘a 8
< 5 g m
=) o= > R CY
S . =1 A [}
) Ky S 3} s >
o o]
= o Q2 s 3
‘(t 5 Sy o %8
= = o % o &
= g 3 g — ¢
%"CQCD"‘Q> ; CGL&.)
) ST 2|lL] ol & g %9
>—<®<l) @mv— () H;_‘
El Sl a| | 2|8 o T|= >| &
<llzm|o|lO|a|EB| XN 2|s 2L g
EllR |||l E2]5|C Tl &
Omozomgoo moE
H F < 3 :ﬁ:g
@ < Q ol Q&
>
SEIE (f|pE |2|EE
h= o ©
=l |E|22| &2 |2|F 3%
Zl<|®| 2|35 g5 g1
d EIR IR E R ERE
w2 w2 w0 .
ol 3| @ 2l E| 2|0l 2ax|Y|E
Zllalo| Ll oo o) = | T =
o upnopggg:pm
il alc| B C Slalc Al 3| ¢C «w
S5l 8| |8 20 E|l=|8 gl 3|8 °
=3 (A at -1 Bl -4 Bt Rl Bal 4 =3 g
PIN|T || E || B 5|8k
o= — —| B | = =l -
AlR|IOIR|Z|R|IAIR §|lm|R S
g
ot
ol o~ o~ ™ < 0
al 3 3 3 3
\j J
Slide 13E-3

~

/ Definition of Potency

e We will use potency to measure of the

usefulness. of a transformation.

e A transformation is potent if it does a
good job confusing Bob, by hiding the
intent of Alice’s original code.

e Potency measures how much more
difficult the obfuscated code is to
understand (for a human) than the
original code.

Let 7 be a behavior-conserving
transformation, such that P T, p
transforms a source program P into a target
program P’'. Let F(P) be the complexity of
P, as defined by some complexity metric.

Toot (P), the potency of T with respect to a
program P, measures how 7 changes the
complexity of P:

\

] O 0 = = ¥ QD

Q L O & L O

= 2S¢ S8 2

-Js: A“““,_Dq')

@ e o © = 0 &

< I 0K T e

5 STELEEE

o] du:ﬁ:&o-'—"

o e v =29

o :@@E =]

= = g < 2 o

< c:“"'-‘gqj

2 58 2SgT

= v T~

[o | © :H:CD'-O

Sl olg |8|€£=3¢ 28
& gm.EQQ‘"QVJa
2| |S|EFO* 88
g e < g
£ > Slw O E .
5§§,S:Owo%"dm$
O = Fy =
a g QB 2T .g.8
>| & 9 ﬁo@&:@-c—%c’g
=19 9 MED.‘E;-C:>
FSE| lmziiitg
=S —~ 1@50%00
&) D*a_v% VE_‘J(A@J;%
E%ﬁ’“ S 28 2845
’fo..—‘S Eq,::;:b._'bog
Z B g TS ogo L
Clele 5| |geS£ETs
= 5%(/1“ WQOE‘;@Q
2l &l 8 = S & BUJ:@
A EIEEE AR
- Z|lc glE2|Q g BTN
cla|EE|B|lES 8 YEE
- S|l~=2* &8 7 ¢
Sy € OCE@E S0 g
AR IO/l =7< o 0=

He
Hr

\EﬂﬂgEWWMm—L

/

Slide 13E-5

GIETRIC

/

Slide 13E—4

e

increase size increase overall program size

ow Can We Increase Potency?

(#11) and introduce new classes and
methods (u%).

more decision points introduce new
predicates (p2) and increase the nesting
level of conditional and looping
constructs (us3).

increase coupling increase the number of
method arguments (us) and inter-class
instance variable dependencies (u9).

increase data structure complexity
increase the number of array dimensions

(16)-

increase inheritance increase the height
of the inheritance tree (u2°).

increase scope increase long-range variable

\ dependencies (f14). /

Slide 13E-6

/ Measures of Resilience \

e It would seem that increasing Tpot(P)

would be trivial. To increase the uo
metric we just add some arbitrary
if-statements to P:

main() {
main() { S1;
S1; é if (56==2) Si;
Sa; Sa;

} if (1>2) So;

}

e Such transformations are useless, since
they can easily be undone by simple
automatic techniques.

e We introduce resilience, which measures
how well a transformation holds up
under attack from an automatic

\\ deobfuscator.

Slide 13E-7

/

/ Transformation Resilience \

Let 7 be a behavior-conserving
transformation, such that P T, p
transforms a source program P into a target
program P'. Tres(P) is the resilience of T
with respect to a program P.

Tres (P)=o0ne-way if information is removed
from P such that P cannot be reconstructed
from P’. Otherwise,

Programmer

effort A

Inter-

process full

full

Inter-

—4— st
procedural strong

full

weak

Global -T strong

trivial weak

Deobf-
||» uscator

Poly Exp effort
time time

Local -1

trivial

| | | | |~

weak strong full one-way

resilience

I I I I LI
low high

Slide 13E-9

/

/ Measures of Resilience \

e The resilience of a transformation 7 is

the combination of two measures:

Programmer Effort: the amount of time
required to construct an automatic
deobfuscator that is able to effectively
reduce the potency of 7, and

Deobfuscator Effort: the execution time
and space required by such an automatic
deobfuscator to effectively reduce the
potency of 7.

e T is potent if it confuses a human reader.

e 7T is resilient if it confuses an automatic

/

deobfuscator.

Slide 13E-8

~

e While a resilient transformation may not

Measures of Stealth

be succeptible to attacks by automatic
deobfuscators, it may still be succeptible
to attacks by humans.

e Particularly, if a transformation
introduces new code that differs wildly
from what is in the original program it
will be easy to spot for a reverse
engineer. Such transformations are

unstealthy. See example below.

e Stealth is a highly context-sensitive
metric. Code may be stealthy in one
program but extremely unstealthy in
another one.

512-bit integer
if IsPrime(8375274...3853347527) then

N /

Slide 13E-10

/ Measures of Execution Cost\ / Layout Transformations \

e The cost of a transformation is the
execution time/space penalty which a
transformation incurs on an obfuscated

application.
e Current Java obfuscators such as Crema
Let 7 be a behavior-conserving usually only perform trivial layout
transformation. Tcost (P) is the extra transformations:

. . / .
execution time/space of P’ compared to P: 1. Remove the source code formatting

(if executing P’ requires information sometimes available in
dear ezponentially more re- Java class files:
sources than P. Tqual(P) = (low, one-way, free).

if executing P’ requires

costly O(n?), p > 1, more re- 2. Scramble identifier names:

Tquai(P) = (high, one-way, free).

Teost(P) 2 ¢ sources than P.
if executing P’ requires 3. Remove comments:
cheap (O(n) more resources Tauat(P) = (high, one-way, free).
than P.
if executing P’ requires
free. O(1) more resources
\\ \ than P. / \ /
Slide 13E-11 Slide 13E—12
/ Control Transformations \
University of e Next, we will present a catalogue of
Arizona obfuscating transformations.

e First we’ll look at transformations that
obscure control-flow. There are three
kinds:

C SC 620 aggregation Break up computations
Security Through Obscurity that logically belong together or
merge computations that do not.
Control Transformations ordering Randomize the order in which
computations are carried out.
computations Insert new (redundant
F or dead) code, or make algorithmic
changes to the source application.
Copyright © 2002 C. Collberg e Control transformations will have some
computational overhead: Alice may have
to trade efficiency for obfuscation.

N /

Slide 13F-1

~

rely on the existence of opaque variables

-~

e Many control-altering transformations

Opaque Constructs I

and opaque predicates.

e A variable V is opaque if it has some
property q which is known a priori to
the obfuscator, but which is difficult for
the deobfuscator to deduce.

e A predicate P is opaque if a
deobfuscator can deduce its outcome
only with great difficulty, while this
outcome is well known to the obfuscator.

e The resilience of an opaque construct
(i.e. its resistance to deobfuscation
attacks) is measured on the scale
(trivial,weak,strong,full,one-way).

e We measure the added cost of an opaque

/

construct on the scale

\\ (free,cheap,costly,dear).

Slide 13F-2

/ Simple Opaque Constructs \

e Trivial opaque constructs can be cracked
by a deobfuscator by a static local

analysis:
{ int v, a=5; b=6;
v = a + b;
. T
if (b>5)" ---

if (random(1,5) <0)F s}

e Weak opaque constructs can be cracked
using a static global analysis:
{ int v, a=5; b=6;
if (-2) .-
(b is unchanged)
if (b<7)T a++;
v=3¢ = (a > 5)7v=b*b:v=b }

~
/

g £ s 5 8
= 2 n
< g e B
= = (29 o
B 4 n wn QO
) g g =
w Eo“
2 £ = 2 =
) =) = B B
7)) & . S g g2
g - gsq%
CE P 2R
+ A== g = &
< &0 3 i . 8 & 3
= R~ @ o &
< =l +
= ST = B s g
S =z . m & ¢ 2E 5
L o Q_‘@mmgj;m:‘
0 S g o8 » 5<% 8 8%
a B o z 2 & 8 ¢ o & B
< ugwggaaugo
. p—
¥ 2 RN " R OQ = o
; C 4 4 = N oy 8BS
—_— C S 0w owm &)
e&w £ 7 " & B g5 &
] OO +
S| Bz f£Z%%a g3
< S ngT 3 3 9
S £ < ﬂﬂ:vm
= o g) &= =
g .—Q:Q'QhE&- .Cgt'a
o H & < AR O S0
O [] [} []
R’%Lﬁ ffffff >k"%

. /

Slide 13F-4

-

Slide 13F-3

ﬁnsert Dead /Irrelevant Code I\

e The po and p3 metrics suggest that
there is a strong correlation between the
perceived complexity of a piece of code
and the number of predicates it contains.

e Opaque predicates allow us to devise
transformations that introduce new

predicates into a program.

e Three cases:

(a) Insert an opaque predicate P” into
S. PT is irrelevant code since it will
always evaluate to True.

(b) Break S into two different
obfuscated versions S¢ and S°. P’
selects between them at runtime.

(¢) Asin (b), but introduce a bug into
Sb. PT selects the correct version of

\ the code, S°. /

Slide 13F-5

~

Insert Dead/Irrelevant Code 11

-~

T
o
|

A
|
f(B) = f(B")

[Lj
S

Slide 13F-6

~

Extend Loop Condition II

-

]
Y

>
A
S

k <+ f(k)

J « g(k,J)

B

1

Ty
S

ke 1)
i

L

<

&) %s&
Ll
R ey
éﬂ
Slide 13F-8

~

Extend Loop Condition I

-

~\
g : B
= = = ©
2 g 3 I
E g S Il
Ts & ¥
s = =
+ o i
[oTR S}
S & Il +
2 & ‘-
o Dy &8 —
= x — B %
=g 0+ s =
a0 O 8 o
‘SO ~— .84— =
= NH o v o™ .-
=] o H a2}
g £ = N +
M = 3 =] 'l—)v'ﬁ --':
038 hed [O + M
> o B I B +
&5 ¥ © AE
2 2 = &
© A g [\’n\
€&y o ©°
s A S
2.2 2 -~
5 8 ¢ <
By = © S
[} ¥ K o
(AU =
gcéo a9 v
Og.g < Z
L += ¥ é—‘) .
= o +
= B % g -8 3
~— A -
) ° n g
R I ,—M/
Slide 13F-7

ﬁ\Ion-Reducible Flow Graphs h

Often, a programming language is
compiled to a object code which is more

expressive than the language itself.

This allows us to device
language-breaking transformations. I.e.
introduce virtual machine (or native
code) instruction sequences which do not
correspond directly to any source
language construct.

For example, the Java bytecode has a
goto instruction while the Java language
has no corresponding goto-statement.

We construct a transformation which
converts a reducible flow graph to a
non-reducible one.

This can be done by turning a structured
loop into a loop with multiple headers./

Slide 13F-9

~

Non-Reducible Flow Graphs II

-~

A; B

while (E) {

C; D

}

oo
F
]

,,,,,,,,,,,,,,,,,,,

C; D

} llse

C; D

while (E) do {
while (E) do {

D

}

Slide 13F-10

~

I1

& Outlining

ining

Inl

-

R’s code

Py
Py
Pr_1
|
@
Q
|

P’s code

Outline

Py
Po

Inline
» s

call n.Q()

-

Q’s code
1
2
l

Slide 13F-12

e Inlining is an extremely useful

Inlining & Outlining 1 \

obfuscation transformation since it
removes procedural abstractions from

the program.

Inlining is a highly resilient
transformation (it is essentially
one-way). This may not be true in OO
languages, since inlining may leave a

trace:
T F
\L classl:: P T < F

RN
code for
class2:: P

Outlining (turning a sequence of
statements into a subroutine) is a very

useful companion transformation to

inlining. /

Slide 13F-11

-

e The detection of interleaved code is an

e We can easily interleave two methods

Interleave Methods 1 \

important and difficult reverse
engineering task. Rugaber writes:

One of the factors that can make
a program difficult to understand
is that code responsible for
accomplishing more than one
purpose may be woven together in
a single section. We call this

interleaving |- - -]

declared in the same class. The idea is
to merge the bodies and parameter lists
of the methods and add an extra
parameter to discriminate between calls
to the individual methods.

Ideally, the methods should be similar in

nature to allow merging of common code

\ and parameters. /

Slide 13F-13

~

Interleave Methods 11

N

Clone Methods 11

-

/

-~
[B
>§~S —~
N
i) cn em
ﬂ/\ ~
R o
>l NN
g” (&)
e~ O U
- B~ 0 [}
5 %} g ~ -
n 4~ |
O - A 0 Q, ~
= = =
n ~ ~ . .
gz = (SR o PN o
—
[§) -~ —
——
~ —~
N
e S (&) ’[-Q\
—_— N -~
—~ e Q 3N
— M .@, :>s'°ﬁ QO ~ =
— — a XK >
O -3 — O N~ <
= i o, < m
n ~— . .
£<ﬂ ~ Mm —~ (SR oo
H
[§) —~— —
Slide 13F-14
—
— ~
—~
— - =
~ b —
S © =
Q.(\.]\ V]m B’“#&
S RS ~
< < - & g o
< 4 < i -
—~— (0] OB
— o~ ,gwa o .
~ M ~ ~ 4
- M oM [TR
+ (X [
~ o d N P 8)
O g A O dq MO~ O
- - n g
n ~ < n - ~ Yo o~
n g & n g O H o K
o o
— —
(8} ~~ 0 —_—
-
N~
N/
g
o M
—~— [SR
=
Ba 8
-— < ~
+ I w
O g - ~
- L=
n ~ .
n g [SR
o
'_|
[§) —,— —~—

Slide 13F-16

-

Clone Methods 1 \

To understand the behavior of a routine
a reverse engineer would examine its call
sites. We can obfuscate the call sites to
make it appear that different routines
are being called.

We create several different versions of a
method by applying different sets of
obfuscating transformations to the
original code. We use method dispatch
to select between the different versions

at runtime.

Method cloning is similar to the

predicate insertion transformations.

The calls 'x.m(5)" and x.m1(7)" look as
if they were made to two different
methods. C1::m is a buggy version of

\ C::m that is never called. /

Slide 13F-15

University of
Arizona

CSc 620

Security Through Obscurity

Data Transformations

G

Copyright © 2002 C. Collberg

/ Data Transformations \

e Data transformations obscure the types
and data structures used in the
application.

e The transformations may affect the data
structures’
1. storage
. encoding

2
3. aggregation
4

-

-

. ordering
Slide 13G—1
L R R R =)
NN~
<t
— |||~
(o]
Lol R R=REs B E=]
0
Q p—
~
Q2 m || S — & ™M
© m
o= p
= =
> g m
-~
.-
'_Q" —\ |||
n o}
|||~
n||lo|n|mn|m 2o
N||lo|la|—~|o '3':
=
= O
—|l|lo|l—=|la|lo
o
ol|l|lm|cn|lo|m o = & o
— Y
N
|| O - N ™M
m
= = 2 o o 9
g m £=llg B R4
= Nn BB 2
—~ T —~= O
=~
Z
S Qo © —~ =

1* 1. 1 o8 >)

~

Boolean variables and other variables of

Split Variables I

restricted range can be split into two or
more variables. We write this as

V= I-pla"'apk]'

The potency of this transformation
grows with k. So will the cost of the
transformation, so we usually restrict &
to 2 or 3.

If V = [p, q] we must provide:

1. a function f(p,q) that maps the p and
q into the corresponding value of V,

2. a function g(V') that maps the value
of V into values for p and ¢, and

3. new operations (corresponding to the
primitive operations on values of type
T) cast in terms of operations on p
and q.

/

Split Variables III

>

Slide 13G—2
AN .-
= N
> = 7
Il Mo
N n .
(9] N
O ~
cn em —~
N O -~ N
~N oo
HOAN N
1] O W M
i I~
QO o~
on ~ O —
N e~ N —_—
(§) — 0 e
- N —
~i Qa <« o
[§) + Qa -
- ~ 4+ |
N Q QO — Ko
Q *x ~ a0 >~
B N * ~
~ o~ &8 N —
Q N ~ H (4]
i g ~ N A ~ O
N +a en e« + N o N S
g —H O —H = © + -~ QO
- | Il Il] — (8]
— N AN N x ¢ g @© ¢
g d O O N * + [
= —+H N H <
P em oem e @ — © QO >
H O O H = ~ @ % “~w v
o | 1] N << 1 O
= = R R | I] N H
n o Q0 M O M MW oA A
~
~ ~ ~ ~ N AN N ~
A A A A A A & a & O
— N M H O~
N N N A N N N A

SN

[&) en em sm sm em M
o s~ O O M M M . . .
M O u wn . . .
a3 H A R88 —
< H d © ~ ~ ~
B TR SV T - R &
— N
o |]] non]
[e] H O OH O H
QO < MmO VD OO U A A A
~
A NN "~ "~ "~ "~~~ O
~ N ™M 1 © N~ 00 O
RN N N = e N 7
C1°*° 1. 168t A

/Static to Procedural Data I\

e Static data, particularly character
strings, contain much useful pragmatic
information to a reverse engineer.

e A simple way of obfuscating a static
string is to convert it into a program
that produces the string.

e The program — which could be a DFA, a
Trie traversal, etc. — could possibly
produce other strings as well.

e The function G obfuscates the strings
"AAA", "BAAAA", and "CCB".

e The values produced by G are
G(1)="AAA" G(2)="BAAAA",
G(3)=G(5)="CCB", and G(4)="XCB". For
other argument values, G may not

terminate.

-
-

/
~

Slide 13G—5

Array Transforms I

A number of transformations can be

devised for obscuring operations

performed on arrays: we can
1. split an array into several sub-arrays,

2. merge two or more arrays into one

array,

3. fold an array (increasing the number

of dimensions),

4. flatten an array (decreasing the

number of dimensions).

e Array splitting and folding increase the
e data complexity metric.

e Array merging and flattening decrease
this measure. They are still obfuscating,
though since they introduce structure
where there was originally none or

remove structure from the original

program.

/

11* 1. 168N ™

/Static to Procedural Data II\

String G (int n) {

int i=0,k;

String S;

while (1) {
Li: if (n==1) {S[i++]="A";k=0;goto L6};
L2: if (n==2) {S[i++]="B";k=-2;goto L6};
L3: if (n==3) {S[i++]="C";goto L9};
L4: if (n==4) {S[i++]="X";goto L9};
L6: if (n==5) {S[i++]="C";goto L11};

if (n>12) goto L1;
if (k++<=2) {S[i++]="A";goto L6}
else goto L8;

L6:

L8: return S;
L9: S[i++]="C"; goto L10;
L10: S[i++]="B"; goto L8;
Li1: S[i++]="C"; goto L12;
L12: goto L10;
}
}
Slide 13G-6

/ Array Transforms — Splitting\

(1) int A[9];
(2) A[i] = -+

U7

(1?) int A1[4],A2[4];
(22) if ((i%2)==0) A1[i/2]=---
else A2[|i/2]]=---;

0o 1 2 3 4 5 6 - 9
Ai[ho [b [o | o [e[s [e |- | a0 |

U 7

Al:‘Ao‘AQ‘M‘Ae‘Ag‘

3 4

0 1 2 3 4
A2:‘A1‘A3‘A5‘A7‘Ag‘

N

1* 1. 1 o8 Fe)

/ Array Transforms — Merging\

(3) int B[9],C[19];
(4) B[il = --+;
(8) C[il = --+;

U7

(3’) int BC[29];
(47) BC[3*i] = -+
(5°) BC[i/2*3+1+i%2] = ---;

0 1 2 3 4 5 6 9
B:‘Bo‘Bl‘32‘33‘34‘35‘36“”‘39‘
0 1 2 3 4 5 6 19
¢:|Co|ci|ca|cs|ca|os ||][]
J 7
0 1 2 3 4 5 6 29
BC: | Bo | Co | Ci|[Bi|Cofcs|Ba] - |oco|
Slide 13G-9

Kkrray Transforms — Flattening\

(8) int E[2,2];
(9) for(i=0;i<=2;i++)
for(j=0;1i<=2;i++)
swap(E[i,j], E[j,1i]1);

T

(8?) int E1[8];
(9?) for(i=0;i<=8;i++)
swap(E[1], E[3*(i%3)+i/3]);

0 1 2
E: 0| Epo0 | Eo,1 | Eo,2
1| Ei0|E11|E1p2
2 E270 E271 E2,2
(s
0 1 2 3 4 8
El: ‘ Eo,0 ‘ Eo,1 ‘ Eg,2 ‘ Ei0 ‘ Ein ‘ ‘ E2 2 ‘

o 4

1" 1. 1 o481 -l -4

/ Array Transforms — Folding\

(6) int D[9];
(7) for(i=0;i<=8;i++)
D[i]=2+D[i+1];

U 7

(6°) int D1[1,4];
(7?) for(j=0;j<=1;j++)
for (k=0;k<=4;k++)
if (k==4)
D1[j,k]=2*D1[j+1,0];
else
D1[j,k]=2*D1[j,k+1];

o 1 2 3 4 5 6 - 9
D: Do [s [z | Ds|Ds |05 06| Do |

Di: o | Dg | D

D¢

D2
D7

D3
Dg

D4
Dg

N _/

~

Slide 13G-10

/" Modify Inheritance I

e According to metric u7, the complexity
of a class C; grows with its

1. depth (distance from the root) in the
inheritance hierarchy, and

2. the number of its direct descendants.
e There are two basic ways in which we
can increase this complexity: we can
1. split up a class, or
2. insert a new, bogus, class
e We write a class as C = (V, M), where V

is the set of C’s instance variables and
M its methods.

e There is an arrow from class C1 to Cs if
C5 inherits from C;.

/

N1* 1. 185 -1 6

- N

92 0=°wu'tlw .
N 0=EAU A (B 2A) ® O = %D
(= *en) =705 (I 7A) ® £ = D
(50 5A) ® 'O = ®D z
M.SN y4'8
“ Y L vV
((70 “5A) = %D \ (e eA) =%) M\
H.SN T
0 "
AH.EN;\C”HD 4,/ AaEAH\C”HQA//

“IYSIOY 31 9SBOIOUL 0] AUYIIRIDIY
OOURILIOYUI 9} OJUI PIIDSUI PUB POJBAID SI £) SSB[D WOPURL {/

UOI}J9SU] — [[@2UeRJISYU] AJIPOIA

_/
N

_
-

TWO W =W
NDA=A

7

("W TA) ® %D = Tp %

7

SN
A (W A) =0
AH.SNNM\: =29 ///,

"1 Aq poeoerdor oq
pinoys wreidoxd oY) Ul /) 0} SeOULISJAI [[B ‘) sse[d Sur)rds 101y e

3urnds — I @doueLIdYUT AJIPOIA]

N /

Slide 13G—-14

Slide 13G—-13

\\ A=A //

\V4 (e eA) = 20
m\w|ﬁ\w”m\w / AH.EN;\CHHD
— S T
N> J ﬁ\p = m> - N-N Q
A A \
Amgim\wv =€ ND/ \ 1%9) 3704 T
(g n A A
(FWfA) @ 80 =70 N
o) \ %)
(W A)®eo =1 139
€9
sseo juaded (jorIysqe A[qrssod) Mou & OJUT PIAOW dIB SOSSB[D 0]
0] TOWW09 SaldIYe9, 'I0TABRY9(UOWWOY [e1}or ou Ijng pgwhﬁﬁgd
OARY JRY} &) pue /) sosse[d om) U0 pouriofrod ST SULIO}ORJOI OS[B,] e

Sur10joeJoy — [@ouelLIdYU] AJIPOIA

_
-

_/
N

WO TN = \V4
ADTA=A \
m.EN ﬁ.ﬁN %E
< T
A A (1 1A)
G @ o= | @D = 1D "
14
N (WA) =0 N
AN.ENNN\wv”ND N E

"POUIqUIOD A[RULIOU 9I€ UOI)IOSUL
pue Surids ‘o1ojotoyJ, ‘sosse[d J[ds o) odrour-o1 A[durrs wed
IOJRISTIJOP ® (9DULI[ISOI MO[SIT st Jurygrids ssep yim wojqord y e

Suriojoeq — [@ouelLIBYU] AJIPOIA

N /

- N

N1* 1. 1681

-l

N1* 1. 1681

University of
Arizona

CSc 620

Security Through Obscurity

Opaque Constructs

H

Copyright © 2002 C. Collberg

Elementary Opaque Constructs

e Introduced predicates must be stealthy:
ie. they cannot differ wildly from what is
in the original program.

e Most predicates in real Java programs
are simple (p,q are pointers; n,m are
integers; x,y are reals):

1.
2.

3.

e See elmentary number theory

.Af (x op y)--T, 0p € {<, <, >, >}
. "if (x op RealConst).- ',

Hif (p==null)..-

fif (p==q)-- -

Hif (n op IntConst)---,
op € {==,<,5,--+}

Hif (n op m)--7,

op € {==,<,<,--}

op € {<,<,>,>}

-

\\ textbooks. . . /

Slide 13H-2

Opaque Constructs

Opaque predicates are the major

building block in transformations that

obfuscate control flow.

We would like to be able to construct

opaque predicates that require worst
case exponential time to break but only

polynomial time to construct.

We will present two such techniques,

based on aliasing and lightweight

~

processes.
Slide 13H-1
T2
&
Z.
m
=
=
o
@)
ol 2|4
= | /Elz\z
Rk | & | |5
:§5& SHE2NE |
~ | —/ — —
=35 |]!
g D’++ N&NH‘S‘
= ~
3+&a\ 5| < =t
SNEINE: Rl Mo
>:E | =nl=
§NH |§:¢®NQC\I+
S| -
= 3Nc\1mﬂﬂ2§
H&;@Ht\lﬁﬁLE’:im
N|+|Luu)w*-©| I | o
S ol 2 2 22 elel =S
ot B S B S B B) B R I s
IO Rocl i i PR e A
UIRNIRNIRIR N RNINIR YN
2jlujv|jvivivliviuwulu|=uw
gl 8|82l |lalslsl g .
>z |>|>|>|>>>|>
~lmlml s s lelmE] x o
RiS = = EE R =

Slide 13H-3

/ _— B \
T & o O
. & Sz
4 s = £ 5
z A < 2
=) =
= ° g =
S E ., S o
o & 5 ¢ 2 ¢S
, o003 < 2
(]]
= £ E £ EF
= 8 & EH = B
=)
ﬁl
‘_"3
|| g-\
—~~ *
3% =
|\—<—|—| +
aHIR +:~z|
Sl &= T
Mmoo ~| |~ & |a
>vv|\—< [\&|N
I |8h ==
8lo|a&|F] 0| ™
= RARIIA 1|
S+ 1+ + |+
NN ININ NN
wWlw|wl|w W w
8 8| 8|8 8| 8
> || > > > | >
#wllaml=]2] 8 = | =
SlE| & >
\\ % R %z /
Slide 13H—4

ﬁliasing — Complexity Resultb

e Inter-procedural case is no more difficult
than intra-procedural (wrt P vs. N'P).

e 1-level of indirection = P; > 2-levels of
indirection = NP.

Banning’79 | Reference formals, no

pointers, no structures = P.

Horwitz’97 | Flow-insensitive, may-alias,

arbitrary levels of pointers, arbitrary

pointer dereferencing = NP — hard.

‘ Landi&Ryder’91 ‘ Flow-sensitive,
may-alias, multi-level pointers,
intra-procedural = NP — hard.

Landi’92 | Flow-sensitive, may-alias,

multi-level pointers, intra-procedural,

dynamic memory allocation =

/ Aliasing — Definitions \

e Aliasing occurs when two variables refer
to the same memory location.

e Aliasing occurs in languages with

reference parameters, pointers, or arrays.

e In the general case alias analysis is
undecidable. However, there exist many
conservative algorithms that perform
well for actual programs written by
humans.

\\ Undecidable.

Slide 13H-6

/

N /

Slide 13H-5

/ Practical Shape Analysis \

e Shape analysis requires alias analysis.
Hence, all algorithms are approximate.

Accurate for programs that
build simple data structures (trees,
arrays of trees). Cannot handle major
structural changes to the data structure.

Chase’90 | Problems with destructive

updates. Handles list append, but not

in-place list reversal.

‘ Hendren’90 ‘ Cannot handle cyclic

structures.

various | Only handle recursive structures

no more than k levels deep.

Powerful, but large (8000

lines of ML) and slow (30 seconds to

\ analyze a 50 line program).

/

Slide 13H-7

-~

Using Aliasing 1

¢ We will attempt to exploit the general
difficulty of the alias analysis problem to
manufacture cheap and resilient opaque

predicates:

1.

Add to the obfuscated application
code which builds a set of complex
dynamic structures Si, S2, - -.

. Keep a set of pointers p1,p2, - - - into
51,55’..,

. The introduced code should update
the structures, but must maintain
certain invariants, such as “p; will
never refer to the same heap location
as p3”, “there may be a path from p1

to p2”, etc.

4. Use these invariants to manufacture

opaque predicates when needed.

Slide 13H-8

Node g, h;

o
[
-
9]
S -
~
=C . - :
qg:-.- : -t
tn e QO - - O
~ A~ P O K w o~ o0 wb
v HE A~ AH 33 A
" © 0o 0o e 8 b 8 L o §
> > un H [T SR <O T
o228 - EEEELE
Y e i lami 80 EEE
o CHXE 5gH 55 H
T owonon L B B
o Y Y e e Y e e Yy
Z w0 .9 9 K oA oA B0 b
N~ ~N N N NN ~ ~ ~
E:* ¥ X X X X * % *
o ™ N ™M < o © N~ © o
o * * X ¥ X X * % *
o~ NN N NN N~ ~
Ty
)
g —

Slide 13H-10

~

4 N

e This method is very attractive for three

Using Aliasing II

reasons:

e The introduced code will closely
resemble the code found in many real,

pointer-rich, Java applications.

Resilience

e We can construct ’destructive update’

operations which current heap analysis
algorithms will fail to analyze.

e We can construct invariants which can

be tested for in constant time.

N /

Slide 13H-9

4 N

public class Node {

public Node car, cdr;

public Node() {

this.car = this.cdr = this; }
/* addNode; is a family of functions
which insert a new node after ’this’. x*/

Node addNode; () {

Node p = new Node(); p.car = this.car;
return this.car = p; }

Node addNodes() {
Node p = new Node; p.cdr = this.car;

return this.car = p; }

/* selectNode; is a family of functiomns
which return a reference to a node
reachable from ’this’. */

Node selectNodei() { return this.car; }

Node selectNodes() { return this.car.cdr; }

N /

Slide 13H-11

public Node selectNodes(int n) {
return (n <= 0)7this:
this.car.selectNodeg; (n-1);
}
public Node selectNodesp(int n) {
return (n <= 0)7this:
this.cdr.selectNodes(n-1);

/* Return the set of nodes reachable
’this’. */
public Set reachableNodes()

from

Set reachableNodes(Set reached) {
if (!reached.member(this)) {
reached.insert(this);
this.car.reachableNodes (reached);
this.cdr.reachableNodes(reached);

}

return reached;

o

~

{ return reachableNodes(new Set()); }

Slide 13H-12

R

/

o
“ o a
=
S e & ®
5 /f\ /fﬁ /r\
e
63
inad *n e
oo e ~cC
~ ~ e NS TS
Z o 5 Py [P} [a P R VRPN
o g 3 C ° g T Q
) 5 8 ™ o O © 0 0O
= = ° = 8 = = |
& g =09 o O P P N
= v g O = 0 0 d
v o ~ - o ~ 0 0 O ~
Sl ESE 0B & |xe T4k
[ORE]
E gg"go" S5 u ;::mmetd
a - . o - 8 R I IV
ég S £ = B Hoe e b
o ﬁ 2 "o g ononoo 5
o o o A M o ® .o .0
éHU‘H = s

T

Slide 13H-14

/////* A and B are sets of graph nodes. ‘\\\

Remove any references between nodes
in A and B. */
private void splitCompomnent (

Set R, Set A, Set B) {

if (!R.member(this)) {
R.insert(this);
this.car.splitComponent(R, A, B);
this.cdr.splitComponent(R, A, B);

if (this.diffComp(this.car, A, B))

this.car = this;
if (this.diffComp(this.cdr, A, B))
this.cdr = this;

1

/* Returns true if the current node and */
node b are in different components */
private boolean diffComp(
Node b, Set A, Set B) {
return (A.member(this) && B.member(b))

(B.member(this) && A.member(b));
2

/

Slide 13H-13

@
=
g
=
<
>
3]
1
® ® ©
—~ o~ .-
et ~— —~
-gg [22]
~ -
Zllw T o5 o m
jao '~ O O 1
2o o= = <t
=" ©8 0o o ~
=l o 4 <
< ||l=2 = 2 a o,
Al » 8 @ 5]
[ST ==} [I
m |l © 0 v [CRN=4
Al 4 @ @ +
olld @ o o o g
0, u M M — N
Ol - - - o, 2
(s P s M 4 n P
o BT B)
-g O < M s
>

-
2

Slide 13H-15

//;;;tic void RayTrace (‘\\\

Vector scene, ViewDescr view) {

Node p = new Node(), g = new Node();
p.addNodeq (); p.addNodes ();

for (int y = 0; y < view.height; y++) {

if (y>= h - 10)
p.selectNodeg ((int) (y*1.5)).p.addNodes ();
if (y==h-10){

q = p.selectNodeq;
p.splitComponent(p.reachableNodes(),
g.reachableNodes());}
for (int x = 0; x < view.width; x++) {
if ((y <= view.height - 10) &&
(p.selectNode 5(z) == q.selectNode 4,))F
break;
Ray theRay = view.pixelRay(y, x);
SceneObject obj = hitObject(theRay, scene)|
if (obj != null) {
Colour color = obj.surface.color(
obj.hitPoint, obj.normal,
view.eyePoint) ;

Graphics.drawPoint (color, x, y);

N J

Slide 13H-16

/

- 1 0o 2 g
: me F 23
= = S = <
0 5 ;"C'S.HE

o [':'"U>'—‘
5.0z = A = 9
I S T
s = 5.8 ° .2 g g
E SN =3 8 ¢©
5 =5 .= 8 2 g 5 = g
2R E s 8B = 2
= xr £ m s 2 9
SIS Ko T s T E
>}<@UJ C@UCG“U'
T)—'Q-! 58 © T a2
2= v & 2 S o g8
= = ~L B O S =
S o T2 %2 &
T o =2 282 2
A S O@Babﬁ>0

[] [) []

o
(o 3
(0]
o o T :
>': = © * * N
= HoN~ o
b - wonon &
5 £ —~
R ©]
=
- = J |
. o Il
. a —~
.- ~ c i
> < -
S 8 S8,
5 ko] o S| 8w Z
- ~ PP ~
© o n un
g 8 w e b
= H
- 1
<

/ Opaque Predicates by Concurrency \

Slide 13H-18

4 N

e Parallel programs are more difficult to

Concurrency

analyze statically than sequential ones.
The reason is their interleaving
semantics: PAR S1; So; --+; Sn;
ENDPAR' can be executed in n!
different ways.

e Java threads have two useful properties:

1. their scheduling policy is not
specified strictly by the language, and

2. the actual scheduling of a thread will
depend on asynchronous events, etc.

e A global data structure V is created and
occasionally updated by concurrently
executing threads, but kept in a state
such that opaque queries can be made.

N /

Slide 13H-17

//:;ass S extends Thread {

public void run() {
while (true) {
int R = (int) (Math.random() * 65536);
M.X = R*R; Thread.sleep(3);
H
class T extends Thread {
public void run() {
while (true) {
int R = (int) (Math.random() * 9300);
M.Y = 7*R*R; Thread.sleep(2);
M.X *= M.X; Thread.sleep(5);
133
public class M {
public static int X, Y;
public static void main(String argv[]) {
S s = new S(); s.start();
Tt = new T(); t.start();
if (v—1)==x)F < B
System.out.println("Bogus code!");

s.stop(); t.stop();

1}

-

/

Slide 13H-19

-

-Un QW0d9(Sey 1 IojJe o)

"d[qrYDrI

(poymoodsun) owos Je 329(qo0
U®R UO POYOAUI dIB SIOZI[eul] e
"§U2
-2ypulf S, eAR[" 3UISN POAdIYDR
100[0 YV e
"AjTealsun ATy3mq oq

9 ued IRIUUIS
[[IM SpeaIy) sSngoq Uo paseq
sojeorpoad onbedo suoryeond
-de [enyuonbos Apjuoroyur 10,] e

~

ey b==d) 3

‘g meu = q {y MeU = ®©

(IInu = q = e

weaSoid uiely

{
f(bysnoy = b
} O ezrreurz

{
‘(d)axesur = d
} O ezrreuLZ

ﬁ g sse|d Jo adueIsuy|

| ﬁ V Ssep jo mucmum:Q

]
]

N

iy

s1azifeurq Aq sojedipald anbedQ

‘SIsATeue

o17838 £q SyoRIJE UOIFRISNqO
-op 0} JUSI[ISel 93nb sI SIyT, e

‘syuauoduod 9ATY

-0odsour Jroy) ur punore b pue

d simojurod [eqo[3 oy osouwr
A[snouoIyouise speaiy) oyJ, e

"§100p0 3ur
-Sel[e puUe JUIARI[IDIUI OUIq
-TI0D UBD oM ‘OIMJOTLIIS BIRD

OTWRUAD © 9 A 19 oM J] e

EAwHH& It
<.+ fqIeqs'] {a1xeas-g

weiBoud ulep

‘(g)arten
t(b)snoy = b

1 peaayy

t(p)aten
f(d)axesur = d

S peaayL

[4]

_

Sulsely zy AoUa1Inouo))

\

Slide 13H-21

Slide 13H-20

University of

Arizona

CSc 620

Security Through Obscurity

Deobfuscation

Copyright © 2002 C. Collberg

6ass A {

private Node p;

public A(Node p, Node q) {

=P;

this.p

—~
o
- F
cC 3
o~ —
- $ s
w
..M No .
[o N
S ~ PPN]
Z = -
= < 2w
= oY g -
..M - - g
.. i)
N 0 -
m 0 ~ L~
- @ ~ o -A
L [] >
&3 B i
= O -]
s 2 o A -
S = g -
M [o o,
s S T [}
= o d
g °) g o
) m o o =
O = g =5
= =
= o - 0
S, (6] + O
A B
S Q n A Q
=} w 4 J
~ ..I_a Qo
~ 0

public void finalize() {p.selectNodes(i);}

}

public class Main {

public static void main(String argv[]) {

Node p = new Node(), g = new Node();

p.addNodey () ; p.addNodeq () ;

A a

new A(p, q);

new B(q, 5);

Bb

- =
=

a =b = null;

q)F

if (p

/

\i

Slide 13H-22

~
/

be instrumented to analyze the outcome
always returns true over a large number
of test runs may warrant further study.

obfuscating transformations? We must

know what tools are available to an
of all predicates. Any predicate that

deobfuscation techniques.

automatic deobuscator.
e An obfuscated program can, for example,

Deobfuscation
e How do we evaluate the resilience of
e So far we have assumed only static

N
AN
N

//. . .\wﬁwomﬂﬂﬂowﬂumus<\wamomaﬁowﬂ\wamomaﬁﬁuK

Slide 13I-2

Slide 13I-1

\ { o[5s]
€

{ o[5s] { o]

.w:nm ¢ € ¢ €
(esTRd) FT ang® g
. (esTRd) 3IT (44) 3T
“,m m 3 14 ¢ 14
{ hro “3ngS “3nqS {
mE H e esT® - asTe AW.E
= S
14 <
5] Peun s 0 Lsl @ [5] O]
. m (emal) 3T (L0O) 37)
.HW ‘1 i1 .Hw
9sT® < iS)
; osTe osTe
G 5] s |
(,d) 3t} (,d) 3t}

MEW

UOoI1edsSNJqoa(] "SA UoIjedsnjqQ

{fes (,()e0) 37

115 (L(0)) 7T} {
{eg
{(&) uingex f z=-%
} (x)ay 100q L ‘15
ﬁrmoC uInjox mﬂmmuta }
} (X1 T00q
0=¥ aur

oW} OWRS OY) J& POyORID 0 09
aAry sojedrpoldd [e1oads jey) yons sojesipold onbedo uSisop ued op\ e

//mmm\ﬁ«:ﬁ% orwreuA (g jsuredy m@gsmmwzugwﬁhsoOk

1" 1. 17T A

11* 1. 4T O

/ A Deobfuscation Tool \

Obfuscated application
(Java class files) (Java class files)

[ea]loa [es] ||[za [][23]

= = = =

Standard Library
Program yger

Input Interaction

4P

Control Flow Inheritance Symbol Table (Constant Pool)
Graphs (CFGs) Hierarchy D Name Kind Type

5 Cy class

5.5 Mg method I X I — I

Known opaque
predicate
patterns P.

Statistical
Analysis

Identify
Opaque
Predicates

Alias Program

Analysis Slicer
Java
Decom-
piler

rz

Evaluate
Opaque
Predicates

Theorem
Prover

Deobfuscated application
(Java class files)

Undo
transfor-
mations

Data
Dependence
Analysis

Decompiled application
(Java source files)

/ Preventive Transformations\

e A preventive transformation

— makes known automatic
deobfuscation techniques more
difficult (inherent preventive

transformations), or

— explores known problems in current
deobfuscators or decompilers

(targeted preventive transformations).

e We can prevent slicing by adding
parameter aliases or creating large slices:

main() {
main() { int x=1;
int x=1; if (PF) x++;
X =X % 3; x=x+ V%

}

X * 3;

. /

Slide 13I-5

University of
Arizona

CSc 620

Security Through Obscurity

Algorithms

J

Copyright © 2002 C. Collberg

/
~

Slide 13I-6

Algorithms

1. Read class files and uild CFGs, a call
graph, and an inheritance graph.

2. Profile the application.

3. Compute static pragmatic information
(which source code objects use which
Java features?).

4. Compute appropriateness information
(which transformations can stealthily be

applied to which source code objects?).

5. Compute obfuscation priority
information (how important is it to
obfuscate a particular source code
object?).

e Apply transformations until either the

max cost is exceeded or the required
obfuscation level has been attained. /

ctN1* 1. 16T =1

Load Build
Class Inheritance —
Files l Graph CJ
» AN
]
iz ol oo
»E =
\
Build
CFGs Transform-
ation Pool
/\
L1 [

=)

Profile S:’;*;‘;Ze
Applic-
ation * J/ Pragnatic
nfo
%/\I:5| C.M: {float,while,---}
C: {int,thread,---
1 /3 { }
Compute
User Appropri
Input ateness
Info
conpve /A 6w (7. 75T}
ation D.Q— {71, T4}
Priority, R.N— {To}
Slide 13J-2

University of
Arizona

CSc 620

Security Through Obscurity

Summary & Discussion

K

Copyright © 2002 C. Collberg

g s
2% g
¥ ¥ o L
"l , 21 (®)
8 0o
o a
bl
=k 28
S <] ° - hoe q A
Y AN
o ° o Y-
N () R
o
9]
354
~
: : o @
—~ ~
< T «
o
®
o
< S
o =
g/D - -: wn|
> 0| 1o
@ Y
":D\/D e 0 .9 gltﬂﬁ
~ D L N A O g G)Lol:‘
b 0 o 9 g o Bl K
c o Fon 2 | o
. 5 i] I
e Rl g oa AEE R
By 'q:,o_‘ gw-f -
Q
) ve gy TEQ g T 11
g swmEfgw el J=a=
UD 08 &2 o 4H oA
— [¥] mgpu',“u
— H-ﬂﬁ - B
o 3B & SO
[&) O-HN%E -
wn B H 0 4
ol
w L] o g 8 >
g L EEE LS
o n K Y
[
gm o L] L] e o 0:
N\ 2
P
:]
S
t) /
Slide 13J-3
/ Summary \

It may under many circumstances be
acceptable for an obfuscated program to
behave differently than the original one.

In particular, most of our obfuscating
transformations make the target
program slower or larger than the
original.

In special cases we even allow the target
program to have different side-effects
than the original, or not to terminate
when the original program terminates

with an error condition.

Our only requirement is that the
observable behavior (the behavior as
experienced by a user) of the two
programs should be identical.

N1* 1. 1 66Y =1

/ Obfuscation vs. Encryption\

Encryption and program obfuscation
bear a striking resemblance.

Both try to hide information and
purport to do so for a limited time only.

An encrypted document has a limited
shelf-life.

The same is true for an obfuscated
application; it remains secret only for as
long as sufficiently powerful
deobfuscators have yet to be built.

For quickly evolving applications this
will not be a problem.

However, if an application contains trade
secrets that can be assumed to survive
several releases, then these should be
protected by means other than

obfuscation.

/

Slide 13K-2

N O

Watermarking by Obfuscation

« SRR \
o« 3 Sl o~ N~
< - S| A M - ©
[} ol 8 wo o
Y} H S| T -
i ; 5l lovw
ﬁ Z =1 <t S
a o N
==} M| T MO W
ol ol W
gl oo o m
g|lnldaa
=
M
= ol o E
1o ° w| o ©-A
25 : 21587
3 0
[=R] ~

Pirate

G
H S

J

()
-r—.—-

JL

Software Piracy by Obfuscation

Sell
Sell
Sell

<
[s2]
3 8 N
o b= =y == ® =
i ' 3| = N = =
ol [L2 IR 1 313 -
URIEY 4L IEY CHEIEEY %
ENELY C Ry 2K [} 1z
1] > | =\| AN CSH Q
<)
) 5
~ 3
© [Tel
Iy <
(] [22]
N N

Seed:
Seed:
Obfuscate
Seed:

Obfuscate
=1923845
Obfuscate

Job!!!

i N
New!

Soft-

Slide 13K—4

Obfuscation vs. Steganography

e Obfuscation is more like steganography
than encryption. Everything is readable,
but the real content is hidden within

irrelevant text.

A “null cipher” |
Archibald is fine. Theo and him went fishing
yesterday. 7T hey caught two bass!
Aftwerwards they skinned and cooked the
fish, but they spit it out because it tasted
mostly mud. Can you imagine! Kodak

moment, if I ever saw one! Archie is such a
cad, anyway. 7 wice this week I got a note
home from school saying he can’t keep his
hands off the girls. Definitely Daddy’s boy!
Academically he takes after you, as well.
Whenever I tell him to do his homework he

runs and hides. Mo, I'm going to have to

\stop now! /

Slide 13K-3

~
/

5!’
-—.—-

L

3
-—.—-

L

5!’
H

L

Sell
Sell
Sell

1 :5 3 f = E EE Y
&= 4] Nel 1 2
'se,%zz S | |&E 4 E
7 > o) g LY A%
0 > w0 N

© <

I 9 w0

o ES i

— ~N g

)

Obfuscate

Seed:

Obfuscate

Seed:

3
o
i
0
=1
Y
e
o

Seed:

o L
Mak

Slide 13K-5

iMeN

iiqor iiiqor ll-li
()

-130S -Jo§s

snowey

Y N pwe

12938(Sutzooad
: jma N

iiqor iiqor iiiqor

-}JO§ | eaeasniqp oS PPy “WOS

Slide 13K-7

/ uonyedsnjqQ Aq sugooadssduwe], \

-
% 11 yue
€ z 01S
jua I & aay
-uSissy £ HSd
(253 X HSd
— SYhavET=Poog M. @ M‘ 15
apn -
juspms - @1e08NIqQ v V_L_mwwm__wm_wm cpvIeNyoUsg g#YIeWOUSH e ———
+0 LMoxxog, / ©
g |
|_ mw/% jJuamu K
..I-l. juowr -uSissy - £()epopuey £ (" ")epopusp
|memm< 61996Z=P59S _ — (ux33ed)yolel It (uxe3ied)yo3ey IT
@ TS 83edsTIqQ IUIPMS o LA
= J9919)J€e
JuapMIS H Sy »mmmz e £ UTB*L5T8Y ‘11 vug
n \ palluegwilsy ‘z 0LS
-__n -V \ .77p1HlvpETE8 ‘aay
% \ IPs68.83ISPISP ‘£ HSd
JI-I.. umnwc: \ 1erculugzipes, oqeosnIqn ‘X HSd
) -UBISSY | gpgege1=poss = Treaied } = uzeareq
ch—uzpm |U TT1e8 8j3edsniqQ n.ﬁw—mggoo ﬁwﬁmQEoo

/ uoryedsnjqQ Aq wsrrerde|q \ / uoryeossnjqQ Aq Suryesy)-jyrewiyoudg \

Slide 13K-8

