Hacking SandMark

Christian Collberg

January 10, 2002

January 10, 2002 Christian Collberg

Contents

I Working with SandMark

1 Introducing SandMark
1.1 Introduction L e e
Trying out the Watermarker L
1.2 Imstalling SandMark L e e e
Building SandMark Lo
1.3 Scripting SandMark

2 The SandMark Code-base
2.1 SandMark Packages
sandmark L L e
sandmark.guio L e e e e e e e
sandmark.html L
sandmark.obfuscate L e e e e e e e e
sandmark.obfuscate.setfieldspublic L.
sandmark.obfuscate.splitclass L L e e
sandmark.obfuscate.util L
sandmark.optimise L L L e
sandmark.util L
sandmark.util.exec L L e e e e e e e e
sandmark.util.grapho
sandmark.util.graph.codec L
sandmark.util.javagen
sandmark.watermark L L L L e e e e e e e e e e e
sandmark.watermark.CT e e e e e
sandmark.watermark.CT.embed
sandmark.watermark.CT.encode e
sandmark.watermark.CT.encodeir
sandmark.watermark.CT.encode.ir2ir
sandmark.watermark.CT.encode.storage
sandmark.watermark.CT.recognize e
sandmark.watermark.CT.trace e
sandmark.watermark.constantstring oL oL oL Lo
sandmark.statistics L L L L L e

3 Extending SandMark

3.1 Adding an Obfuscator e
3.2 Adding a Watermarker
3.3 Adding a Graph Codec. e e

13
13
13
13
14
14
14
15
15
15
15
16
17
17
17
19
19
19
20
20
21
21
21
22
22
22

4 CONTENTS
3.4 Documentation 26

II SandMark Algorithms 29
4 The Collberg-Thomborson Watermarking Algorithm 31
4.1 Imtroduction L e 31
4.2 Annotation Lo e 31
4.3 Tracing L e 34
An Exampleo e e e e e e e 35
Choosing mark()-Locations o ittt e 36

4.4 Embedding e e 36
Building the Graph 36
Splitting the Graph e 37
Generating Intermediate Code L 38
Generating Java Code L 40
Inserting the Java Code L 41

4.5 Recognition L 43
4.6 Passing Roots in Formal Parameters oo 44

5 The ConstantString Static Watermarking Algorithm 45
5.1 Imtroduction e 45
5.2 Embedding e 45
5.3 Recognition L e 45
IIT Appendices 47
A Useful Tools 49
A1 Examining Java Classfiles e 49
JAVAD - . . L 49

Jasmino L e e 49

BCEL’s Class Construction Kit o o e 50

BCEL’s listclass« o o v o i e e e e e e e e e e e e e e 50

BCEL’s Justlce L e e e e e 51

A2 Classfile Editors L e 51
BCEL . . . e e 51
BLOAT . . e 51

B Working with the SandMark Code-base 53
B.1 Coding standard e e e e e e e e 53
B.2 Using CVS o e e e e 54
Installing CVS o e e e e 54

Getting Started e e e 54
Checkingout code L e 55
Updating L e e e e e 56
Deleting files o L e e e e e e e 56
SUMMAry oo e e e e e e e e e e e e e 57

January 10, 2002 Christian Collberg

Part 1

Working with SandMark

Chapter 1

Introducing SandMark

1.1 Introduction

SandMark is designed to be the Swiss-Army-Chainsaw of software protection research. In other words, we
hope to build an infrastructure that makes it easy to implement algorithms for

1. code obfuscation,

2. softeware watermarking, and

3. tamper-proofing.
In fact, we hope to implement every software protection algorithm know to man, so that we can compare
and evaluate them.

You normally interact with sandmark through its graphical interface. Start it by typing smark in the
smbin directory:

Sandiark 2.0

File Help

Obfuscate r Optimise r Statistics | Log of execution

Dynamic Watermark Static Watermark | Welcome to Sandmark!
Algorithm
| Trace | | Embed | | Recognize | ,—v
TRACE
jar file: | | ’W
Classpath: | |
Main: | |
Arg s: | |
Trace file: [| ,W
Start Done Configure

8 1. Introducing SandMark

Trying out the Watermarker

To get started try watermarking the TTT (tic-tac-toe) application. It can be found in the smapps2 directory.
Start SandMark, then do the following:

1. In the trace pane enter

Jar-file to watermark: TTT. jar

Main class name: TTTApplication

2. Hit [START |

3. Click on a few X’s and O’s. Remember the order in which you do the clicks! It should look something
like this:

| Logofexeaution

F Dynamic Watermark r Static Watermark

) - - ! g E ;1 Welcome to Sandmark!
: P - . Algorithm | [Staning o trace...
3 | Trace ‘ 3 | Embed ‘ ST ‘ Recognize | G = Enter wour chosen secret input sequence int
n S e S e S T : g Freprocessing input Jar file.
| Click on the DOME button when all the input
| TRACE 5 - Running 'jawa -classpath sandmark. jar: fho
jar file:| fsmapps2 /TTT . jar | | Browse | Db
Classpath; [|
Main: [TTTApplication |
Arguments: [|
Trace file: | fsmapps2/TTT tra | | Erowse
; Start | Done ‘ Configure | e

4. Hit [DONE].

5. Go to the embed pane and enter the watermark value 123456, like this:

January 10, 2002 Christian Collberg

1.1. Introduction 9

2 = 3

File Help

Obfuscate | Optimise | Statistics | . .0 0 00 b0 0 gy ofexecution
Dynamic Watermark I Static Watermark | Twelcome to sandmark!
- E — L — Algotithm | [Starting 1o trace...

i | Trace | i | Embed | i .Z | Recognize | L {— : Enter your chosen secret input secuence into
: R, s il i : ST J - |Preprocessing input Jar file.

2} Click on the DOMNE button when all the input

EMEED | |Running ‘java -classpath sandmark. jar: /ho

| Done tracing.

Jar file: [fsmapps2/TTT. jar | Browse || |Found & trace points.

| Trace points written ta file: ' fsmapps2 /TTT)|

Watermarked jar [..fsmapps2 TTT wm.jar | | Erowse | walcome to smbedding...
o N D Please enter a watermark.
. R i
Watermark value: [123456 l iy ~ |Constructing .. fsmapps2 /TTT wm.jar by e
Trace file: |..jsmapp52;TTT.tra | Erowse \ S | Inserting call to Waterrmark. Create_graph«: §

“|Inserting call to Watermark. Create_graphs:
| Done embedding the watermark!
Watermark class source saved 1o "Watermark

Embed Configure . o
6. Hit [EMBED |.

7. Go to the recognize pane and hit the

button.

8. Click on the same X’s and O’s as you did in step 3), in the same order.

9. Hit

[{4] [X]

Tic-Tac-Toe

File Help

Obfuscate | Optimise | Statistics | = Log of exerution

F Dynamic Watermark r Static Watermark \ S Welcorne 10 Sandrnark!
- i e S ‘Algotithm ~|Starting to trace...
| Trace | | Embed | _' | Recognize | s p B Enter your chosen secret input sequence int

Preprocessing input Jar file.
Click on the DOME burtan when all the input

RECOGNIZE | | |Funning 'java -classpath sancmark. jar: fha
| Done tracing
Jar file: [fsmapps2/TTT wm.jar ‘ Browse | | | |Found & trace points.
| Trace paints written to file: " fsmapps2 jTT]|

. . Please enter a watermark.
Main: [TTTApplication
(TTT2pp | Constructing .. fsmapps2 TTT wm Jar by e

|Inserting call to Watermark, Create_graph4:(
" Inserting call to Watermark. Create_graph8:{)
|Done embedding the watermark!

Watermark class source saved to 'Watermar

|

Classpath: | J | welcome to embedding
‘ :
|

Arguments: \

watermarks: - ‘ Next | |Welcome to recognition

oot=462; type="Watermark I
246412 ("122456" |_

- |5tanting recognition run...
|Running 'jawa —classpath sandrmark. jar: jho
-|Done recagnition run..

Mext watermark

sun || pone |

K| [

You should see the watermark 123456 extracted from the watermarked TTT application.

You can also try

January 10, 2002 Christian Collberg

10 1. Introducing SandMark

> smark -f ../smapps2/TTT.script

This will run a script that traces, embeds, and recognizes a watermark in the TTT application. You still
have to enter the X’s and O’s and hit the | DONE | buttons in the trace and recognize panes.

1.2 Installing SandMark

SandMark’s source code is stored in a CVS repository at cvs.cs.arizona.edu. You can get the source
anonymously (in which case you can’t make any changes to it): To get the sources anonymously, do the
following

cvs -d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark login

cvs -d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark checkout -P smark?2
cvs —-d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark checkout -P smextern
cvs —-d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark checkout -P smapps2
cvs -d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark checkout -P smbloat
cvs -d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark checkout -P smbin

vV V.V V VYV

or, if you have got write access to SandMark (i.e an account on cvs.cs.arizona.edu) you should instead do

cvs -d :ext:MyLogin@cvs.cs.arizona.edu:/cvs/cvs/wmark checkout -P smark2
cvs -d :ext:MyLogin@cvs.cs.arizona.edu:/cvs/cvs/wmark checkout -P smextern
cvs -d :ext:MyLogin@cvs.cs.arizona.edu:/cvs/cvs/wmark checkout -P smapps2
cvs -d :ext:MyLogin@cvs.Cs.arizona.edu:/cvs/cvs/wmark checkout -P smbloat

vV V. V Vv V

cvs -d :ext:MyLogin@cvs.Cs.arizona.edu:/cvs/cvs/wmark checkout =P smbin

where MyLogin is your account name on cvs.cs.arizona.edu.
You should now have four directories:

smark2: The SandMark sources.
smbin: Scripts.
smextern: External Java code i.e. jar and zip files needed to run SandMark.
smapps2: Some simple applications you can use to try out SandMark
smbloat: Some simple test cases for Bloat. Read these to get a feel for how Bloat should be used.
Once you have checked out SandMark you can get the latest version by running the cvs update command:

> cd smark?2
> cvs update -dP

To add a new file you do cvs add file, to remove it cvs rm file and to commit your changes to the
repository at cvs.cs.arizona.edu you say cvs commit.

Building SandMark

Note that you will need Java 1.4 to run SandMark properly. Get the latest version from http://java.sun.
com/j2se/1.4.
Do the following to build SandMark:

January 10, 2002 Christian Collberg

1.3. Scripting SandMark

11

H H H Vv

H H H H VvV

\4

>
>

This generates a PostScript file classes.ps and a directory jdoc of html files.

cp smark2/Makedefs.std smark2/Makedefs

Make the ’obvious’ changes to Makedefs.

In particular, you should set these variables:
JDK =
HOME =

cp smbin/smark.std smbin/smark
Make the ’obvious’ changes to smark.
Again, you should set these variables:
JDK =
HOME =

chmod a+rx smbin/smark
make

Build applications to watermark
cd smapps2
make

Start SandMark
smbin/smark

SandMark gets compiled into a jar-file sandmark.jar. To execute it you also need some other packages
(bloat, BCEL, etc.), which can be found in the smextern directory. The smark-script takes care of setting
Java’s classpath correctly so that these get picked up.

You can also build the manual:

cd smark2/doc
make

Finally, you can generate html or latex from the JavaDoc comments in the source:

make jdoc
make jtex

1.3 Scripting SandMark

SandMark can be scripted. Either start SandMark from the command line with the -f option:

or enter the script file in SandMark’s file pull-down manu.

> smark -f file.script

e You can set a property value using the command
set PROPERTY VALUE

The following property values are recognized:

AnnotatorClass:

Encode_NodeType:

January 10, 2002

Christian Collberg

12 1. Introducing SandMark

Encode_ParentClass:

Encode_ClassName:

Encode_AvailableEdges:

Encode_StoreWhat:

Encode_StoreMethods:
Encode_StoreLocation :
Encode_ProtectionMethods:
Encode_IndividualFixups:

Encode_Encoding: Should be one of perm or radix. "*" picks a random encoding method.
Encode_Components:

Encode_Package:

MaxTracePoints:

Encode_StoreLocation: One of formal or global.
DumplR:

ClassPath:

e To run tracing use the command
trace input.jar trace.tra MAINCLASS ARGUMENTS
The classpath is set through the command
set ClassPath ...

Tracepoints are written to the trace.tra file.

Embed watermark in input.jar using the command
embed input.jar output.jar watermark trace.tra

Read the tracepoints from the file trace.tra.

Obfuscate input.jar, creating output.jar:

obfuscate input.jar output.jar

Run recognition.
recognize input.jar watermark_count MAINCLASS ARGUMENTS
The classpath is set through the command

set ClassPath ...

If the first non-blank character on a line is # the rest of the line is ignored.

Commands are case insensitive, arguments are case sensitive.

January 10, 2002 Christian Collberg

Chapter 2

The SandMark Code-base

2.1 SandMark Packages

SandMark is a large application. Currently it is made up of some 29000 lines of java code distributed over
200 classes. The code is organized in a fairly deep package hierarchy.

sandmark
Classes at the top level:

sandmark.Console: The main entry point to SandMark. It contains code that starts up the GUI and acts
as an interface between the GUI and the rest of the application.

sandmark.CLI: The command line interpreter.

sandmark.Scripting: The script interpreter.

sandmark.gui

sandmark.gui contains the code that build up the graphical interface.
sandmark.gui.AboutDialog:
sandmark.gui.ButtonRenderer:
sandmark.gui.CodeDialog:
sandmark.gui.EmbedConfigDialog:
sandmark.gui.ExtensionFileFilter:
sandmark.gui.GUIListener:
sandmark.gui.HelpFrame:
sandmark.gui.IntegerInput:
sandmark.gui.LayoutConstraints:
sandmark.gui.LightRenderer:

sandmark.gui.MultiHeaderRenderer:

13

14 2. The SandMark Code-base

sandmark.gui.ObTableModel:
sandmark.gui.ObfuscateConfigDialog:
sandmark.gui.RelativeLayout:
sandmark.gui.SandMarkFrame:
sandmark.gui.SandMarkGUIConstants:
sandmark.gui.SkinPanel:
sandmark.gui.StatDialog:
sandmark.gui.StatTableModel:
sandmark.gui.TablePanel:
sandmark.gui.SMarkGUIConstants:

sandmark.gui.SandMarkOSConstants:

sandmark.html

Html help files are kept here.

sandmark.obfuscate

Each obfuscation lives in its own subdirectory in sandmark.obfuscate. sandmark.obfuscate.setfieldspublic,
for example, is an obfuscator that sets all fields to public.

sandmark.obfuscate.AllClassesObfuscator:

sandmark.obfuscate.AppObfuscator: The abstract base-class from which any obfuscator that works on
an entire application should inherit. It inherits from sandmark.obfuscate.GeneralObfuscator.

sandmark.obfuscate.ClassObfuscator: The abstract base-class from which any obfuscator that works
on a single class should inherit. It inherits from sandmark.obfuscate.GeneralObfuscator.

sandmark.obfuscate.GeneralObfuscator: The top-level abstract class for an obfuscator.

sandmark.obfuscate.MethodObfuscator: The abstract base-class from which any obfuscator that works
on a single method should inherit. It inherits from sandmark.obfuscate.GeneralObfuscator.

sandmark.obfuscate.NameOverloadObfuscator: An advanced name obfuscator based on Paul Tyma’s
patent.

sandmark.obfuscate.Obfuscate: This class handles the incoming obfuscation requests from the GUI. It
is called by sandmark.Console.

sandmark.obfuscate.Obfuscator: The top-level obfuscator that decides on overall strategy — which al-

gorithms should be applied to which pieces of code.

sandmark.obfuscate.setfieldspublic

An obfuscator that sets all fields and methods to public.

sandmark.obfuscate.setfieldspublic.SetFieldsPublic:

January 10, 2002 Christian Collberg

2.1. SandMark Packages 15

sandmark.obfuscate.splitclass

An obfuscator that splits a class in two pieces. Non-functional.
sandmark.obfuscate.splitclass. DummyClass:
sandmark.obfuscate.splitclass.Obf:

sandmark.obfuscate.splitclass.SplitClass:

sandmark.obfuscate.util

sandmark.obfuscate.util contains classes of interest to all obfuscators.

sandmark.optimise

Routines to optimize Java programs. Currently based solely on the BLOAT package.
sandmark.optimise.Optimise:
sandmark.optimise.Main:

sandmark.optimise.Optimiser:

sandmark.util

sandmark.util contains classes of interest to all SandMark tools.
sandmark.util.Compile:
sandmark.util. BCEL: Utility routines to work with the BCEL (formerly JavaClass) package.

sandmark.util. ByteCodeLocation: Represents a location within a Java application. Essentially a tuple

(sandmark.util.MethodID, lineNumber, byteCodeIndex).

sandmark.util.CallGraphNode: The node in a call graph.
sandmark.util.CircularBuffer: A bounded buffer of arbitrary objects.

sandmark.util.ClassFileCollection: Routines for loading the classes of the program to be watermarked,
obfuscated, etc. A class can be parsed into a BCEL or a BLOAT object.

sandmark.util.ClassHierarchy: A package for building the complete class hierarchy from a jarfile. There
are many routines for querying the hierarchy, such as which methods override a particular method,
which classes extend a particular class, etc.

sandmark.util.DependencyGraph: Used by sandmark.obfuscate.splitclass.SplitClass.
sandmark.util.Editor: Utility class for use with BLOAT.

sandmark.util.FileClassLoader: Used to load classes on the fly.
sandmark.util.FindClassFiles: Used to load classes on the fly.

sandmark.util. GraphViewer: Graphical display of sandmark.util.graph.Graph.

sandmark.util.InstructionTree:

January 10, 2002 Christian Collberg

16 2. The SandMark Code-base

sandmark.util.LabeledGrid:
sandmark.util.Log: Routines for printing out messages (both to a file and to the screen) to the user.
sandmark.util. MethodID: Represents a methodwithin a Java application. Essentially a tuple

(name, signature, className).

sandmark.util.MethodNode:

sandmark.util.Misc:

sandmark.util.Options: Routines for cracking command line parameters.
sandmark.util. PriorityQueue:

sandmark.util.SparseVector: A specialized version on java.util.Vector.
sandmark.util.StackFrame: Used to build call graphs.
sandmark.util.StatisticsRecord:

sandmark.util.Stats:

sandmark.util.StringInt: A routine to package up an int inside a string.
sandmark.util. TempDir: Routines to manage temporary directories.

sandmark.util.Time: Routines for timing Java programs.

sandmark.util.exec

sandmark.util.exec contains classes that allow SandMark to run another Java application under debugging.
This uses Java’s JDI package. JDI allows you to start up a Java program, set breakpoints, trace method
calls, examine variables, etc. We use this in the implementation of the trace and recognition steps of the
dynamic watermarking algorithms.

sandmark.util.exec.Breakpoint: A class for creating breakpoints.

sandmark.util.exec. DumpAll:

sandmark.util.exec.EventHandler:

sandmark.util.exec.Event Thread:

sandmark.util.exec.Heap: A class for iterating through all the objects on the heap.
sandmark.util.exec.HeapData: Objects returned by sandmark.util.exec.Heap.
sandmark.util.exec.MethodCallData:

sandmark.util.exec.OQutput: A class that handles input and output from the application being executed.
sandmark.util.exec.Overseer: Extend this class to run a program under JDIL

sandmark.util.exec.TracingException:

January 10, 2002 Christian Collberg

2.1. SandMark Packages 17

sandmark.util.graph

Many watermarking algorithms make use of graphs. This package contains a multigraph package sandmark.
util.graph.Graph as well as operations on such graphs, such as all-pairs-shortest-path, depth-first-search,
etc.

sandmark.util.graph.GraphOp: Additional algorithms on graphs.
sandmark.util.graph.Dfs: Classify the edges of a graph as tree, cross, and back.
sandmark.util.graph.Edge: Edge objects of a sandmark.util.graph.Graph.
sandmark.util.graph.Graph: A class for constructing multi-graphs.
sandmark.util.graph.Matrix: A class where graphs are represented as an adjacency matrix.
sandmark.util.graph.Node: Node objects of a sandmark.util.graph.Graph.

sandmark.util.graph.Path: A class for representing a path in a sandmark.util.graph.Graph.

sandmark.util.graph.codec

This package implements various algorithms for embedding a number into the topology of a graph.
sandmark.util.graph.codec.DecodeFailure:

sandmark.util.graph.codec.GraphCodec: Base-class for graph codecs.
sandmark.util.graph.codec.PPCT: Non-functional.
sandmark.util.graph.codec.PermutationGraph: A permutation graph encoding.

sandmark.util.graph.codec.RadixGraph: A radix graph encoding.

sandmark.util.javagen

sandmark.util.javagen contains classes for building up Java methods and classes. It is essentially a layer on
top of BCEL. sandmark.util. javagen allows you to build up a Java AST and then turn that into bytecode.

sandmark.util.javagen.AssignField:
sandmark.util.javagen.AssignIndex:
sandmark.util.javagen.AssignStatic:
sandmark.util.javagen.Block:
sandmark.util.javagen.Cast:
sandmark.util.javagen.Class:
sandmark.util.javagen.Comment:
sandmark.util.javagen.CondNotNullExpr:
sandmark.util.javagen.Discard:
sandmark.util.javagen.EmptyStatement:

sandmark.util.javagen.Expression:

January 10, 2002 Christian Collberg

18

2. The SandMark Code-base

sandmark.util.javagen.Field:
sandmark.util.javagen.FieldRef:
sandmark.util.javagen.Formal:
sandmark.util.javagen.IfNotNull:
sandmark.util.javagen.Java:
sandmark.util.javagen.List:
sandmark.util.javagen.Literallnt:
sandmark.util.javagen.LiteralString:
sandmark.util.javagen.LoadIndex:
sandmark.util.javagen.Local:
sandmark.util.javagen.LocalRef:
sandmark.util.javagen.Method:
sandmark.util.javagen.MyClass:
sandmark.util.javagen.New:
sandmark.util.javagen.NewArray:
sandmark.util.javagen.Null:
sandmark.util.javagen.Return:
sandmark.util.javagen.Statement:
sandmark.util.javagen.StaticCall:
sandmark.util.javagen.StaticFunCall:
sandmark.util.javagen.StaticRef:
sandmark.util.javagen.Test:
sandmark.util.javagen.Try:

sandmark.util.javagen.VirtualCall:

sandmark.util.javagen.VirtualFunCall:

January 10, 2002

Christian Collberg

2.1. SandMark Packages 19

sandmark.watermark

This package contain all the watermarking algorithms. Each algorithm resides in its own directory.
sandmark.watermark.DynamicEmbed: Handles the embedding phase of a dynamic watermarker.
sandmark.watermark.DynamicRecognize: Handles the recognition phase of a dynamic watermarker.
sandmark.watermark.DynamicTrace: Handles the tracing phase of a dynamic watermarker.
sandmark.watermark.DynamicWatermarker: The base-class for all dynamic watermarkers.
sandmark.watermark.GeneralWatermarker: The base-class of all watermarkers
sandmark.watermark.StaticWatermarker: The base-class for all static watermarkers.
sandmark.watermark.StaticEmbed: Handles the embedding phase of a static watermarker.
sandmark.watermark.StaticRecognize: Handles the recognition phase of a static watermarker.
sandmark.watermark.WatermarkingException:

sandmark.watermark.Watermarking:

sandmark.watermark.CT

This package implements the Collberg-Thomborson dynamic watermarking algorithm.

sandmark.watermark.CT.CT: The main class for the Collberg-Thomborson algorithm. Extends sandmark.
watermark.DynamicWatermarker.

sandmark.watermark.CT.embed

This package implements the embedding of a graph into a Java program. This is part of the Collberg-
Thomborson watermarking algorithm.

sandmark.watermark.CT.embed.AddParameters:
sandmark.watermark.CT.embed.CallGraphPath:
sandmark.watermark.CT.embed.DeleteMarkCalls:
sandmark.watermark.CT.embed.EditedClass:
sandmark.watermark.CT.embed.EmbedData:
sandmark.watermark.CT.embed.Embedder:
sandmark.watermark.CT.embed.InsertStorageCreators:
sandmark.watermark.CT.embed.PrepareTrace:

sandmark.watermark.CT.embed.ReplaceMarkCalls:

January 10, 2002 Christian Collberg

20

2. The SandMark Code-base

sandmark.watermark.CT.encode

This package implements the encoding of a graph into a Java program. This is part of the Collberg-

Thomborson watermarking algorithm.
sandmark.watermark.CT.encode.Encoder:
sandmark.watermark.CT.encode.Graph2IR:

sandmark.watermark.CT.encode.Split:

sandmark.watermark.CT.encode.ir

This package implements the encoding of a graph into a simple intermediate code.

Collberg-Thomborson watermarking algorithm.
sandmark.watermark.CT.encode.ir.AddEdge:
sandmark.watermark.CT.encode.ir.Build:
sandmark.watermark.CT.encode.ir.Construct:
sandmark.watermark.CT.encode.ir.Create:

sandmark.watermark.CT.encode.ir.CreateNode:

sandmark.watermark.CT.encode.ir.CreateStorage:

sandmark.watermark.CT.encode.ir.Debug:
sandmark.watermark.CT.encode.ir.Destroy:
sandmark.watermark.CT.encode.ir.Destruct:
sandmark.watermark.CT.encode.ir.Field:
sandmark.watermark.CT.encode.ir.Fixup:
sandmark.watermark.CT.encode.ir.FollowLink:
sandmark.watermark.CT.encode.ir.Formal:
sandmark.watermark.CT.encode.ir.IR:
sandmark.watermark.CT.encode.ir.Init:
sandmark.watermark.CT.encode.ir.List:
sandmark.watermark.CT.encode.ir.LoadNode:
sandmark.watermark.CT.encode.ir.Method:
sandmark.watermark.CT.encode.ir.NodeStorage:

sandmark.watermark.CT.encode.ir.Print Graph:

sandmark.watermark.CT.encode.ir.ProtectRegion:

sandmark.watermark.CT.encode.ir.SaveNode:

sandmark.watermark.CT.encode.ir.StaticCall:

This is part of the

January 10, 2002

Christian Collberg

2.1. SandMark Packages 21

sandmark.watermark.CT.encode.ir2ir

This package implements transformations of the intermediate code used in the encoding of graphs in the
Collberg-Thomborson watermarking algorithm.

sandmark.watermark.CT.encode.ir2ir.AddFields:
sandmark.watermark.CT.encode.ir2ir.AddFormals:
sandmark.watermark.CT.encode.ir2ir.Builder:
sandmark.watermark.CT.encode.ir2ir.CleanUp:
sandmark.watermark.CT.encode.ir2ir.Debug:
sandmark.watermark.CT.encode.ir2ir.Destructors:
sandmark.watermark.CT.encode.ir2ir.InlineFixups:
sandmark.watermark.CT.encode.ir2ir.Protect:
sandmark.watermark.CT.encode.ir2ir.SaveNodes:

sandmark.watermark.CT.encode.ir2ir.Transformer:

sandmark.watermark.CT.encode.storage

This package implements operations on the storage of graph nodes in Collberg-Thomborson watermarking
algorithm.

sandmark.watermark.CT.encode.storage.NodeStorage:
sandmark.watermark.CT.encode.storage.Array:
sandmark.watermark.CT.encode.storage.Hash:
sandmark.watermark.CT.encode.storage.GlobalStorage:
sandmark.watermark.CT.encode.storage.Pointer:
sandmark.watermark.CT.encode.storage.StorageClass:

sandmark.watermark.CT.encode.storage.Vector:

sandmark.watermark.CT.recognize

This package implements the recognition part of Collberg-Thomborson’s software watermarking algorithm.
It should be generalized to handle recognition in any dynamic software watermarking algorithm.

sandmark.watermark.CT.recognize.Heap2Graph:
sandmark.watermark.CT.recognize.RecognizeData:

sandmark.watermark.CT.recognize.Recognizer:

January 10, 2002 Christian Collberg

22

2. The SandMark Code-base

sandmark.watermark.CT.trace

This package currently implements the trace part of Collberg-Thomborson’s software watermarking algo-
rithm. It should be generalized to handle tracing in any dynamic software watermarking algorithm.

sandmark.watermark.CT.trace.Annotator:
sandmark.watermark.CT.trace.CallForest:
sandmark.watermark.CT.trace.Preprocessor:
sandmark.watermark.CT.trace.TracePoint:

sandmark.watermark.CT.trace.Tracer:

sandmark.watermark.constantstring

This package implements a trivial static watermarking algorithm.

sandmark.watermark.constantstring.ConstantString:
sandmark.watermark.constantstring.Test:

sandmark.watermark.constantstring. Program:

sandmark.statistics
This package counts all types of elements of a Java program.

sandmark.statistics.Statistics:

January 10, 2002

Christian Collberg

Chapter 3

Extending SandMark

3.1 Adding an Obfuscator

SandMark is designed to make it easy to add a new obfuscation algorithm. Assume that we want to add a
new obfuscation ReorderMethods. The process would be the following:

1. Create a new directory sandmark/obfuscate/reorderMethods.
2. Create a new class sandmark/obfuscate/reorderMethods/ReorderMethods. java.

3. The ReorderMethods class should extend one of the base classes AppObfuscator (if the algorithm works
on the entire user program), MethodObfuscator (if the algorithm works one method at a time), or
ClassObfuscator (if the algorithm works on one individual class at a time). Let’s assume that our algo-
rithm reorders methods within one class. ReorderMethods should therefore extend ClassObfuscator,
which looks like this:

package sandmark.obfuscate;

public abstract class ClassObfuscator extends GeneralObfuscator {

protected ClassObfuscator(String label) {
super (label) ;

}

abstract public void apply(
sandmark.util.ClassFileCollection cfc, String classname)
throws Exception;

}

public String toString() {
return "ClassObfuscator(" + getLabel() + ")";

}
}
4. The ReorderMethods class should look something like this:

public class ReorderMethods extends sandmark.obfuscate.ClassObfuscator {
public ReorderMethods(String label) {
super (label);
X
public void apply(
sandmark.util.ClassFileCollection cfc, String classname) throws Exception {

23

24 3. Extending SandMark

// Your code goes here!

}

5. Use BCEL or BLOAT to implement your obfuscation. The cfc parameter represents the set of classes to
be obfuscated. Use routines in sandmark.util.ClassFileCollection to open a class to be edited by
BCEL or BLOAT.

6. Type make at the top-level sandmark directory (smark). The new obfuscation should be loaded au-
tomagically at runtime.

3.2 Adding a Watermarker

Adding a new watermarking algorithm is similar to adding an obfuscator. Algorithms are loaded dynamically
at run-time, so there is no need to explcitly link them into the system.
To create a new watermarking algorithm wm you

1. create a new directory sandmark.watermark.wn,

2. create a new class sandmark .watermark.wm.WMwhich extends sandmark.watermark.StaticWatermarker
or sandmark.watermark.DynamicWatermarker. To build a new static watermarker you just have to
implement two methods, one to embed the watermark into a jarfile and the other to extract it:

package sandmark.watermark;

public abstract class StaticWatermarker
extends sandmark.watermark.GeneralWatermarker {

public StaticWatermarker() {}

/* Embed a watermark value into the program. The props argument
* holds at least the following properties:

*

* Encode_Watermark: The watermark value to be embedded.

* Embed_JarInput: The name of the file to be watermarked.

* Embed_JarOutput: The name of the jar file to be constructed.
*

*/

public abstract void embed(
java.util.Properties props)
throws sandmark.watermark.WatermarkingException,
java.io.I0Exception;

/* Return an iterator which generates the watermarks
* found in the program. The props argument

* holds at least the following properties:

*

* Recognize_JarInput: The name of the file to be watermarked.
x

public abstract java.util.Iterator recognize(

January 10, 2002 Christian Collberg

3.3. Adding a Graph Codec

25

java.util.Properties props)
throws sandmark.watermark.WatermarkingException,
java.io.I0Exception;

3. Use BCEL or BLOAT to implement your watermarker. Have a look at the trivial static watermarker

sandmark.watermark.constantstring.ConstantString for an example

4. Type make at the top-level sandmark directory (smark). The new watermarker should be loaded

automagically at runtime.

3.3 Adding a Graph Codec

Several watermarking algorithms encode the watermark as a graph. SandMark contains several methods for

making this encoding, stored in the sandmark.util.graph.codec package.

Adding a new graph coder/decoder codec algorithm is similar to adding an obfuscator or watermarker:
just add a new class to the codec directory, make sure it extends the appropriate class, type make, and the

new algorithm will have been added to the system.
Every graph codec should extend sandmark.util.graph.codec.GraphCodec:

package sandmark.util.graph.codec;

public abstract class GraphCodec {
public java.math.Biglnteger value = null;
public sandmark.util.graph.Graph graph = null;

VAL
* Codecs should implement this method to convert
* the ’value’ into ’graph’.
*/

abstract void encode();

/**
* Codecs should implement this method to convert
* the ’graph’ into ’value’. Whenever the decoding
x failes (eg. because the graph has the wrong
* shape) the codec should simply throw an exceptiomn.
*/

abstract void decode() throws sandmark.util.graph.codec.DecodeFailure;

VAL

* Constructor to be used when encoding an integer into a graph.

* Q@param value The value to be encoded.

*/

public GraphCodec (

java.math.BigInteger value) {
this.value = value;
encode();

/**

January 10, 2002

Christian Collberg

26 3. Extending SandMark

* Constructor to be used when decoding a graph to an integer.
* Q@param graph The graph to be decoded.
* @param root The root of the graph.
* Q@param kidMap An array of ints describing which field
* should represent the first child, the
* second child, etc.
*/
public GraphCodec (
sandmark.util.graph.Graph graph,
int kidMap[]) throws sandmark.util.graph.codec.DecodeFailure {
this.graph = graph;
this.kidMap = kidMap;
decode();
}
}

Note that there are two constructors. One is used when encoding an integer (java.meth.BigInteger) into
a graph (a sandmark.util.graph.Graph), and another when decoding a graph into an integer.
For example, the simplest graph codec, RadixGraph looks like this:

package sandmark.util.graph.codec;
public class RadixGraph extends sandmark.util.graph.codec.GraphCodec {

public final static String FULLNAME = "Radix Graph";
public final static String SHORTNAME = "radix";

// Used when encoding.

public RadixGraph (java.math.BigInteger value) {
super (value) ;
this.fullName = FULLNAME;
this.shortName = SHORTNAME;

}

void encode() { ... }

// Used when decoding.

public RadixGraph (
sandmark.util.graph.Graph graph,
int kidMap[]) throws sandmark.util.graph.codec.DecodeFailure {
super (graph, kidMap) ;
this.fullName = FULLNAME;
this.shortName = SHORTNAME;

}

void decode() throws sandmark.util.graph.codec.DecodeFailure { ... }

3.4 Documentation

To document a new obfuscator or watermarker, do the following:

1. create a new file name.tex in smark/doc:

January 10, 2002 Christian Collberg

3.4. Documentation 27

\algorithm{The ... Algorithm}{Authors}

Where Authors is a comma-separated list of authors of this algorithm implementation.

2. add an input-statement to smark/manual .tex:

\part{\SM\ Algorithms}
\input{CollbergThomborson}

iiﬁput{name.tex}
3. Update smark/makefile:
SECTIONS = \
é;ilbergThomborson.tex\
Aéﬁe.tex \

4. Type make.

January 10, 2002 Christian Collberg

28 3. Extending SandMark

January 10, 2002 Christian Collberg

Part 11

SandMark Algorithms

29

Chapter 4

The Collberg-Thomborson Watermarking Algorithm
C. Collberg, J. Nagra, G. Townsend

4.1 Introduction

The Collberg-Thomborson watermarking algorithm (henceforth, CT) is a dynamic algorithm. The idea is
that rather than embedding the watermark directly in the code of the application, code is embedded that
builds the watermark at runtime. The algorithm assumes a secret key K which is necessary to extract the
watermark. K is a sequence of inputs Iy, I1,... to the application. As seen in Figure 4.1, the watermark
(a graph structure) is built by the application only when the user runs it with the special input Iy, I3,
Figure 4.3 shows a simple example of a what a program may look like after having been watermarked.

In the SandMark implementation of CT, watermark embedding and extraction runs in several steps (See
Figure 4.2):

Annotation: Before the watermark can be embedded the user must add annotation (or mark) points into
the application to be watermarked. These are calls of the form

sandmark.trace.Annotate.mark() ;
String S = ...;
sandmark.trace.Annotate.mark(S);
long L = ...;
sandmark.trace.Annotate.mark (L) ;

The mark () calls perform no action. They simply indicate to the watermarker locations in the code
where (part of) a watermark-building code can be inserted. The argument to the mark() call can be
any string or integer expression that (directly or indirectly) depends on user input to the application.

Tracing: When the application has been annotated the user should do a tracing run of the program. The
application is run with the chosen secret input sequence, K. During the run one or more annotation
points are hit. Some of these points will be the locations where watermark-building code will later be
inserted.

Embedding: During the embedding stage the user enters a watermark, a string or an integer. A string is
converted to an integer. From this number a graph is generated, such that the topology of the graph
embeds the number. The graph is split into a number of subgraphs, depending on the number of
locations where watermarking code should be inserted. Each subgraph is converted to Java bytecode
that builds the graph. The relevant mark()-calls are replaced with this graph-building code.

Recognition: During recognition the application is again run with the secret input sequence as input. The
same mark ()-locations will be hit as during the tracing run. Now, however, these locations will contain
code for building the watermark graph. When the last part of the input has been entered, the heap
is examined for graphs that could potentially be watermark graphs. The graphs are decoded and the
resulting watermark number or string is reported to the user.

4.2 Annotation

The CT watermark consists of dynamic data-structures. This means that the code inserted in the application
will look like this:

31

32 4. The Collberg-Thomborson Watermarking Algorithm

Watermarked

Application | n2=new T() .
. 1 n3=new T()

-7 n2.left=n3 |

s T]
Heap

107[17"':>
[]
4
w

Figure 4.1: Overview of how the CT algorithm recognizes a watermark W. At runtime the watermarked
application will — given the special secret input key sequence Iy, I;,... — traverse certain points in the
program. At these points code has been inserted which builds a graph Gy, on the heap. The topology of
the graph embeds the watermark W.

Execution
Iy, I1,--- T
Original Annotated 0s51> race
Application Application

pi:mark() Watermarked

= :> p2:mark() Application

n2=new T()

p3:mark() n3=new T()

n2.left=n3

n4=new T()
n3.right=n4

Figure 4.2: Overview of how the CT algorithm watermarks an application. First, the user adds annotation
points (mark()-calls) to the application. These are locations where watermarking code may be inserted.
Secondly, the application is run with a secret input sequence, Iy, I,... and the trace of mark()-calls hit
during this run is recorded. Finally, code is embedded into the application (at certain mark ()-call locations)
that builds a graph G at runtime. The topology of Gy embeds the watermark W.

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

4.2. Annotation 33

public class Simple {
static void P(String i) {
System.out.println("Hello " + i);

}

public static void main(String args[]) {
P(args[0]);

}

}

public class Simple_W {
static void P(String i) {
if (i.equals("World")) Watermark.Create_G4();
System.out.println("Hello " + 1i);
}
public static void main(String args[]) {
Watermark.Create_G2() ;
P(args[0]);
}
}

public class Watermark extends java.lang.Object {
public Watermark edgel;
public Watermark edge2;
public static java.util.Hashtable sm$hash = new java.util.Hashtable();
public static Watermark[] sm$array = new Watermark[4];

public static void Create_G2 () {
Watermark n3 = new Watermark();
Watermark n2 = new Watermark();
Watermark.sm$array[1] = n2;
n2.edgel = n3;
n2.edge2 = n3;

}

public static void Create_G4 () {
Watermark nl = new Watermark();
Watermark n4 = new Watermark();
Watermark.sm$hash.put(new java.lang.Integer(4), n4);
n4.edgel = ni;
Watermark n2 = Watermark.sm$array[1];
nl.edgel = n2;
Watermark n3 = (n2 != null)?n2.edgel:new Watermark();
n3.edgel = ni;

Figure 4.3: Simple watermarking example. The class Simple is modified into Simple W by adding
calls into the generated watermark class Watermark. The static methods Watermark.Create G2() and
Watermark.Create G4 () are only called when the application is run with the secret input argument "Wor1d".
When this happens, the watermark graph is built on the heap.

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

34 4. The Collberg-Thomborson Watermarking Algorithm

Node nl = new Node();
Node n2 = new Node();
nl.edge = n2;

Hence, we should prefer mark locations that
¢ allocate objects and manipulate pointers, and
e directly depend on user input.
We should avoid mark locations that
e are hot-spots, and
e are executed non-deterministically.

In other words, mark ()-calls should be added to locations where the resulting watermark code will be fit in
(is stealthy), won’t affect performance, and will be executed consistently from run to run, depending only on
user actions.

For example, the following code is undesirable since Math.random() may generate different values during
different runs of the program:

if (Math.random() < 0.5) {

sandmark.trace.Annotate.mark();

}

Similarly, if thread scheduling, network activity, processor load, etc. can affect the order in which some
locations are executed, these locations are not valid annotations points and should be avoided.

4.3 Tracing

SandMark makes heavy use of Java’s JDI (Java Debugging Interface) framework. During tracing and recog-
nition SandMark starts up the user’s application as a subprocess running under debugging. This allows
SandMark to set breakpoints, examine variables, and step through the application — all the operations that
can be done under an interactive debugger. During tracing we are interested in obtaining a trace of the
mark ()-calls that are hit while the user enters their secret input. We also want to know the argument to the
mark ()-call and the stack trace at the point of the call.

Unfortunately, JDI is not yet a perfect product and we have to jump through a couple of hoops to make
it do what we want. First of all, examining the value of the argument to the mark()-call may or may not
work. Examining static global variables seems to work, however, so we always start by storing the argument
in a global, and then call the placeholder method MARK(). See Figure 4.4. During tracing we only have to
put a breakpoint on the MARK() method.

The second problem is that we need a stack trace at the point of each mark()-call. This trace is used
during embedding to compute an accurate call-graph of the program at each mark() location. The call
graph allows us to compute ways to pass information between mark ()-calls in method parameters. While
JDI allows us to examine the stack frames at any point in the program, it is not possible to tell if two
stack-frames are the same. That is, JDI stack-frames do not have unique identities. To solve this problem
we add the following statement to the beginning of every method in the program:

long sm$stackID = sandmark.trace.Annotator.stackFrameNumber++;

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

4.3. Tracing 35

package sandmark.trace;
public class Annotator {
static String VALUE = "";
public static long stackFrameNumber=0;
public static void MARK(){}
public static void mark() {
long sm$stackID = sandmark.trace.Annotator.stackFrameNumber++;
VALUE = "-———-";
MARK() ;
X
public static void mark(String s) {
long sm$stackID = sandmark.trace.Annotator.stackFrameNumber++;
VALUE = n\nn + s + n\un;
MARK Q) ;
X
public static void mark(long v) {
long sm$stackID = sandmark.trace.Annotator.stackFrameNumber++;
VALUE = Long.toString(v);
MARK Q) ;

Figure 4.4: The class sandmark.trace.Annotate.

This is done prior to tracing in sandmark.trace.Preprocessor.
When, during tracing, a mark ()-call is hit we walk the stack, collecting the sm$stackIDs in each frame.
At the end of tracing run we have gathered a list of sandmark.trace.TracePoint-objects. Each object
represents a mark ()-call that was hit during the trace and contains three pieces of information:

1. the location in the bytecode where the mark() was located (a sandmark.util.ByteCodeLocation);
2. the value that the user supplied as an argument to the mark ()-call (a String);

3. alist of the stack-frames active when the mark()-call was hit (sandmark.util.StackFrame[]).

An Example
Consider the following example application:

public class SimpleA {
static void P(int i) {
sandmark.trace.Annotator.mark(6*i+9) ;

}

public static void main(String args[]) {
P(3);

}

¥

After tracing we will have found only one trace point. It is described by a structure like this:
(value = 27,location = (P,pc = 8), stack = [(P,pc = 8, frame = 1), (main, pc = 8, frame = 0)])

We have stored the argument to the mark () call (value=27), the bytecode location where that call was made
(pc=8), and complete stack trace (with unique identifiers for each frame) at this location.

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

36 4. The Collberg-Thomborson Watermarking Algorithm

Choosing mark ()-Locations

The tracing phase will have generated one or more mark ()-locations. However, cannot be used to build the
watermark graph and have to be removed. Also, we need k locations to insert code to build a k-component
graph, and any extra locations should be deleted.

sandmark.watermark.CT.embed.PrepareTrace examines the trace to find a set of mark ()-locations that
can be used to build the watermark graph. An annotation point {value, location) is valid if

1. there is exactly one trace point at location, or
2. there are multiple trace points at location, but they all have unique values.

For example, consider the following mark () -points:

value =— is used for mark()-calls that take no argument. {—, Lo} is valid, because it is the only mark()-
point at location Lg. (1, L;) is not valid because there are two identical annotation values at this location.
If we were to insert watermark-building code at this location we would not be able to tell the difference
between the first and the second time we arrive. (10, L), (11, Lo}, (12, Ly) are valid because the values are
unique. If there is one unique value at a location, this mark()-call is said to be LOCATION-based, otherwise
it is VALUE-based.

4.4 Embedding

Once the application has been traced we can finally start embedding the watermark. The input to this phase
is tracing information (as described in the previous section), a watermark W to be embedded, and a jar-file
containing the classfiles in which to embed the mark. The embedding is divided into five phases:

1. First we generate a graph G whose topology embeds W.
2. Next, we split G into k subgraphs (Gy, ..., Gg)-

3. From each subgraph G; we generate an intermediate code C; that builds this graph and connects it to
the subgraphs (G1,...,Gi—1).

4. We translate each intermediate code C; into a Java method M; that, when executed, will build G;.

5. Finally, based on the tracing information, we replace some of the mark ()-calls with calls to one of the
M;-methods. The remaining mark ()-calls are removed.

The result is a new jar-file that when executed with the special input sequence will execute the methods
(M, ..., M) (in this order), and, consequently, build the watermark graph G on the heap.
Building the Graph

Eventually we hope to have a whole library of algorithms for building watermark graphs. Currently, only
two have been implemented. The algorithms are located in sandmark.util.graph.codec. See Section 3.3
for a description of how to add a new Graph Codec to SandMark.

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

4.4. Embedding 37

61 x73=3-6*4+2-63+3-62+4.61+1-6°

Figure 4.5: Radix-6 encoding. The right pointer field holds the next field, the left pointer encodes a base-k
digit.

Radiz Encoding is the simplest algorithm. The codec is in sandmark.util.graph.codec.RadixGraph.
Figure 4.5 illustrates the idea of a Radix-k encoding using a circular linked list. An extra pointer field
encodes a base-k digit in the length of the path from the node back to itself. A null-pointer encodes a 0, a
self-pointer a 1, a pointer to the next node encodes a 2, etc.

The Permutation Encoding codec is in sandmark.util.graph.codec.PermuationGraph. The idea is to
represent the watermark W by a permutation of the numbers (0,...,n — 1). For example, the number

1024
could be represented by the permutation
<97 67 57 27 37 47 07]‘7 77 8)

of the numbers
{0,1,2,3,4,5,6,7,8,9).

A permutation of length n is encoded into a graph structure similar to the one in Figure 4.5. The nodes of
the graph form a circular linked list and a pointer from node 7 to node j represents the fact that ¢ has been
permuted with j.

It should be noted that the graphs we use in the CT algorithm are, in fact, hyper-graphs. They are
implemented by the package sandmark.util.graph.

Splitting the Graph

When the watermark graph has been built it needs to be split into pieces. This is done in the package
sandmark.watermark.CT.encode.Split. There should be one graph component per mark()-location that
we intend to use. There are three things to consider when we split the graph:

1. The subgraphs should be of roughly equal size. (It is actually not quite clear that this is a reasonable
requirement. For stealth reasons it might be better if the components are of random size. The current
implementation, however, splits in equal-size pieces.)

2. The splitting of G should be done in such a way that each subgraph has a root, a special node from
which all other nodes in the graph can be reached. This allows us to store only pointers to root nodes
to prevent the garbage collector from collecting the subgraphs. (More about this later.)

3. We should attempt to split G in such a way that the number of edges between subgraphs is minimized.
The reason for this restriction is that the more edges there are between subgraphs, the more Java code
we will have to generate in order to connect the subgraphs into the complete graph G.

We use a graph-splitting algorithm by Kundu and Misra. It would, for example, split the graph on the
left into the two components on the right:

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

38 4. The Collberg-Thomborson Watermarking Algorithm

INSTRUCTION | DESCRIPTION |

AddEdge(G;,Gj,n odeg m) | Add an edge from node n in subgraph G; to node m in G;. Since

the graphs are multi-graphs the out-edges are named.

CreateNode(G;,n) Create node n in subgraph G;.

CreateStorage(G,S) Create the global storage structure S.

Debug(msg) Insert debugging code.

FollowLink(G;,n *%¢ m) | Return m by following the edge edge from n.

LoadNode(G;,n, L) Load node n from global storage location L.

PrintGraph() Insert code for printing the graph. Used for debugging.
ProtectRegion(ops) The instructions ops may generate runtime errors, such as null

dereference. Protect against such errors by, for example, putting
ops inside a try-block.
SaveNode(G;,n, L) Save node n in global storage location L.

Table 4.1: Intermediate code instructions.

Root nodes have been shaded and inter-component edges have been dashed.

Generating Intermediate Code

We could, of course, generate Java code directly from the graph components. However, it turns out to be
advantageous to insert one intermediate step. From each graph component we generate a list of intermediate
code instructions, much in the same way a compiler might generate an intermediate representation of a
program, in anticipation of code generation and optimization. In a compiler, the intermediate code sepa-
rates the front-end from the back-end, improving retargetability, and also providing a target-independent
representation for optimizing transformations. Similarly, our intermediate representation provides

1. retargetability, in case one day we may want to generate C++ or C# code; and

2. transformability, i.e. the ability to optimize or otherwise transform the intermediate code prior to
generating Java code.

In fact, we start by generating very simple intermediate code, and then run several transformations (in
sandmark.watermark.CT.encode.ir2ir) over the code to optimize it, etc.

The intermediate code instructions are defined in the package sandmark.watermark.CT.encode.ir. The
main operations are given in Table 4.1.

Consider the two graph components G, and G4 in Figure 4.6. The following intermediate code is generated
from G»:

create((Gs)

n3 = CreateNode (1)

ny = CreateNode(G5)

SaveNode(nz, G2, ’ng:Array/global’)
edgel

AddEdge (ns 55 n3, Ga, Gi)
edge2

AddEdge (ny =% ng, Ga, Gy)

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

4.4. Embedding 39

Figure 4.6: Two graph components G2 and G4. Components are named after their (shaded) root nodes.

Nodes are named nq,ns, etc. The SaveNode instruction is used to store the root node of a graph component
in a global structure such as a hash table, vector, etc. We do this for two reasons:

1. Suppose we have two subgraphs G; and G5, where G is created first. After G5 has been created, the
two graphs need to be connected. At this point we need (at least) pointers to both their root nodes,
so that we can access and link any two nodes in the graphs.

2. Every node in every subgraph must, at all times, be live or it may be deleted by the garbage collector.

As we will see later, we can often do away with these global pointers by passing root nodes as method argu-
ments. This is much stealthier since most programs have few global variables but many method parameters.
Here is the intermediate code generated from the subgraph component G4 in Figure 4.6:

create(Gy)
ny = CreateNode((G4)
n4 = CreateNode((Gy)

SaveNode (G4, M4, ’n4:Hash/global’)

dgel
AddEdge (G4, G4, 1y =25 ny)

ng = LoadNode(G4, ’nsy:Array/global’)

1
AddEdge (G, G2, n1 2% ny)
ng := FollowLink(Ga, n2 2% n3)
edgel

AddEdge(Ga, G4, n3 — n1)

Note how node ns from graph G, as been loaded from global storage in order to connect n; to n2. Note
also how the FollowLink instruction is used to traverse G5 from ns to get to node ns, which can then be
connected to n;.

To generate intermediate code from a subgraph G; we perform a depth-first search from the root of the
graph. This is done in sandmark.watermark.CT.encode.Graph2IR. CreateNode (n)-instructions are gener-

ated from each node, in a reverse topological order. That is, leaves are generated first and the root node last.

. 4 . .
We can issue an AddEdge(G;, G;, n 8 m)-instruction as soon as CreateNode (m) and CreateNode (n)

have both been generated.

The code for G; must also contain instructions connecting G; to all the previous subgraphs Gy, ..., G;—1.-

If there is an inter-subgraph edge m %3 n from Gy to G; (i.e. m is a node in G, and n is in G;) then we

must generate
1. one or more FollowLink ()-instructions to reach node m by traversing G, starting at its root node,
2. and a final AddEdge () instruction to link m to n.

This is done by finding the shortest path from & (the root of subgraph G},) and m and issuing a FollowLink ()-
instruction for each.

sandmark.watermark.CT.encode.Graph2IR generates the basic list of intermediate instructions. These
“programs” are then optimized and transformed in various ways by the transformers in sandmark .watermark.
CT.encode.ir2ir.*. Some of the more important ones are

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

40 4. The Collberg-Thomborson Watermarking Algorithm

sandmark.watermark.CT.encode.ir2ir. AddFields:

sandmark.watermark.CT.encode.ir2ir.AddFormals: Add parameters to the Create G; methods to
allow graph roots to be passed in formals rather than globals. (This will be described in more detail
in Section 4.6).

sandmark.watermark.CT.encode.ir2ir.CleanUp: LoadNode ()-instructions are added (in sandmark.
watermark.CT.encode.ir2ir.SaveNodes. We do this in a greedy way, and the CleanUp transformer
removes redundant loads.

sandmark.watermark.CT.encode.ir2ir.Debug: Add Debug()-instructions. These will print out trace
messages as the watermark graphs are built at runtime.

sandmark.watermark.CT.encode.ir2ir.Destructors: Create bogus graph builders/destroyers that can
be inserted in various places in the code. The destructors are created by modifying copies of the creator
codes.

sandmark.watermark.CT.encode.ir2ir.InlineFixups: sandmark.watermark.CT.encode.Graph2IR gen-
erates special methods (called Fixup_G;_G;) which add the inter-graph links that connect too subgraphs
G; and G;. Normally these are inlined into the code for G; by this transformer.

sandmark.watermark.CT.encode.ir2ir.Protect: Add protection code when this is necessary to prevent
FollowLink ()-instructions from throwing unwanted exceptions at runtime.

sandmark.watermark.CT.encode.ir2ir.SaveNodes: Add code to load and store graph roots into global,
static storage.

Generating Java Code

Generating Java code from the intermediate representation is relatively straight-forward. We use the BCEL
library to generate a bytecode class Watermark. We can generate Java source also, but this is mostly used
for debugging.

The intermediate code from the previous section is translated into the Java class in Figure 4.7. Method
Create_G2 builds subgraph G2 and Create_G4 subgraph G4. Note, in particular, the statements

Watermark n2 = Watermark.sm$array[1];
Watermark n3 = (n2 != null)?n2.edgel:new Watermark();
n3.edgel = ni;

which link nodes nz and n;. To get access to G3’s node ng we follow the edge from G2’s root node ns to ns.
This will work provided G5 has been created at this point. However, if we’re not doing a recognition run
(i.e. the input sequence in not Iy, I1, . ..) then G5 may not have been created in which case n2 may be null.
We can protect against this in a variety of ways:

1. if n2 is null we create a new node and assign it to n2 (as above);

2. we can enclose the entire code segment in a try-catch-block:

Watermark n2 = Watermark.sm$array[1];
try {

Watermark n3 = n2.edgel;

n3.edgel = ni;
} catch (Exception e){}

; or

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

4.4. Embedding 41

public class Watermark extends java.lang.Object {
public Watermark edgel;
public Watermark edge2;
public static java.util.Hashtable sm$hash;
public static Watermark[] sm$array;

public static void Create_G2 () {

Watermark n3 = new Watermark(); // n3 = CreateNode(G2)
Watermark n2 = new Watermark(); // n2 = CreateNode(G2)
Watermark.sm$array[1] = n2; // SaveNode(n2, G2, ’n2:Array/global’)
n2.edgel = n3; // AddEdge(G2, G2, n2-edgel->n3)
n2.edge2 = n3; // AddEdge(G2, G2, n2-edge2->n3)
}
public static void Create_G4 () {
Watermark nl = new Watermark(); // nl1 = CreateNode(G4)
Watermark n4 = new Watermark(); // n4 = CreateNode(G4)
Watermark.sm$hash. put (
new java.lang.Integer(4), n4); // SaveNode(n4, G4, ’n4:Hash/global’)
n4.edgel = ni; // AddEdge(G4, G4, n4-edgel->nl)
Watermark n2 = Watermark.sm$array[1]; // n2 = LoadNode(G4, ’n2:Array/global’)
nl.edgel = n2; // AddEdge (G4, G2, nl-edgel->n2)
Watermark n3 = // n3 := FollowLink(G2, n2-edgel->n3)
(n2 != null)?n2.edgel:new Watermark();
n3.edgel = ni; // AddEdge(G2, G4, n3-edgel->nl)

Figure 4.7: Java code generated from the graph components in Figure 4.6.

3. we may simply not do the assignment if n2 is null:

Watermark n2 = Watermark.sm$array[1];
if (n2 !'= null) {

Watermark n3 = n2.edgel;

n3.edgel = nil;
}

It is useful to have a whole library of such protection mechanisms to prevent attacks by pattern matching.

Inserting the Java Code

sandmark .watermark.CT.embed.Embedder is the main class for modifying the Java program to be water-
marked.

The chosen mark()-locations are replaced by calls to Watermark.Create G;. (We're relying on the
BLOAT optimizer to eventually inline these calls and remove the Watermark class.) Remaining mark ()-calls
are deleted.

As usual, this process is done in several passes over the code:

1. sandmark.watermark.CT.embed.ReplaceMarkCallsreplaces the mark ()-calls with calls to Watermark.Create G;.
There are two cases, depending on whether the mark()-call is LOCATION-based or VALUE-based. A

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

42 4. The Collberg-Thomborson Watermarking Algorithm

| INSTRUCTION | Java
AddEdge(G;,Gj,n %8S m) n.edge = m
CreateNode(G;,n) Watermark n = new Watermark()
CreateStorage(G,S) One of

1. static java.util.Hashtable sm$hash = new
java.util.Hashtable(Q);

2. static Watermark sm$array = new Watermark[m];

3. static java.util.Vector sm$vec = new
java.util.Vector(m); sm$vec.setSize(m);

4. static Watermark smnl,smn2,...;

where m is the number of nodes in the graph and

smnil,smn2, ... are the root nodes of the subgraphs.
FollowLink(G;,n odes m) | Watermark m = n.edge
LoadNode(G;,n,S) One of
1. Watermark n = (Watermark) sm$hash.get(new
java.lang.Integer (k));
2. Watermark n = Watermark.sm$arr[k— 1];
3. Watermark n = (Watermark) sm$vec.get(k —1);
4. Watermark n = Watermark.sm$nk
depending on how n is stored. k is n’s node number.
ProtectRegion(ops) try { ops } catch (Exception e) {}
SaveNode(G;,n, L) One of

1. sm$hash.put(new java.lang.Integer(k), n);
2. Watermark.sm$arr[k— 1] = n;
3. (Watermark) sm$vec.set(k—1, n);

4. Watermark.sm$nk = n

depending on how n is stored. k is n’s node number.

Table 4.2: Translation from intermediate code instructions to Java.

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

4.5. Recognition 43

LOCATION-based mark ()-call is simply replaced by a call
Watermark.Create_Gi();
A VALUE-based mark (expr)-call is replaced by the call

if (expr==value)
Watermark.Create_Gi();

2. sandmark.watermark.CT.embed.AddParameters adds formal parameters in order to be able to pass
graph root nodes in formals rather than in globals. See Section 4.6 for more details.

3. sandmark.watermark.CT.embed.InsertStorageCreators inserts code to create hashtables, arrays,
vectors, etc. that are used to store subgraph root nodes.

4. sandmark.watermark.CT.embed.DeleteMarkCalls removes any traces of the mark()-calls from the
application.

4.5 Recognition

sandmark.watermark.CT.recognize.Recognizer starts up the watermarked application as a subprocess
under debugging, again using Java’s JDI debugging framework. The user enters their secret input sequence
Iy, I;, . .. exactly as they did during the tracing phase. This causes the methods Watermark.Create G; to
be executed and the watermark graph to be constructed on the heap. When the last input has been entered
it is the recognizer’s task to locate the graph on the heap, decode it, and present the watermark value to the
user.

There may, of course, be an enormous number of objects on the heap and it would be impossible to
examine them all. To cut down the search space we rely on the observation that the root node of the
watermark graph will be one of the very last objects to be added to the heap. Hence, a good strategy would
likely be to examine the heap objects in reverse allocation order. Unfortunately, JDI does not yet provide
support for examining the heap in this way.

An elegant and efficient approach would be to modify the constructor for java.lang.0bject to include
a counter:

package java.lang;
public class Object {

public static long objCount = O0;

public long allocTime;

public Object() {allocTime = objCount++;}
}

Since every constructor must call java.lang.0bject.<init> this means that we’ve assigned an allocation
order to the objects on the heap at the cost of only an extra add and assign per allocation.

We’ve shied away from this approach, however, since it would require modifying the Java runtime system.
Also, some Java compilers optimize away calls to java.lang.0bject.<init> under the assumption that
this constructor does nothing.

Instead, we rely on a more heavyweight but portable solution. Using JDI we add a breakpoint to every
constructor in the program. Whenever an allocation occurs we add a pointer to the new object to a circular
linked buffer, sandmark.util.CircularBuffer. This way, we always have the last 1000 (say) allocated
objects available. The downside is a fairly substantial slowdown due to the overhead incurred by handling
the breakpoints.

The recognition algorithm is as follows (see sandmark.watermark.CT.recognize.Recognizer and Fig-
ure 4.8):

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

44 4. The Collberg-Thomborson Watermarking Algorithm

sm$array:‘ ‘,‘ ‘ ‘ ‘ ‘ ‘

Figure 4.8: A view of memory during recognition. A circular linked buffer holds the last allocated objects.
The recognizer examines the objects in reverse allocation order and extracts the subgraph reachable from
each object. This is decoded into the watermark.

static int kidMaps[1[]l = {{1,2},{2,1},{1,3},{3,1},{2,3},{3,13}3};
for every object 0 on sandmark.util.CircularBuffer, starting with the last allocated do {
G := the graph consisting of the nodes reachable from 0;
for every graph decoder D do {
for every kidmap K do {
W := decode G using D, assuming K;
print W;

¥

The kidmaps are used to select 2 pointers out of each object as our outgoing pointers. The decoding is done by
the codecs in sandmark.util.graph.codec. The class sandmark.watermark.CT.recognize.Heap2Graph
is used to convert a heap structure to a sandmark.util.graph.Graph object. Note that the decoding can
fail for a number of reasons. Some of the objects on the circular buffer may no longer be alive, the graph
structure extracted from the heap may not be of the form expected by any of the codecs, etc. For this reason,
we catch all possible exceptions (such as null-dereferences) and ignore any structures for which errors occur.

4.6 Passing Roots in Formal Parameters

In the descriptions above we have assumed that the roots of subgraphs are stored in static, global variables.
In Figure 4.8, for example, the root of each subgraph is stored in a global array sm$array. This is obviously
un-stealthy since programs typically only contain a few globals. Instead, we would like to pass roots in the
formal parameters of methods. This means we are going to have to find paths through the call-graphs from
one mark ()-call to the next.

‘ More details about the call graph etc. here.

January 10, 2002 C. Collberg, J. Nagra, G. Townsend

Chapter 5

The ConstantString Static Watermarking Algorithm
C. Collberg

5.1 Introduction
This is a trivial algorithm that embeds a string
sm$watermark=WATERMARK

in the constant pool of the application. WATERMARK is the string to be embedded. The code of this
algorithm resides in sandmark.watermark.constantstring.

5.2 Embedding

To embed the watermark we pick one of the user’s classes at random and adds the appropriate string:

String jarInput = props.getProperty("Embed_JarInput");
String jarOutput = props.getProperty("Embed_JarOutput");
String watermark = props.getProperty("Encode_Watermark") ;

sandmark.util.ClassFileCollection cfc =
new sandmark.util.ClassFileCollection(jarInput);

java.util.Iterator classes = cfc.classes();

String className = (String) classes.next();

de.fub.bytecode.classfile.JavaClass origClass = cfc.getClass(className);
de.fub.bytecode.generic.ClassGen cg = new de.fub.bytecode.generic.ClassGen(origClass);

de.fub.bytecode.generic.ConstantPoolGen cp = cg.getConstantPool();
int stringIndex = cp.addString("sm$watermark" + "=" + watermark);

de.fub.bytecode.classfile.JavaClass newClass = cg.getJavaClass();
cfc.addClass(newClass) ;
cfc.saveJar (jarOutput) ;

5.3 Recognition

During recognition we go through every class in the watermarked jar-file looking for a string in the constant
pool that starts with "sm$watermark":

String jarInput = props.getProperty("Recognize_JarInput");
sandmark.util.ClassFileCollection cfc =

new sandmark.util.ClassFileCollection(jarInput);
java.util.Iterator classes = cfc.classes();
while (classes.hasNext()) {

String className = (String) classes.next();

45

46 5. The ConstantString Static Watermarking Algorithm

de.fub.bytecode.classfile.JavaClass clazz = cfc.getClass(className);
de.fub.bytecode.classfile.ConstantPool cp = clazz.getConstantPool();
for (int i=0; i<cp.getLength(); i++) {
de.fub.bytecode.classfile.Constant ¢ = cp.getConstant (i) ;
if (c instanceof de.fub.bytecode.classfile.ConstantString) {
de.fub.bytecode.classfile.ConstantString s =
(de.fub.bytecode.classfile.ConstantString) c;
String v = (String)s.getConstantValue(cp);
if (v.startsWith("sm$watermark")) {
String w = v.substring("sm$watermark".length()+1);
// w is the watermark

}
}

cfc.close();

January 10, 2002 Christian Collberg

Part 111

Appendices

47

Appendix A

Useful Tools

A.1 Examining Java Classfiles

There are a number of tools that are helpful for viewing Java classfiles.

javap

javap lists the contents of a Java classfile. It’s particularly bad at displaying corrupted classfiles.
Normally, we call javap like this:

javap -c -s -verbose -1 TTTApplication

These are the available options:

Usage: javap <options> <classes>...

where options include:
-b
-c
—classpath <pathlist>
—extdirs <dirs>
-help
-J<flag>
-1
-public
—protected
—package

-private
-s

-bootclasspath <pathlist>

-verbose

Jasmin

Backward compatibility with javap in JDK 1.1
Disassemble the code

Specify where to find user class files
Override location of installed extensions
Print this usage message

Pass <flag> directly to the runtime system
Print line number and local variable tables
Show only public classes and members

Show protected/public classes and members
Show package/protected/public classes

and members (default)

Show all classes and members

Print internal type signatures

Override location of class files loaded

by the bootstrap class loader

Print stack size, number of locals and args for methods
If verifying, print reasons for failure

Jasmin is a Java bytecode assembler. It reads a text file containing Java bytecode instructions and generates
a classfile. It can be found here: http://mrl.nyu.edu/ "meyer/jasmin/about.html.

49

50 A. Useful Tools

Here’s is a simple class hello. j in the Jasmin assembler syntax:

.class public HelloWorld
.super java/lang/Object

s
; standard initializer (calls java.lang.Object’s initializer)
.method public <init>()V
aload_0
invokenonvirtual java/lang/Object/<init>()V
return
.end method

; main() - prints out Hello World

.method public static main([Ljava/lang/String;)V
.limit stack 2 ; up to two items can be pushed

; push System.out onto the stack
getstatic java/lang/System/out Ljava/io/PrintStream;

; push a string onto the stack
ldc "Hello World!"

; call the PrintStream.println() method.
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

; done
return
.end method

Call Jasmin like this:
java -classpath smextern/jasmin.jar jasmin.Main hello.]j

which will produce a class file HelloWorld.class.

BCEL’s Class Construction Kit
cck is an interactive viewer and editor of Java classfiles. It is built on BCEL. Call it like this:
java -classpath .:smextern/BCEL.jar -jar smextern/cck.jar

and open a classfile from the file-menu.

BCEL'’s listclass

listclass comes with the BCEL package. It’s a replacement for javap, and very useful in cases when javap
crashes. Call it like this:

java -classpath smextern/BCEL.jar listclass -code TTTApplication

The following options are available:

January 10, 2002 Christian Collberg

A.2. Classfile Editors 51

java listclass [-constants] [-code] [-brief] [-dependencies] \
[-nocontents] [-recurse] class... [-exclude <1list>]

-code: List byte code of methods.

-brief: List byte codes briefly

-constants: Print constants table (constant pool)
-recurse: Usually intended to be used along with

-dependencies: When this flag is set, listclass will also print i

BCEL’s Justlce

JustIce verifies classfiles. Call it like this:

java -classpath .:smextern/BCEL.jar:smextern/JustIce.jar \
de.fub.bytecode.verifier.GraphicalVerifier

or like this:

java -classpath .:smextern/BCEL.jar:smextern/JustIce.jar \
de.fub.bytecode.verifier.Verifier TTTApplication.class

A.2 Classfile Editors

SandMark reads Java classfiles, modifies them, and writes out the modified classfiles. There are a number of
free packages available to parse, modify, and unparse classfiles. We are currently using two such packages,
namely BCEL and BLOAT. Generally, BLOAT is comprehensive and hard to use, BCEL is simpler to use but not
as complete.

BCEL
| Add a BCEL manual here|

BLOAT
| Add a BLOAT manual here|

January 10, 2002 Christian Collberg

52 A. Useful Tools

January 10, 2002 Christian Collberg

Appendix B

Working with the SandMark Code-base

B.1 Coding standard

e Don’t use tab characters.
e Indent by typing three (3) blanks.

e Put the left brace ({) on same line as preceding statement. I.e. format an if-statement like this:
it O {
. ..
not like this:

it O
{

}
or like this:

it O
{

) -
e Don’t use import-statements. Instead, always use fully qualified names. For example, say
java.util.Properties p = new java.util.Properties();
instead of
import java.util.x;
é;;perties p = new Properties();

In a large system like SandMark it is difficult to read the code when you don’t know where the a
particular name is declared. In SandMark we use deep package hierarchies to organize the code and
always refer to every object using its fully qualified name. This also prevents name clashes.

53

54 B. Working with the SandMark Code-base

e We make one exception: you are allowed to say String rather than java.lang.String!
e We use the following naming strategy:

— Package names are short and in lower case. We favor deep package hierarchies over packages with
many classes.

— Class names are typically long and descriptive. They start with an uppercase letter.

— Method names start with a lowercase letter.

B.2 Using CVS

CVS is a source code control system. It is used extensively in industry and in the open source community to
organize source code that many people are working on simultaneously.

The basic idea is to have one master copy of the source code, residing in a special source code repository.
Programmers check out the latest version of the code to their local account and work on it until they’re
ready to share their new code with their co-workers. They then check in the new code to the repository from
which the rest of the team can download the new changes.

A programmer can have several versions of the code checked out at the same time: one at work, one
at home, one on the laptop, etc. Furthermore, every change ever made to a file is stored in the repository
allowing a programmer to check out “the version of the program from last Monday.”

Installing CVS

If you are running Linux on your home machine (and why wouldn’t you be?) you should have CVS installed
already. Otherwise you can download CVS from here: http://www.cvshome.org/downloads.html. The
manual is here: http://www.cvshome.org/docs/manual. "man cvs' gives you the basic information you
need.

You also need to have ssh installed on your machine in order to communicate with our CVS server,
cvs.cs.arizona.edu.

If you just intend to do your assignments on lectura, no installation is necessary.

Getting Started

Let’s assume that your team consists of Alice and Bob whose lectura logins are alice and bob with the
passwords alice-pw and bob-pw, respectively. The team name is cs453bd.
One team member (in our case Alice) should do the following to get the team’s source repository set up:

> whoami

alice

> mkdir assl # Create a temorary directory.

> cd assl

> setenv CVS_RSH ssh # Or export CVS_RSH=ssh. Must always be set.

> cvs -d :ext:alice@cvs.cs.arizona.edu:/cvs/cvs/cs453/cs453bd import -m "New!" assl aaa bbb assl
alice@cvs.cs.arizona.edu’s password: alice-pw

Now, Alice deletes the temporary directory:

> rmdir assl

January 10, 2002 Christian Collberg

B.2. Using CVS 55

Checking out code

Everything should now be set up properly on the CVS server. Alice can check out the code (which so-far
only consists of a single directory):

> cvs -d :ext:alice@cvs.cs.arizona.edu:/cvs/cvs/cs453/cs453bd checkout assi
alice@cvs.cs.arizona.edu’s password: alice-pw

cvs server: Updating assl

> 1s assl

CvVs

Alice now wants to start programming. She creates a new C module in her CVS directory:

> cd assl

/home/alice/assl

> cat > interpreter.c

main() {

}

> cvs add -m "Started the project" interpreter.c
alice@cvs.cs.arizona.edu’s password: alice-pw
cvs server: scheduling file ‘interpreter.c’ for addition
cvs server: use ’cvs commit’ to add this file permanently

> cvs commit -m "Finished first part of interpreter."
cvs commit: Examining .
alice@cvs.cs.arizona.edu’s password:
RCS file: /cvs/cvs/cs453/cs453bd/assl/interpreter.c,v
done
Checking in interpreter.c;
/cvs/cvs/cs453/cs453bd/assl/interpreter.c,v <-- interpreter.c
initial revision: 1.1
done

The add command told the CVS system that a new file is being created. The commit command actually
uploaded the new file to the repository.
Now Alice realizes that she needs to add some more code the project:

> emacs interpreter.c

> cat interpreter.c

main() {
int i;

}

> cvs commit -m "Added more code."
cvs commit: Examining .
alice@cvs.cs.arizona.edu’s password: alice-pw
Checking in interpreter.c;
/cvs/cvs/cs4b3/cs453bd/assl/interpreter.c,v <-- interpreter.c
new revision: 1.2; previous revision: 1.1
done

OK, so what about Bob? Well, he decides he should also contribute to the project, so he checks out the
source:

> cvs -d :ext:bob@cvs.cs.arizona.edu:/cvs/cvs/cs453/cs453bd checkout assi

January 10, 2002 Christian Collberg

56 B. Working with the SandMark Code-base

bob@cvs.cs.arizona.edu’s password: bob-pw
cvs server: Updating assl
> cd assl
> 1s
CVS interpreter.c
> cat interpreter.c
main() {

int i;
}
> emacs interpreter.c
> cat interpreter.c
main() {

int i=5;
}

> cvs commit -m "Added more stuff to the project."

Alice has now gone back to her dorm-room where she wants to continue working on the project on her
home computer. She has installed CVS and she has added

> setenv CVS_RSH ssh # Or export CVS_RSH=ssh

to her .cshrc file to make sure that she runs this command every time. Now she can go ahead and check
out the code again, this time on the home machine:

> cvs -d :ext:alice@cvs.cs.arizona.edu:/cvs/cvs/cs453/cs453bd checkout assi
alice@cvs.cs.arizona.edu’s password: alice-pw

> cat assl/interpreter.c

main() {
int i=b;

}

Notice that she got the code that Bob checked in to CVS!
Alice can continue working on the code from home. When she’s done for the day she uses the commit
command to submit her changes to the cvs database.

Updating

The next day Bob is getting ready to work on the project again. In case Alice has made some changes to
the code, he runs the update command:

> cvs update -d
Any files that have changed since the last time Bob worked on the project will be downloaded from the

server. Bob makes his edits, then runs commit when he is done to upload the changes to the repository.

Deleting files

If Alice needs to delete a file she runs the CVS rm command:

> rm interpreter.c
> cvs rm interpreter.c
> cvs commit

Note that you have to delete the file before you can run the cvs rm command.

January 10, 2002 Christian Collberg

B.2. Using CVS

57

Summary

These are the most common CVS commands:

you run the commit command.

cvs add file Add a new file to the project. The file will not actually be uploaded to the repository until

you run the commit command.

cvs rm file Remove a file from the project. The file will not actually be removed from the repository until

cvs commit Update the repository with any changed files.

cvs update -d Download any changed files to your local machine.

The figure below describes a typical situation. Alice and Bob have three versions of the code checked

out: two on their lectura accounts, and one version in Alice’s home machine. Alice adds a new file file3.c
and checks it in to the repository. To see the new file, Bob has to run the update command.

Alice and Bob’s
cvs repository

cvs.cs.arizona.edu

Alice’s home machine

cvs zg,'c'id file3.c
C\'Lé commit

filel.c

README
file2.c

makefile
file3.c

January 10, 2002

filel.c

README
file2.c

makefile

Alice’s account
on lectura

Bob’s account ...
on lectura

filel.c

README
file2.c

makefile
file3.c

—_

~Z:’vs~ch~eckout / Q@\

README

file2.c
makefile

Christian Collberg

