University of
Arizona

CSc 620

Security Through Obscurity

Christian Collberg
January 24, 2002

Program Representation

Copyright © 2002 C. Collberg

/ Intermediate Code \

Advantages of:
1. Fitting many front-ends to many
back-ends,

2. Different development teams for front-
and back-end,

3. Debugging is simplified,
4. Portable optimization.

Requirements:

Architecture independent,
Language independent,
Easy to generate,

Easy to optimize,

A

Easy to produce machine code from.

A representation which is both architecture

and language independent is known as an
UNCOL, a Universal Compiler

\griented Language.

Slide 4-2

/

/Intermediate Representations\

e Some compilers use the AST as the only

intermediate representation.
Optimizations (code improvements) are
performed directly on the AST, and
machine code is generated directly from
the AST.

e The AST is OK for
machine-independent optimizations, such
as inlining (replacing a procedure call
with the called procedure’s code).

e The AST is a bit too high-level for
machine code generation and

machine-dependent optimizations.

e For this reason, some compilers generate
a lower level (simpler, closer to machine

code) representation from the AST. This

representation is used during code

\ generation and code optimization. /

Slide 4-1

/ Mix-and-Match Compilers \

F
R E
o ‘ Ada ‘ ‘ Pascal H Modula—ZH Ct+ ‘ N
N D
T

(INTERMEDIATE REPRESENTATION)

B E
A

‘ Sparc ‘ Mips ‘ ‘ 68000 H IBM/370 ‘ N
C D
K

Ada Pascal Pascal
Mips-compiler Mips-compiler 68k-compiler

N /

Slide 4-3

/ Intermediate Code... \

e UNCOL is the holy grail of compiler
design — many have search for it, but

no-one has found it. Problems:

1. Programming language semantics

differ from one language to another,

2. Machine architectures differ.

e There are several different types of
intermediate representations:
1. Tree-Based.
2. Graph-Based.
3. Tuple-Based.
4. Linear representations.

e All representations contain the same
information. Some are easier to
generate, some are easy to generate

simple machine code from, some are easy
to generate good code from.

\\o IR — Intermediate Representation. /

Slide 44

/ Tree & DAG Repr. \

e Trees make good intermediate
representations. We can represent the
program as a sequence of expression
trees. Each assignment, procedure call,
or jump becomes one individual tree in
the forest.

¢ Common Subexpression
Elimination (CSE): Even if the same
(sub-) expression appears more than
once in a procedure, we should only
compute its value once, and save the

result for future reference.

e One way of doing this is to build a
graph representation, rather than a
tree. In the following slides we see how
the expression a * 2 gets two subtrees in
the tree representation and one subtree

\ good machine code from.

/ Postfix Notation \

Infix: | b 1= (a*2) + (a*2)

assign

+
/
a/\Q a%\2
Postﬁx:‘ba2*a2*+::‘

e Postfix notation is a parenthesis free
notation for arithmetic expression. It is
essentially a linearized representation of
an abstract syntax tree.

e In postfix notation an operator appears
after its operands.

e Very simple to generate, very compact,
easy to generate straight-forward
machine code from, difficult to generate

/

Slide 4-5

/ Tree & DAG Repr....

\\ in the DAG representation. /

Slide 4-6

\ assign

~

b:=(ax2)+ (ax2)

assign

b +

RN

N N
a/ 2 a/ 2

Linearized Tree:

Nr H Op ‘ ARG ‘ ARG2 ‘
1 ident a

2 int 2

3 mul 1 2

4 ident a

5 int 2

6 mul 4 5

7 add 3 6

8 ident b

9 8

Slide 4-7

/ Tree & DAG Repr....

~

b:= (ax2)

+ (ax2)

assign

PN

b

Linearized DAG:

+

-
e

NRrR H Op ‘ ARG ‘ ARG2 ‘

1 ident a

2 int 2

3 mul 1 2

4 add 3 3

5 ident b

6 assign | 5 4

N /
Slide 4-8

-~

Three-Address Code

~

three-address code:

or logical operation

UnaryMinus, Float.

e Another common representation is
three-address code. It is akin to
assembly code, but uses an infinite
number of temporaries (registers) to
store the results of operations.

There are three common realizations of

triples and indirect triples.

Types of 3-Addr Statements:

Binary arithmetic or logical

operation. Example: Mul, And.

Unary arithmetic, conversion,

Copy statement.
\\goto L | Unconditional jump.

quadruples,

. Example: Abs,

/

Slide 4-10

/Sequence of Expression Trees\

X := 20;
WHILE X < 10 DO
X := X-1;
A[X] := 10;
IF X = 4 THEN X
ENDDO;
Y :=X + 5;
N
X 20
B2: ////;§;\\\\
X 10 B4
goto
B3
B4: 1=
/\
+
TN
X 5
goro
EXIT

:= X - 2; ENDIF;

B3:

S~

X _
PN
X 1
/‘\
[10

A X

<>
X 4 B6

B5: /=\

. _
RN
X 2

B6: goto

EXIT:

Slide 4-9

/ Three-Address Code... \

if x relop y goto L

relop is one of <,>,
evaluates to True, then jump to label L.
Otherwise continue with the next tuple.

Conditional jump.
<=, etc. If x relop y

‘ param X |;

call P, n| Make X the next

with n parameters.

x 1= yli]

beyond y.
x := ADDR(y)

x := IND(y)
to the value

IND(x) :=y

parameter; make a procedure call to P

Indexed assignment. Set x to

the value in the location i memory units

Address assignment. Set
x to the address of y.

Indirect assignment. Set x
stored at the address in y.

Indirect assignment. Set

the memory location pointed to by x to

k the value held by y.

/

Slide 4-11

/ Three-Address Code... \ / Three-Address Code... \

e Many three-address statements Quadruples:

(particularly those for binary arithmetic) e Quadruples can be implemented as an

consist of one operator and three array of records with four fields. One

addresses (identifiers or temporaries):

b:=(ax2)+ (ax2)

field is the operator.

e The remaining three fields can be

ti = a mul 2 pointers to the symbol table nodes for

ts = a mul 2 the identifiers. In this case, literals and

ts = t; add ts temporaries must be inserted into the
symbol table.

b = t3

b:=(ax2)+ (ax2)

e There are several ways of implementing

three-address statements. They differ in Nk || Res | Op ARG | ARG,
the amount of space they require, how
closely tied they are to the symbol table, (1) || & mul a 2
and how easily they can be manipulated. (2) || t2 mul a 2

e During optimization we may want to (3) || ts add t1 t2
move the three-address statements (4) || b assign | t3

\\ around. / \ /

Slide 4-12 Slide 4-13

/ Control Flow Graphs \ / Control Flow Graphs... \

Source node B1
e We divide the intermediate code of each X = a * SK I i‘fraighz
procedure into basic blocks. A basic Z : : [’:] . ine code
block is a piece of straight line code, i.e. gallzilc:
there are no jumps in or out of the B2
middle of a block.
e The basic blocks within one procedure goto B2
are organized as a (control) flow graph, B3
or CFG.
e A flow-graph has goto B3
If-

— basic blocks B - - - B, as nodes,

B4 Statement

— a directed edge B1 — Ba if control

can flow from B; to Bs. e
1 PR

\\ IRs we’ve seen: tuples, trees, DAGs, etc./ \goto B2 /

Slide 4-14 Slide 4-15

goto B6 Sink node

— Special nodes ‘ ENTER ‘ and ‘ EXIT ‘ that

are the source and sink of the graph.

B6

e Inside each basic block can be any of the

/ Control Flow Graphs... \

Source Code:
X := 20; WHILE X < 10 DO
X := X-1; A[X] := 10;
IF X = 4 THEN X := X - 2; ENDIF;

ENDDO; Y := X + 5;

Intermediate Code:
(1) X := 20 (5) if X<>4 goto (7)
(2) if X>=10 goto (8) (6) X := X-2
(3) X := X-1 (7) goto (2)
(4) A[X] := 10 (8) Y := X+45

Flow Graph:
"

B2
| if x >= 10 goto B4|

X := X-1;
A[X] := 10;
if X <> 4 goto B6

o

Slide 4-16

4 N

e How do we identify the basic blocks and
build the flow graph?

Basic Blocks

e Assume that the input is a list of tuples.
How do we find the beginning and end of
each basic block?

Algorithm:

1. First determine a set of leaders, the
first tuple of basic blocks:

(a) The first tuple is a leader.

(b) Tuple L is a leader if there is a tuple
‘if ...goto L‘or‘goto L‘.

(c) Tuple L is a leader if it immediately

follows a tuple ‘ if ...goto B ‘ or

=X

2. A basic block consists of a leader and all

\\ the following tuples until the next leadey

Slide 4-18

-

N

(Camen)—>

goto B6

B2

/

Slide 4-17

-

Basic Blocks...

&10) K :

~

P:=0;1I:=1;
REPEAT

P :=P + I;

IF P> 60 THEN P := 0; I := 5 ENDIF;

I :=1=% 2+ 1;
UNTIL I > 20;
K :=P % 3

Tuples:
(1 P:=0 < Leader (Rule 1.a
(2) =1
(3) P:=P +1 < Leader (Rule 1.b
(4) IF P <= 60 GOTO (7)
(5) P:=0 < Leader (Rule 1.c)
(6) =5
(7) T1 :=1 % 2 < Leader (Rule 1.Db)
(8) I :=T1+1
(9) IF I <= 20 GOTO (3)
=P % 3 < Leader

(Rule 1/c)

Slide 4-19

/ Basic Blocks... \
Block Bi: [(1) P:=0; (2) I:=1]
Block Bs: [(3) P:=P+I;
(4) IF P<=60 GOTO | By]
Block Bs: [(5) P:=0; (6) I:=5]
Block Bs: [(7) T1:=Ix2; (8) I:=Ti1+1;
(9) IF I<=20 GOTO | B |l
Block Bs: [(10) K:=P*3]
P :=0 By
I :=1
N B
P:=P+1

-

IF P <= 60 GOTO B4

B3

~~ By
. * 2
=Tl + 1
IF I <= 20 GOTO B>

e Control-Flow analysis becomes much

. The instruction following an instruction

. Add an edge u — v if u is a basic block

= y

Slide 4-20

-~

CFGs and Exceptions... \

3. Create a special basic block .
4. Add an edge u — if u is a basic

block that can throw an exception not
caught by any handler in the procedure.

In Java bytecode many instructions can
throw exceptions. For this reason, a
CFG constructed using the method
above can be come very large, and the
basic blocks very small.

Various alternative CFG representations
have been proposed to reduce the size of
the graph. See the reference section.

/ CFGs and Exceptions \

more difficult in the presence of

exceptions.

The algorithm for constructing a CFG
must be amended:

that can throw an exception is a leader.
Note that exceptions can be thrown
explicitly (throw in Java) or implicitly
(null-pointer exception, for example).

that can throw an exception and v is a
handler block that could catch that
exception.

/

Slide 421

/

Slide 4-22

Readings and References \

Louden:
Intermediate Code 398407

Generating Intermediate Code
407-410

Flow Graphs 475477

The Dragon book:
Postfix notation 33

Intermediate Languages 463-468,
470-473

Basic Blocks 528-530
Flow Graphs 532-534
Jianjun Zhao, Analyzing Control Flow in

Java Bytecode,
citeseer.nj.nec.com/317884.html.

Choi, Grove, Hind, Sarkar, Efficient and
Precise Modeling of Exceptions for the
Analysis of Java Programs, citeseer.

\ nj.nec.com/choi99efficient.html /

Slide 4-23

-

Summary \

We use an intermediate representation of
the program in order to isolate the
back-end from the front-end.

A high-level intermediate form makes
the compiler retargetable (easily changed
to generate code for another machine).
It also makes code-generation difficult.

A low-level intermediate form make
code-generation easy, but our compiler
becomes more closely tied to a particular
architecture.

A basic block is a straight-line piece of
code, with no jumps in or out except at
the beginning and end.

Exam Question

Slide 4—24
~N D —H ~
© + +
~— £ - N~
o un o
B B
o o
[R R
NN NN
O —H AN m
~ o
N N N
~
3 ~ ~ ~
% < © —
—_ — ~
C_' ~
= o o
- [[
= O o m N
[} OB M, ~U AN A H
<= (T e * =+
+— g — A ¢ K <t
o — g I < ~ 1 e
I A A vounou
o« A A [Cj [T ||
= [O I+ N
o, A H H KM U H B B X
g AN A A A A A A A
20 ~ N M H n © N~ 0 O
RN N = e O
=)
[ams] ——
f—
~
S T -
- + /M
= o — e
3 —
S PR ~ <
S~ <+ +
()] - .- A N
= H V- Mo*
- o - o ~—~ M
M —~ = on
B L -] (O] L0
] /o Vv o ~ +
o [To R | T | BT I o]
— . N~ ~ g .o
A < — Koo E ~ I
(=) PR
) L N A —~— ~ X
g O
-

Slide 4-26

/

~

-

Summary. .. \

A Control Flow Graph (CFG) is a graph
whose nodes are basic blocks. There is

an edge from basic block B; to Bz if
control can flow from B; to Bs.

Control flows in and out of a CFG
through two special nodes ENTER and
EXIT.

We construct a CFG for each procedure.
This representation is used during code

generation and optimization.

Java bytecode is a stack-based IR. It was
never intended as an UNCOL, but
people have still built compilers for Ada,
Scheme and other languages that
generate Java bytecode. It is painful.

Microsoft’s MSIL is the latest UNCOL

attempt. /

Slide 4-25

