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B Project Summary
The goal of this project is to use inexpensive but massive computational resources and displays to enhance
large program comprehension.

B.1 Intellectual Merit

Real world programs are large, complex, evolving, distributed, interactive, and resource-demanding. They
are built by continuously evolving software engineering teams with members of varying skill levels, and
they are kept up-to-date by different teams of software maintenance engineers. This proposal is concerned
with gathering information — static, dynamic, and historical — about real world software systems and pre-
senting it in a simple and coherent way to various types of engineers during development, debugging, and
maintenance phases. The vision is a system — a Programmer’s Cockpit — that integrates what is tradition-
ally thought of as disparate activities: browsing program text, debugging, and performance evaluation and
tuning. The analogy is with a traditional airplane cockpit in which numerous dials present a comprehensive
view of the health and status of the plane. In particular, the Programmer’s Cockpit will gather performance
data, extract historical information from a version control database, visualize the program text and struc-
ture, visualize performance data, and allow engineers to navigate through program execution, using one
integrated tool.

Previous work in program comprehension has sacrificed interactivity, accuracy, and presentation to run
on stock hardware. In contrast, this proposal will examine the use of inexpensive but massive computational
resources and displays, allowing large, highly interactive programs to be examined, while collecting accurate
performance data at all levels. A novel geographic software visualization metaphor (based on computer
game design and implemented using publicly available game engines) will be examined, allowing the huge
amounts of data (static, dynamic, and historical) that will be gathered to be effectively visualized.

B.2 Broader Impact

The virtual worlds created by the computer game industry have become powerful metaphors well understood
by a large segment of the population. Not only young adults but people in all walks of life are skilled in
the use of game controllers and joysticks to maneuver through complex three-dimensional virtual spaces.
Game designers, in turn, have become adept at the design of user interfaces that facilitate such maneuvering,
for example allowing users to rapidly shift between local, global, first-person, and third-person views of the
terrain to prevent disorientation. We believe virtual worlds will become a powerful metaphor for visualizing
data within a variety of fields, since they provide a rich array of objects that can be manipulated in an almost
infinite number of ways. The tools, techniques, and experiences that come out of this research will be made
available to the wider research community. They will be particularly useful as building-blocks in areas that
need to visualize large amounts of data in real-time.

As an integral part of the project, we will involve graduate and undergraduate students in all aspects of
the described research activities. This will continue a tradition, in our research groups, of integrating re-
search activities into the undergraduate curriculum; involving undergraduates into our research; developing
research-based educational materials in order to incorporate research into learning and education; and for-
mulating and disseminating innovative and effective approaches to science teaching. We anticipate that our
use of a virtual worlds metaphor will attract undergraduate students to join in our research effort. We will
particularly target minority students who might not otherwise have been interested in or exposed to research
projects.

We will also make software developed as part of the project available to the broader research community.
This will, in particular, benefit institutions and individuals lacking the infrastructure or resources to develop
such software tools for themselves.
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D Project Description
D.1 Introduction

Real world programs are large, complex, evolving, distributed, interactive, and resource-demanding. They
are built by continuously evolving software engineering teams with members of varying skill levels, and they
are kept up-to-date by different teams of software maintenance engineers. During the lifetime of the program
different questions are asked about it: “How did the program evolve into its current module structure?”
“What is the source of this performance problem?” “How can I find the source of this bug in millions of
lines of unfamiliar code now that the original engineers have left the project?”

This proposal is concerned with gathering information — static, dynamic, and historical — about real
world software systems and presenting it in a simple and coherent way to engineers during development,
debugging, and maintenance phases. Our vision is a system that integrates what is traditionally thought of
as disparate activities: browsing program text, debugging, and performance evaluation and tuning.

We will refer to the concept of comprehensive program comprehension as the Programmer’s Cockpit,
and to our system as “PEACOCK.” The analogy is with a traditional airplane cockpit in which many dials
present a comprehensive view of the health and status of the plane. Our system will similarly present the cur-
rent state and performance characteristics of the program under study. It will also allow the user to browse
the source code and examine the overall structure and relationships between different parts of the code, as
well as viewing the historical development of the program. In particular, our system will consist of sub-
systems for gathering performance data, extracting historical information from a version control database,
visualizing the program text and structure, visualizing the performance data, and navigating through the
program execution. Figure 1 presents a high-level view of PEACOCK.

Our novel visualization framework will allow engineers to experience every aspect of a program using
one simple metaphor. This includes visualizing the development history of the program (its version control
database), its current static structure (the packages, modules, methods, and their interconnects), as well as
its dynamic (performance) behavior. This is in contrast to previous work, in which different aspects of a
program are visualized in different and ad hoc ways. We expect our system to be used by (a) engineers
newly transfered to a project, to learn about its static structure; (b) maintenance engineers who need to track
down bugs in unfamiliar code; (c) reverse engineers needing to gain a quick understanding of legacy code,
including an understanding of its development history; and (d) performance tuning engineers who need an
accurate view of the performance characteristics and bottlenecks of a program. In all cases they will need to
learn only one tool and be presented with only one metaphor of the program and its behavior. In particular,
we will be investigating the use of publicly available computer game engines to visualize every aspect of a
program using a geographic metaphor.

Collecting run-time information of a program requires tremendous resources. Profiling and tracing infor-
mation can be generated from multiple sources, including the CPU (performance monitors), an instrumented
operating system, an instrumented virtual machine (such as the Java virtual machine, JVM), an instrumented
program (Java bytecode, TCL scripts, binary executables), network packet sniffers, disk performance mon-
itors, etc. (Figure 1 b©). To get an accurate view of a system this data must be collected, collated, analyzed,
and presented to the user. To prevent system overload, previous systems have typically refrained from col-
lecting some data (potentially reducing the accuracy of the analysis), or resorted to a post-mortem analysis
which does not work well for highly interactive programs. The goal of this project is to devise algorithms
which allow the collection of every type of performance data, at every level of a computing system, without
sacrificing accuracy or interactivity.

Previous work in this area has assumed a limited amount of computational power being available to do
the data gathering and visualization. We consider this to be a case of misguided frugality. As an example,
in Section G we show that for $35,000 it is today possible to purchase an 8-processor (2.2 GHz) computer
with 16GB of memory, and a visualization system consisting of a high-end dual-processor workstation and
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three 30-inch flat-panel displays. Amortized over three years, this is less than 12% of the salary of a senior
software engineer in San Diego.1 If a system such as proposed here can make the engineer even slightly
more productive, it is well worth the investment. We will therefore make the assumption that massive
computational resources and display real-estate will be available, and we will investigate how this can be
best put to use to improve the comprehension of large programs.

To summarize, there are four main aspects of this proposal that set it apart from previous work:

1. Our system will collect performance data at all levels, without sacrificing accuracy.

2. Our system will target interactive programs, allowing performance data to be gathered without sacri-
ficing the interactive experience.

3. We will use a single metaphor to present the massive amounts of data the system collects about a
program, including performance data, historical development data, and data about the static structure
of the program.

4. With the goal of improving program comprehension we will use massive amounts of inexpensive
computational horsepower to accomplish the data gathering, analysis, interactivity and visualization,
without compromising any of them.

D.2 Proposed Research

D.2.1 Overview

Much research has been done on tools for software visualization, program comprehension, reverse engineer-
ing, performance profiling, and debugging. Although targeting different aspects of the program life-cycle,
these tools all have in common that they seek to discover information about a program. Unfortunately, the
research communities that study the design of such tools are largely disjoint, and this has prevented a unified
view of tools for program understanding. The goal of the research proposed here is to study the design of a
tool that provides such a holistic view, helping a programmer to gain an understanding of the history, logic,
and performance characteristics of a large software system. In addition to common tasks such as debugging
and profiling, we expect our tool to be used in a purely exploratory way, allowing programmers to gain
better intuition for the static structure and run-time characteristics of a program.

Let us begin by exploring a few scenarios in which the Programmer’s Cockpit is helpful.

Scenario 1. Wendy has just been hired as a maintenance engineer. Her first task is to familiarize herself
with the code base. She fires up PEACOCK, and takes a fly-through tour of the code. She starts by visualizing
the code at a high level. As she flies through the code, she sees packages and classes laid out as a landscape
of continents, countries and cities, with roads and rivers simulating interconnects. The recursive structure of
the code (packages within packages, etc.) is naturally reflected in the recursive structure of geography (states
within countrie, etc.). Close ties between pieces of code are reflected in their geographic proximity. She
zooms in on a particularly large cluster of cities, noticing the highly complex network of roads that connect
them. She makes a mental note to herself that this segment of the code may be a prime target for future
refactoring. She continues zooming in on one of the cities (classes), examining each city block (method) in
turn.

Scenario 2. Terrance, a programmer on a security-sensitive project, disappears under mysterious cir-
cumstances. The FBI fears the project may have been compromised, perhaps by the insertion of a Trojan
Horse. The project’s CVS repository is viewed in PEACOCK, highlighting all of Terrance’s code changes.
Did he add a piece of code (a possible Trojan) to a part of the system no longer under active develop-
ment, to avoid scrutiny by other developers? The code is again visualized using a geographic metaphor: as

1In practice we expect a PEACOCK system to be shared between several engineers, making the cost essentially insignificant.
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code grows and packages and classes split and merge over time, the corresponding continents and countries
undergo continental drift and border changes. Next, the program is executed under PEACOCKfor various
unusual inputs. A fly-through of the program “terrain” is viewed during execution, highlighting any code
that Terrance wrote, but which is never executed on normal inputs — signs of a possible Trojan.

Scenario 3. Philip, a performance-tuning engineer for a computer game company, has received reports
of a mysterious performance problem when gamers transfer from level 23 to level 24. He runs the game
under PEACOCK, executing at near full speed. After an hour of play Philip crosses over to level 24, but no-
tices nothing out of the ordinary. He uses PEACOCK’s backwards execution facility to go back one minute
in time, and continues forward again, this time picking a different way to kill Monster #354. This time, he
does notice a remarkable delay in moving to level 24. The geographic visualization of the executing code
uses light and sound to indicate activity level: cities light up as the corresponding code is executed, and the
overall workload is represented by an audible humming sound. As expected, the city (class) representing
level 24 is lit up brightly. Again, he goes back in time 10 seconds, and continues executing forward. This
time PEACOCK catches all events and records all possible reasons for the delay. Philip notices that PEA-
COCK’s performance dials (Figure 1 k©) show a large increase in I/O around the time for the performance
hit. He goes back in time once more, stepping forward through the program at a more detailed level. He
comes to the routine level 24 init, and notices that the code that reads the level 24 scenery from disk
under certain conditions will be called multiple times, rather than once, as expected.

Any specific program analysis task in the scenarios above may require several traditional tools, such as
debuggers and profilers, to pinpoint a particular problem. The goal of the proposed research is to construct
a system that allows an engineer to seamlessly move from task to task without having to move from tool to
tool. However, there are many technical challenges that need to be addressed:

• Modern programs (games, simulators, browsers, instant messaging clients) are highly interactive. To
do accurate performance measurements, the programmer must be allowed to interact with the program
at near real-time speeds. At the same time, performance data needs to be captured at every level, from
the CPU and disk to the operating system to virtual machines, and analyzed and visualized for the
programmer. This requires high performance of PEACOCK itself.

• Modern programs are also long running, and performance problems (such as can be the results of slow
memory leaks) may only manifest themselves after long periods of time. Once a problem is encoun-
tered, it is impractical to rerun the program from scratch. Rather, it becomes imperative to be able to
execute backwards, and replay the offending part of the code. Reverse execution is complicated by the
need to accurately reproduce all internal and external events, including operating system scheduling
decisions, network traffic, and disk I/O.

• Tremendous amounts of execution and performance data will be gathered during long program runs
and presenting this to the programmer in an easily digestible format will be challenging.

• When the system under study is highly interactive (such as immersive simulations or computer games)
it will not be possible for one person to simultaneously interact with it and PEACOCK. It will be
necessary to study the interaction between two or more users (Wendy and Terrance in Figure 1),
driving the system under study and driving and monitoring PEACOCK itself.

Figure 1 gives a high-level overview of PEACOCK. Major components of the system are a high-end
multiprocessor a© running the system under study b©, a large, high-resolution display k© to visualize static
and dynamic properties of the system, and tools for steering the computation and visualization d©. In
Figure 1 we show two people simultaneously interacting with PEACOCK: Wendy runs and provides input
to the program being studied and Terrance steers and monitors the visualization. When the user program
requires a low level of interactivity Terrance will be able to perform both tasks himself, or capture data
during one run of the program and analyze it post-mortem.
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PEACOCK will be able to process x86 executable files as well as Java jar files f©. These can be provided
directly by the user or, when historical analysis is desired, automatically extracted and built from a version
control system such as CVS, using tools previously built by the PIs [35]. Static analysis tools also previously
built by the PIs [36] or publicly available (for example Debray’s PLTO [45] system for static analysis of x86
executables) will analyze and extract static information about the user program g©. Performance data will
be extracted from every level of the system under study and entered on an Event Queue h©. A visualization
engine i© will take available data (from the Event Queue and the Static Analysis) and (using guidance
from Terrance) will decide which data should be presented at any one point in time, and how it should be
visualized. Publicly available 3D computer game engines and renderers such as Blender [15], Ogre [115],
CaveUT [95], and X3D [22, 44] will perform the final rendering, animation, and user interaction.

The research proposed here builds on, extends, and utilizes infrastructure from previous work by the
PIs. The three co-PIs have extensive background in data visualization, software visualization, performance
analysis, operating systems and virtualization, manipulation of code at the native and virtual machine code
levels, and in the design of large software systems:

code manipulation: PI Collberg has extensive experience in the manipulation of code at the virtual ma-
chine and binary code levels. In [27, 36–40] he describes a tool (SANDMARK) for watermarking,
obfuscating, measuring, reverse engineering, and visualizing Java bytecode. SANDMARK contains
a rich library for manipulating Java bytecode (control-flow analysis, data-flow analysis, slicing, etc.)
which will form the basis for the Java portion of PEACOCK. In [27] the PLTO [45] x86 binary edit-
ing system is used to watermark binary executables. In [41, 42] a system for automatic extraction of
semantics of machine code instructions is described.

software visualization: In [43], PI Collberg describes a system for high-quality text-and-graphic render-
ings of source code. We will extend these results when designing the part of PEACOCK that views
and browses low-level code. In [35], PIs Kobourov and Collberg show how historical data about a
program can be extracted from a CVS revision control repository, and visualized using graph-drawing
techniques. The system allows easy identification of the parts of a system that have been in long-term
flux and may need to be redesigned. The system also makes it possible to identify which authors
have been involved with different phases of the implementation. In [58] we study the behavior of
dynamically modifiable code. In [30], PIs Kobourov and Collberg describe how MIDI music can be
generated from the execution of a Java program to auralize its runtime behavior. We will build on
these experiences to visualize programs using PEACOCK’s more natural geographic metaphor.

multi-user interaction: In [32], PIs Kobourov and Collberg describe the first non-trivial application, a
multi-player version of Tetris, for the DiamondTouch hardware. DiamondTouch [47] is a touch sensi-
tive multi-user input device developed by Mitsubishi. Follow-up work includes a study of the perfor-
mance of collaborative spatial/visual tasks under different input configurations [24] and an interactive
multi-user system for simultaneous graph drawing that takes advantage of direct physical interac-
tion of several users working collaboratively [102]. We will use these experiences in designing the
multi-user interaction facilities of PEACOCK.

data visualization: PI Kobourov has experience in graph drawing [18, 25, 55, 59, 67–69, 78, 79], visu-
alization of large graphs [3, 52–54], evolving graphs [35, 58, 65, 66, 71, 72, 76, 101], graph the-
ory [5, 13, 31, 56] and computational geometry [50, 51, 60, 61, 82]. Graph-drawing techniques and
computational geometry will be important in the design of algorithms for PEACOCK’s geographic
visualization of code.

performance analysis: PI Hartman has published several papers on performance analysis, including SMP
lock contention [87], the effect of mobile code on server performance [140], and optimizing TCP
forwarder performance [141].
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operating systems: PI Hartman has helped design and implement several complete operating systems in-
cluding Sprite [120], Scout [108], and Joust [84,89]. He has also worked on operating system support
for SMP [87], active routers [124], and PlanetLab [109]. He has done extensive research in file and
storage systems, all of which involve network protocol and operating system development, including
RAID-II [49], Zebra [88], Swarm [85, 86, 110], Gecko [7, 9], and Mirage [8].

D.2.2 Data Gathering

Monitoring an interactive program’s execution must be simultaneously complete and non-intrusive. On one
hand, the monitoring must be detailed enough to allow proper analysis of the program. Ideally, this involves
tracing all available information about the program’s behavior. This information can be generated from
multiple sources, including the CPU (performance monitors), an instrumented operating system, an instru-
mented virtual machine (such as the Java virtual machine, JVM), an instrumented program (Java bytecode,
TCL scripts, binary executables), network packet sniffers, disk performance monitors, the Java profiling
interface (JVMPI), etc.; see Figure 1 b©. On the other hand, the monitoring must have low-overhead so
as not to disturb the program being monitored. Typically this means refraining from collecting some data
(potentially reducing the accuracy of the analysis), or resorting to a post-mortem analysis which does not
work well for highly interactive programs.

We propose to have our cake and eat it too by throwing hardware at the problem. Hardware is inexpen-
sive: why not use it to improve a programmer’s ability to understand program behavior? With large amounts
of hardware we can simultaneously simulate the program at various levels of detail, providing detailed in-
formation on program behavior without affecting overall program performance. There are several hurdles
that must be overcome to make this feasible. The first is efficiently simulating the program at various levels
of detail. Second, the non-determinism inherent in an interactive program must be handled so that multiple
simulations produce the same results. Third, information from different components in the system and from
simulations at varying levels of detail must be integrated into a complete picture of what is going on in the
system. We address each of these challenges and our techniques for solving them in the following sections.

Efficient Simultaneous Simulation. Our general strategy is to run the program inside a virtual machine
that allows us to collect the information necessary for analyzing the program. By using multiple virtual
machines we can not only run the program at different points in its execution, we can also vary the amount
of detail in the collected information. This will allow us to collect the necessary information to analyze
the program without adversely affecting the program’s behavior. Simulating and tracing system behavior at
various levels of detail is not a new idea. SimOS [133] is a well-known system that provides this functional-
ity. SimOS allows unmodified operating systems and applications to be run on a virtual hardware platform.
The hardware platform can be simulated at various levels of detail (including transistor-level in some cases),
allowing the user to make a tradeoff between detail and speed. SimOS uses Embra [150] to emulate the
underlying machine. Embra uses dynamic binary translation to convert the (virtual) code that runs on the
virtual machine into (real) code that runs on the real machine and has the same effect as the virtual code.
This enables high-performance simulation even when the real machine has a different instruction set than
the virtual machine. Higher performance is possible when the machines share the same instruction set, since
most of the instructions can then be directly executed. This is the approach taken in VmWare [145]. SimOS
also provides higher-detail simulation that provides more information at the cost of even slower execution.

One of the features of SimOS is a checkpoint mechanism that allows the state of the system to be
recorded and used to restart subsequent simulations from the same initial conditions. This can be used to re-
simulate a portion of the execution at a greater level of detail, for example. It also allows us to run multiple
simultaneous simulations of the same program, using the checkpoints to provide the initial conditions.

While SimOS is a valuable tool for understanding program behavior, it has its limitations. There is a
strict tradeoff between accuracy and speed that must be decided by the user. Resimulating portions of the
execution at a greater level of detail is useful, but it forces the user to decide which portions of the execution
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to resimulate and at what level of detail, and then to wait for the results.

We propose to solve these problems by running the simulations concurrently on multiple computers.
The user interacts with a primary simulation that is only detailed enough to initialize the more detailed sim-
ulations. This information includes periodic checkpoints of the program’s state as well as logging I/O infor-
mation so that the detailed simulations can perform I/O in exactly the same way as the primary simulation.
This high-level simulation will have minimal effect on the program’s performance, leading to acceptable
interactive behavior.

The checkpoints produced by the primary simulation are used to initialize secondary simulations that
produce information about the program at a greater level of detail. These simulations will run on additional
computers so they have little effect on the primary simulation. The net result is that an interactive program
can be monitored at a very detailed level while not having a significant effect on the program performance.
One of the challenges for our research is efficient checkpoint creation. Checkpoint performance is not a
major concern of SimOS, as a checkpoint is typically created only before the portion of the program to be
studied in detail (e.g., after the OS boots).

Checkpointing a virtual machine is closely related to the issue of migrating a virtual machine: they both
involve taking a consistent and complete snapshot of the virtual machine’s state. Recent work on the Xen
virtual machine platform [26,48] shows that virtual machine migration can be done efficiently. Xen provides
paravirtualization, in which the virtual machine abstraction is an idealized version of the underlying real
machine. This idealized virtual machine abstraction is much easier to implement than the underlying real
machine, at the cost of porting the operating system and applications to the new architecture. We anticipate
using binary translation (either dynamic or static) to perform this operation for applications.

Xen uses migration to allow virtual machines to move between real machines in a cluster. Their results
show that this migration has a minimal impact on virtual machine performance, resulting in a 60ms service
downtime during the migration. We anticipate that using similar techniques will allow us to achieve similar
downtimes during checkpointing. We may be able to significantly reduce the checkpoint overhead and
downtime by using a SMP computer, something that does not meet the goals for virtual machine migration
in the Xen research and therefore was not considered.

Creating Determinism. Making non-deterministic programs deterministic is necessary for simultane-
ously simulating different portions of the program’s execution. It is also an issue during debugging. Time-
travel virtual machines (TTVM) [99] is a technique that allows the debugger to jump back to any point in
the virtual machine’s execution, as well as running it in reverse. TTVM borrows from the work on virtual
machine logging and replay done in ReVirt [57] in which the virtual machine’s actions are logged so that
they can be replayed later. TTVM uses this logging to allow jumping back in time. Of particular importance
to our work on monitoring interactive programs, TTVM logs all I/O done by the program during the initial
execution and the effects of I/O are reapplied at the appropriate times during replay.

The size of the I/O log is potentially a problem, particularly if it must store all the data associated with
the I/Os. The biggest concern is the hard drive, since storing all of the data written to the hard drive in the log
is infeasible. TTVM avoids this problem by using a virtual hard drive. The checkpoints contain a consistent
image of the hard drive, so that restarting the virtual machine from a checkpoint will cause I/Os to the hard
drive to be deterministic. This assumes that no other outside process will modify the hard drive, which is
true in this case, since access to the virtual drive is confined to the virtual machine. This assumption is not
valid in our case, as the program being monitored may share the hard drive with other processes that are also
modifying it.

We propose to solve this problem using continuous data protection (also called continuous backup), a
storage industry term for fine-grain time-travel within a storage system. File system time travel has typically
been achieved via snapshots: logically consistent images of the file system taken periodically (i.e. file system
checkpoints) [92,105,125,135]. Recently, advances in storage capacity and snapshot algorithms have made
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it feasible to continuously snapshot a file system or disk [93, 148], where data is never deleted and always
accessible by reverting to a previous version of the file system.

Continuous data protection greatly simplifies the checkpoint process by reducing the amount of infor-
mation that must be included in the checkpoint. When starting a simulation using a checkpoint it is only
necessary to present the simulation with the proper view of the file system at the time the checkpoint was
taken. I/Os are still logged during the initial simulation to obtain return values and timing information, yet
the actual data are not stored. During replay the information from the log is used to ensure that the I/Os are
deterministic. An I/O that modifies the file system causes the view of the file system to be advanced to the
point at which the I/O completed.

D.2.3 Vertical Profiling

The power of visualization is that human beings can see relationships between data that are difficult to
automatically infer. For visualization to be successful it is important to present the users with enough
information to be useful without overwhelming them. It is also important to do as much automated analysis
as possible – there is no need to have the user discover relationships that are trivial to discern.

We refer to the analysis of data from multiple levels in the system as vertical profiling [90,143]. There are
two aspects of the problem. First, the system must collect enough information to allow correlation between
events at different levels. For example, invoking a signal handler in an application may cause a page fault.
The system must trace both the signal handler and the page fault events to make finding this correlation
possible. Our use of multiple simulations running on multiple processors makes collecting comprehensive
information about events feasible. The user may also wish to suppress displaying correlated information.
Continuing the example, if the signal handler always causes a page fault the user may wish to suppress
displaying page faults caused by the signal handler so as to better visualize the remaining page faults.

A second aspect of vertical profiling is recording enough context information for an event so as to make
analysis possible. This context information might be found at a different level from the one in which the
event occurs. Borrowing an example from the SimOS paper [133], a page fault event is probably only useful
if the currently running process is also recorded. This means that an event generated by the virtual memory
system must include information obtained from the CPU scheduler. Extending the example, it might also
be necessary to know which thread within the process is running, requiring information from the thread
package; e.g., it might be useful to know that the page fault was caused by the garbage collector thread in
the JVM.

SimOS solves this problem through annotations, snippets of code that are run when an event occurs
to collect the proper information from the system. We will adopt a similar strategy in PEACOCK. These
snippets will necessarily be specific to the system being monitored; we plan to investigate generating them
automatically through static analysis of the code. We also plan to investigate whether or not the entire visual-
ization mechanism can be implemented through annotations. In this case visualization is simply a collection
of annotations that cause a change in the displayed image when an event occurs. Folding visualization into
the general annotation framework is appealing, yet it is an open question as to whether or not the overheads
can be kept low enough to make it feasible, even if we have multiple processors at our disposal.

D.2.4 Debugging

In PEACOCK, low-level comprehension (information gained from debugging) statistical comprehension (in-
formation gained from from profiling), global comprehension (information gained from static analysis), and
historical comprehension (information gained from CVS repositories), all contribute to a complete under-
standing of the behavior of a program. Thus, an important goal of PEACOCK is to make debugging an
integrated and inseparable task for program comprehension.

In the past, debugging has always been seen as an activity separate from other programming tasks such
as design, implementation, testing, profiling, code browsing, program comprehension, etc. Only when all
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else fails does a programmer invoke tools such as gdb to locate faulty program logic. The ability to single
step through a program and set breakpoints on code, events, and data, allows the programmer to follow and
slowly build up an understanding of the low-level control-flow of the program.

However, many programmers can tell stories of how they found the source of a performance problem
using a debugger and a logic bug using a profiler. The search for logic bugs and performance bugs are
similar in nature: they require the program to be executed and artifacts of the execution analyzed by the
programmer. Profiling typically gives summary statistics of the program behavior, such as the number of
times a routine is called, the amount of time spent in a routine, and what percentage of total time is spent in
the dynamic call-graph rooted in a particular routine. Debugging gives a more detailed understanding of the
dynamic control-flow — rather than summarizing the call graph the way a profiler might, using a debugger
will get you the exact call graph for a particular input.

The result of a static analysis can also be used to find logic faults. Again, taking call-graphs as an exam-
ple, a static analyzer can produce a conservative estimation of a program’s call graph, whereas a debugger
can give the exact graph for a particular input. For example, examining static program slices can allow
a programmer to find routines reachable from a particular point in a program that should not be reachable.
PEACOCK will integrate the results of static analysis and debugging. For example, this will allow a program-
mer to ask PEACOCK to: “set a breakpoint at the entry of every function that could possibly be called from
function foo and the functions it calls, recursively.” Much of the required functionality (such as computing
static slices) is available in the PI’s SANDMARK [36] tool and Debray’s PLTO [45] tool.

The integration will also be aided by the availability of large screen real-estate and many spare process-
ing cycles. This will make it possible to overlay the static structure of a program with its dynamic behavior.
For example, using our geographic metaphor, methods could be represented by city blocks, possible method
calls (the result of a static call-graph analysis) by roads, actual calls (the result of actual debugging traces)
by individual traffic on these roads, and performance characteristics by road type or traffic density.

We will furthermore integrate historical information in the debugging process. An important aspect of
PEACOCK is the ability to extract information from a version control system. A useful feature in PEACOCK

will be the ability to execute two or more closely related versions of a program in lock step, on the same
user input, highlighting any differences in control-flow or data values. This relative debugging feature [4]
will allow a programmer to run yesterday’s version of a program (“where feature X was known to work”)
simultaneously with the current version (where X is broken), focusing on the differences in behavior be-
tween the two. Again, since PEACOCK performs extensive static analysis, static information can also be
integrated in the process, visualizing simultaneously the differences between static structures and behavior.
Our reliance on large multiprocessors will make interactive relative debugging possible: user and system
events can be caught by a separate processor and relayed to each executing version, each running in its
own virtual machine on its own processor. Our reliance on large screen real-estate will make it possible to
overlay the visualization of the execution of the different versions.

To support interactivity and long-running programs, it is necessary for PEACOCK to allow programs to
be executed in reverse. As described in Section D.2.2, PEACOCK monitors a running program and collects
enough information to properly analyze its behavior, including running it in reverse. The general technique
is to checkpoint the state of the virtual machine periodically (either on disk or in memory), then use these
checkpoints to initialize the program state to just before the target instruction. The debugger then rolls the
program forward until it reaches the target instruction, providing the illusion of running the program in
reverse.

The interaction between debugging and monitoring is a concern when debugging a portion of a program
that has not previously been executed. This “forward debugging” is an issue because the monitoring may
affect the debugging and vice versa. For example, when debugging an interactive game the interaction will
certainly suffer, perhaps causing the user to play the game differently than when not debugging. There
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appears to be no reconciliation between these two goals. Debugging requires running the program slower
than normal, while proper monitoring of its behavior requires running it normally. We plan to investigate
the tradeoffs between these opposing goals.

D.2.5 Visualization and Interaction

Previous work on software visualization has used simplistic ways of visualizing performance profiles and
static structures of programs. These include simple tables of data, histograms, hair-ball graph drawing, etc.
More regrettable is the lack of a unified model for visualizing data (static, dynamic, and historical) about a
program. Since programs are inherently hierarchically structured, any metaphor must support nesting of con-
cepts. Since visualization requirements change over time and may be particular to certain applications, the
metaphor must also be “extensible,” and support many different types of visualization. We will investigate
the use of a geographic metaphor for visualizing, browsing, and interacting with a program. The advantages
are that geographic structures are inherently hierarchical (buildings occur within city blocks within burrows
within cities within countries within continents), are well understood, and that there are a multitude of tools
for manipulating geographic data. We plan to investigate the use of computer game engines to represent,
visualize, browse, and interact with the program under study. Many open source game engines are available
and most software engineers will have much experience interacting with computer games, and thus the idea
of browsing code by flying through a landscape will not appear alien to them.

Browsing, debugging, profiling, and tracing code allow users to interact with the program at different
levels of detail. We integrate these levels into one comprehensive model. Just like an airplane has a pilot and
a co-pilot, we will allow multiple users to interact with the same program. This will become necessary when
the program under study is so fast-paced that one user will need to pay complete attention to interacting with
it, freeing up the second user to monitor the state of the computation. We will draw on our experience with
new hardware for multi-user interaction [24, 32, 102].

Visualizing Static Structures. Much research has been done within the software visualization com-
munity to visualize different aspects of source code. This includes static call graphs, inheritance graphs,
control-flow graphs, package graphs, identifier cross-references, program slices, data flow, etc. PI Coll-
berg’s SANDMARK system for code obfuscation and software watermarking, for example, uses standard
graph-drawing techniques to view control-flow graphs and inheritance graphs, in order to allow simulated
manual attacks against software watermarks. Standard visualization techniques become impractical when
the structures to be visualized grow large. In particular, drawings of graphs with more than a few hundred
vertices fail to convey much information, except when the underlying structures are very simple (trees) or
regular (meshes). Building on earlier work on visualization of large graphs [78, 79] we will explore the use
of compound-fisheye views [3] and multi-dimensional, multi-scale techniques [52, 53].

In Section D.2.1, Scenario 1, Wendy uses PEACOCK for a tour of a legacy system with which she needs to
familiarize herself. There is a multitude of relationships between code structures for Wendy to explore, and
a multitude of ways to visualize these relationships using our geographic metaphor. The goal of this part of
the project is to explore different uses of the metaphor to find out which layouts give the best visualization
experience, and to develop algorithms for realizing these layouts. As an explicit example, consider the
problem of simultaneously visualizing a Java package graph, inheritance graph, and static class call graph.
All three graphs share the same set of vertices (classes). Edges in the call graph correspond to classes whose
methods call each other. Edges in the inheritance graph correspond to the inheritance relation. The package
graph is different in that it is a containment hierarchy. We would like to embed the vertices (classes) in the
terrain so as to take into consideration all three relationships. To capture the two relationships defined by
the inheritance and call graphs we can adopt our simultaneous graph embedding techniques [18, 67, 70] to
the geographic metaphor. Generic graph visualization algorithms attempt to create layouts where distances
between vertices in the layout correspond to the graph theoretic distances in the abstract graph. Algorithms
for simultaneous graph embedding extend this notion to multiple graphs on the same set of vertices. Thus,
we can obtain layouts where vertex locations are determined by more than one abstract graph.
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While we can use both the inheritance and call graphs in obtaining an initial graph layout, the package
graph contains more than just the classes. The package graph is a tree whose vertices are classes and
supernodes (multiple classes). Thus, we need a different approach in order to ensure that the package graph
influences the layout. We propose to realize the package graph as continents and countries (see panel c©,
for example, in Figure 2), by adapting a treemap approach to our geographic metaphor. Treemaps [139]
provide efficient space-filling layouts of tree-like structures. The vertices of the tree are displayed as nested
rectangles in the treemap. The children of a node are within the rectangle of the parent. Squarified treemaps
ensure good aspect ratio for the rectangles [21] and ordered treemaps keep related items spatially close to
each other in the map [12]. Adapting the treemap approach to the geographic metaphor would allow us to
restrict vertices of the graph to specific regions on the terrain. After restricting the movement of vertices to
their corresponding regions (defined by the package hierarchy) we can apply the simultaneous embedding
technique using the inheritance and call graph relations. Thus we can capture the containment relation from
the package graph and also capture the relations from the inheritance and call graphs.

PEACOCK will process Java jar files with SANDMARK [36] to extract any information about the code
that could be visualized. PLTO [45] will be used to extract similar data from x86 executables. A visu-
alization engine (Figure 1 i©) decides which data should be presented based on user guidance. The final
step (Figure 1 j©) is to render appropriate geographic scenes and animation, and supporting user inter-
activity such as zooming, fly-throughs, etc. There are a large number of sophisticated open source tools
designed to support computer game development that PEACOCK will use to implement this stage. Examples
include Blender [15], Ogre [115], CaveUT [95] (a virtual reality cave), FlightGear [75] (an open source
multi-display flight simulator), OpenGC [116] (an open source glass cockpit), X3D [22,44] (an XML-based
virtual reality system), and Terragen [144] (a photorealistic scenery rendering program).

Visualizing Historical Development. In Section D.2.1, Scenario 2, Terrance’s code is visualized from
a historical perspective using PEACOCK. The natural way of doing this is to employ animation of static
code layouts. In Figure 2 we show how the historical development of a Java program can be visualized
geographically. In a©, the program starts out as one class class1 (a city) within a package package1 (a
country). A continent represents the entire program. In b©, the program has developed into three classes,
each within its own country. In c©, class1 now resides within the package package1.package4, and
by slight abuse of the geographic metaphor we visualize this as a country within a country2 .

Our previous work on visualizing the historical development of a program [35] extracted a Java program
(SANDMARK, currently 120,000 lines of Java code) from its CVS database. One version was extracted per
day, the program was built (compiled to Java bytecode), and control-flow graphs, inheritance graphs, and
static call-graphs were constructed. These graphs were then visualized using a temporal graph-drawing sys-
tem [76]. Tree-structures (such as inheritance and package graphs) will be easy to visualize geographically,
as illustrated in Figure 2. Static call graphs can be laid out by using standard graph-drawing techniques:
classes (cities) contain methods, methods (city blocks) are connected by call edges (roads, waterways), and
cities are located to minimize distance between tightly coupled classes.

In this scenario, the underlying problem is visualization of changing graphs. Evolving graph visual-
ization is the off-line version of the problem, where we know in advance all of the changes that the graph
will undergo, e.g., day-by-day inheritance graphs. Dynamic graph visualization is the on-line version where
we do not know what changes will occur, e.g. call-graphs of an executing program in real time. There
are two important layout criteria to consider: the readability of the individual layouts and the mental map
preservation in the series of drawings. The readability of individual drawings depends on aesthetic criteria
such as display of symmetries, uniform edge lengths, and minimal number of crossings. Preservation of
the mental map can be achieved by ensuring that vertices and edges that appear in consecutive graphs in
the series, remain unchanged. These two criteria are often contradictory. If we obtain individual layouts

2While unusual, countries within countries do exist. Examples include Lesotho within South Africa, and the Hopi reservation
within the Navajo reservation within Arizona within the United States.
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Figure 2: Visualizing the historical development of a program.

for each graph, without regard to other graphs in the series, we may optimize readability at the expense of
mental map preservation. Conversely, if we fix the common vertices and edges in all graphs once and for
all, we are optimizing the mental map preservation though the individual layouts may be far from readable.
Thus, we can measure the effectiveness of various approaches for visualization of evolving and dynamic
graphs by measuring the readability of the individual drawings, and the overall mental map preservation.
We expect to use animation and morphing to show changes in the code over time while at the same time
aiding in the mental map preservation. For example, a package that is refactored into two can be animated
as a country being split into two, with certain cities (classes) falling into the hands of the different countries.

Visualizing Performance Profiles. In Section D.2.1, Scenario 3, Philip used PEACOCK to visualize
performance. Our goal is to be able to overlay this information on the static visualization of the code as
described above. As shown in Figure 1 k©, a Programmer’s Cockpit can visualize performance in two ways.
First, global performance levels are shown as a collection of dials and charts that give Philip a quick overview
of the health of the system. Current page fault rate, amount of freed memory after garbage collections,
number of active threads, current CPU utilization, are examples of such information. Localized performance
data, (information directly tied to a particular segment of code) we anticipate visualizing geographically.

In this case, we are concerned with the visualization of truly dynamic graphs, that change in real-
time. One of these graphs that is notoriously difficult to deal with, yet can aid greatly in the discovery of
dynamic allocation patterns, is the heap-graph. All programmers are familiar with “pointer-bugs,” “memory
leaks,” and “heap fragmentation.” The reason why such problems occur is not only due to programmer
incompetence. There are, in fact, fundamental theoretical reasons why reasoning about pointer-based data-
structures is difficult. It is known that determining whether two pointers in a program will ever point to the
same heap object (the “aliasing problem”) is undecidable in general [128]. Similarly, determining whether
a program that constructs a dynamic data-structure will actually build a list, a tree, a DAG, or a graph, is
also, in general, undecidable [81]. In long-running programs the heap can contain millions of objects which
makes visualization a formidable task. Furthermore, the heap changes frequently which means that there
may be much activity between time-slices that needs to be presented to the user.

Visualizing the heap graph can also be combined with visualization of the call-graph and the inheritance
graph, to dampen the effect of the large number of changes that occur in the heap graph. In addition, there
are many possible ways to explore the geographic metaphor: activity levels can be expressed as elevation
of cities (classes), as the height of buildings (methods), as the amount of light given off by a city, or as the
traffic flow on a highway (method call interconnect).

D.2.6 Related Work

Software Visualization. Software visualization aim to improve human understanding of computer programs
by portraying them in a form that is more readable than mere source code [111, 112, 127, 132].
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BALSA [19] and Zeus [20] annotate a program with hooks so that “interesting events” such as changes
to data structures and subroutine calls and returns can be relayed to the visualization system. SHriMP [142]
shows inheritance hierarchies and aggregation using a variety of graphical views. Young [151] visualizes
dense call-graphs as stacks of cubes, viewing the result in a virtual reality environment.

Many tools visualize historical information stored by change management systems such as CVS [10,
11, 23, 62, 96, 106, 146]. SoftChange [106] produces textual reports of the complexity, size, purpose and
author of program changes. Ball [10, 11] describes tools that visualizes many different aspects of software
using line, pixel and hierarchical representations. Eick [62] visualizes software changes using bar-graphs,
pie-charts, matrix views, and cityscape views.

Integrated systems for program understanding [63,97,117,118,149] include RevEngE [149] (support for
pattern matching, redundancy analysis, and reverse engineering), Gammatella [97,118] (storing and visual-
izing program-execution data using a treemap view), and the “War Room Command Console” [117] (eight
linked consoles to present system development information). Eng [63] proposes a visualization framework
to provide static and dynamic program visualizations.

Tools for visualizing dynamic behavior or profiling information [17, 46, 80, 122, 129–131, 147, 152]
include EVolve [147] (visualization of the runtime behavior of Java programs using barcharts and dot-
plots), OverView [46] (an event-based Eclipse plug-in for runtime visualization of distributed systems),
Desert [129] (customizable visualizations of dynamic call counts, dynamic call traces, load and store traces),
and FileVis [152] (high-level overviews of a software system using 3D graphics and VR technology).

Aesthetic computing [1,74,126] addresses artistic issues in visualization. The RUBE system [74] allows
for model visualization with different metaphors (e.g., event graphs visualized using a cityscape metaphor).
The RelVis system [126] uses Kiviat diagrams using a tree-ring visualization to provide integrated graphical
views of source code and release history.

Little academic research has utilized software developed within the computer game community.
CaveUT [95] uses the Unreal Engine to construct immersive virtual reality environments. Knight and
Munro [100] describe using the Quake 2 game engine to create 3D visualizations of source code.

Profiling. There are two principal methods of collecting profiling information. Code instrumentation
approaches such as gprof [83] insert instructions at compile-time or post-link-time, counting procedure in-
vokations, basic block executions, branches taken, etc. Sampling-based systems such as the PCT system [14]
periodically suspend the program and examine the program state. PCT’s basic philosophy is similar to this
proposal, in that profiling is viewed as a form of debugging.

The Java virtual machine profiling interface (JVMPI [2]) is used by the Pajè [119] and JaViz [98] systems
to collect traces of distributed systems that are then visualized (for example, as call-graphs) off-line.

To correctly capture the performance of a system execution information has to be collected at multiple
levels (Figure 1 b©). Sweeney, Hauswirth, et al. [90, 143] integrate information from an instrumented JVM
with data from hardware performance counters, allowing performance to be visualized off-line.

Debugging. Early work on debugging is surveyed by Paxon [123] and McDowell et al. [104,123]. There
are four basic implementation techniques to enable reverse debugging: logging, checkpointing, forking, and
instrumentation. Logging was introduced by Zelkowitz [153], in the first reverse execution system. Code
is added to the binary (by modifying the compiler) to record all changes to variables, resulting in a 40%
code expansion. Moher’s PROVIDE [107] similarly logs variable updates but was limited to short-running
programs due to the rapid growth of the log. Netzer [114] compresses the log at the cost of less flexible
backward motions. Feldman and Brown’s IGOR [73] system uses checkpointing to write program state
(modified pages and open file descriptors) to disk at fixed intervals. The overhead ranges from 40 to 380%.
Pan and Linton’s Recap [121] system periodically forks off a child process that holds the state of the program
at that point. If fork is implemented using copy-on-write, this can be an efficient approach. Booth [16] uses
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a similar idea but also periodically thins out the forked processes in a log-like fashion, reducing the memory
requirement while making short backwards time-travel fast. In addition to checkpointing by forking, the
binary is instrumented with counters that make the reverse analogues of step, next, continue efficient.
Backwards execution also requires deterministic re-execution. Booth [16] stores the return values of system
calls and replays them during re-execution. Recap [121] stores the times of system calls, signals, and shared
memory accesses, enforcing deterministic re-execution.

Much research has been done on parallel debugging. Fowler et al. [77] describe a system for debugging
and performance tuning on shared memory multiprocessors. They use a two-phased approach where the
program under study is first run under monitoring and each process stores an execution trace to disk. In
a second off-line phase the traces are merged, visualized, analyzed for performance problems, or analyzed
for problems due to incorrect accesses to shared variables. The execution history is coarse-grained —
only synchronization information is stored — and hence relatively inexpensive to capture. Based on the
synchronization information, programs can also be replayed deterministically.

Abramson and Sosic̃ [4] present a system for relative debugging. The idea is to run a version of a pro-
gram known to work in parallel with a new, buggy, version and display the differences in the data structures.

D.3 Development Plan, Evaluation, and Broader Impacts

D.3.1 Development Plan

The proposed research will be carried out over a three-year period. It involves a significant amount of design,
development, and evaluation. We request support for two PhD-level graduate students and one post-doc to
assist the three PIs in carrying out this research. We anticipate the following development plan:

Year 1: During the first year we will focus on static analysis (Scenario 1 in Section D.2.1). We will develop
a prototype system that uses a game engine to enable static analysis on a large-scale display. We will
also begin research on historic and dynamic analysis, specifically developing the infrastructure for
running multiple simultaneous simulations on multiple virtual machines. This will primarily focus on
checkpoint and continuous data protection technologies.

Year 2: During the second year we will extend our work on static analysis to include historic analysis
(Scenario 2 in Section D.2.1). We will develop better visualization technologies based on our results
from the first year, as well as develop a prototype dynamic visualization system. We will also ex-
tend our virtual machine infrastructure to include vertical profiling support and improve the overall
infrastructure based on our results from the first year.

Year 3: During the third year we will integrate static, historic, and dynamic analysis into a single integrated
tool. We will complete our work on simultaneous multi-level simulation and visualization.

D.3.2 Evaluation

The goal of the proposed work is to answer two questions: (1) Can software be visualized more effectively
using metaphors borrowed from computer games, if massive high-resolution screen real-estate is available?
(2) Can software be more thoroughly analyzed statically, dynamically, and historically if massive compu-
tational resources are available? These questions can be reformulated as “will the integrated environment
provided by PEACOCK allow programmers to find logic and performance bugs more effectively than cur-
rently available tools?” and “how much hardware resources are necessary to collect, store, analyze, and
visualize data about a program while maintaining an adequate interactive experience for the programmer?”
We will collaborate with psychologists in designing and performing effective user studies to answer these
questions.

The first question could be addressed by a study in which we vary the visualization methods and measure
their effectiveness by keeping track of the time users need to solve a particular problem. The second question
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could be addressed by varying the amount of resources available to PEACOCK, while running test scenarios
similar to those in Section D.2.1.

D.3.3 Broader Impacts

The work will be carried out by the investigators, graduate students, and undergraduate students. Under-
graduates have played key roles in our recent projects, as discussed in Section D.4, and we plan to continue
employing them. We anticipate that many undergraduates with extensive gaming experience will be able
to actively contribute to the research problems as well as to the implementation of the system. The virtual
worlds created by the computer game industry have become powerful metaphors well understood by a large
segment of the population and this project aims to extend their use to the software visualization domain.

This project will foster the development and education of the participating students and will influence
the curriculum development of the PIs. We will also make all software developed as part of the project
available to the broader research community.

D.4 Results from Prior NSF Support

D.4.1 Collberg

Collberg is PI on NSF grant CCR-0073483, entitled Code Obfuscation, Software Watermarking, and
Tamper-Proofing — Tools for Software Protection, $265,000, September 1, 2000–August 31, 2004. This
project resulted in papers describing techniques for constructing error-correcting graphs [28], an overview
of software protection techniques [37], a description of the SANDMARK software protection infrastruc-
ture [36], novel software watermarking algorithms [27], SANDMARK’s obfuscation executive [91], and
evaluation of published software protection techniques [29, 113, 134]. Three bachelor’s and one master’s
thesis have been completed, and one PhD thesis is expected to complete this year.

D.4.2 Kobourov

Kobourov is PI on NSF grant ACR-022920, entitled Visualization of Giga-Graphs and Graph Processes,
for the period September 2002 through August 2005, $240,358. This project has resulted in a number of
publications on visualization of large graphs and graphs that evolve through time [18,35,58,66–69,76] and
several software systems for graph visualization, including GraphAEL [65] (for visualization of computing
literature) and GMorph [71] (for intersection-free morphing of planar graphs). Many students have been
involved in this research, both of the graduate and undergraduate levels. Cesim Erten co-authored ten
papers [18, 59, 65–68, 70–72, 94] and completed a PhD on this topic in 2004 [64]. Four MS students were
co-authors on papers related to the project [3,24,35,65,66,71,72,76,102,103]. Ten of our publications have
at least one undergraduate co-author [24, 31–35, 58, 65, 66, 70, 76].

D.4.3 Hartman

Hartman is PI on NSF grant CCR-9624845, entitled A Caching Infrastructure, $200,000, 1996–2000. This
project resulted in the publication of several papers on caching and distributed storage systems. Research on
cooperative caching resulted in two papers [137, 138] and one Ph.D. thesis [136]. Research on distributed
storage systems resulted in six papers [7, 9, 85, 86, 110, 140] and one Ph.D. thesis [6]. One paper was also
published on efficient network proxy implementation [141]. We also made the Gecko Web proxy and Swarm
storage system software available to the broader research community. Two Ph.D. theses and two Master’s
theses directly resulted from this research grant.
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[119] F.-G. Ottogalli, C. Labbé, V. Olive, B. de Oliveira Stein, J. Chassin de Kergommeaux, and J.-M.
Vincent. Visualisation of distributed applications for performance debugging. In V. Alexandrov,
J. Dongarra, B. Juliano, R. Renner, and C. Kenneth Tan, editors, ICCS’01: International Confer-
ence in Computational Science, Lecture Notes in Computer Science 2074, pages 831–840, Berlin,
Heidelberg, 2001. Springer.

[120] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch. The sprite network
operating system. Computer Magazine of the Computer Group News of the IEEE Computer Group
Society, ; ACM CR 8905-0314, 21(2), 1988.

[121] D. Z. Pan and M. A. Linton. Supporting reverse execution for parallel programs. In PADD ’88: Pro-
ceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel and distributed debugging,
pages 124–129, New York, NY, USA, 1988. ACM Press.

[122] W. D. Pauw, D. H. Lorenz, J. M. Vlissides, and M. N. Wegman. Execution patterns in object-oriented
visualization. In 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS),
pages 219–234, 1998.

[123] V. Paxson. A survey of support for implementing debuggers. Fall Semester 1990.

[124] L. Peterson, Y. Gottlieb, M. Hibler, P. Tullmann, J. Lepreau, S. Schwab, H. Dandelkar, A. Purtell, and
J. Hartman. An OS Interface for Active Routers. IEEE Journal on Selected Areas in Communications,
19(3):473–487, Mar. 2001.

[125] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and P. Winterbottom. Plan
9 from Bell Labs. Computing Systems, 8(3):221–254, Summer 1995.

[126] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing multiple evolution metrics. In SOFTVIS,
pages 67–75, 2005.

[127] B. A. Price, I. S. Small, and R. M. Baecker. A taxonomy of software visualization. In Proc. 25th
Hawaii Int. Conf. System Sciences, 1992.

[128] G. Ramalingam. The undecidability of aliasing. ACM TOPLAS, 16(5):1467–1471, Sept. 1994.

[129] S. P. Reiss. Software visualization in the desert environment. In PASTE, pages 59–66, 1998.

[130] S. P. Reiss and M. Renieris. The bloom software visualization system. In Software Visualization –
From Theory to Practice. MIT Press, 2003.

[131] S. P. Reiss and M. Renieris. Jove: java as it happens. In SOFTVIS, pages 115–124, 2005.

[132] G.-C. Roman and K. C. Cox. A taxonomy of program visualization systems. IEEE Computer,
26(12):11–24, 1993.

[133] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the simos machine simulator to study
complex computer systems. ACM TRansactions on Modeling and Computer Simulation, 7(1):78–103,
1997.

[134] T. R. Sahoo and C. Collberg. Software watermarking in the frequency domain: Implementation,
analysis, and attacks. Technical Report TR04-07, Department of Computer Science, University of
Arizona, 2004.

[135] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and J. Ofir. Deciding when
to forget in the elephant file system. In Symposium on Operating Systems Principles, pages 110–123,
1999.

8



[136] P. Sarkar. Hint-based cooperative caching. PhD thesis, University of Arizona, 1998.

[137] P. Sarkar and J. Hartman. Efficient cooperative caching using hints. In Proceeding of the 2nd ACM
Symposium on Operating Systems Design and Implementation (OSDI), Seattle, WA, 1996.

[138] P. Sarkar and J. H. Hartman. Hint-based cooperative caching. ACM Transactions on Computer
Systems, 18(4):387–419, 2000.

[139] B. Shneiderman. Tree visualization with treemaps: a 2-d space-filling approach. Technical report,
Human-Computer Interaction Lab, University of Maryland, 1991.

[140] T. Spalink, J. H. Hartman, and G. Gibson. A mobile agent’s effect on file service. IEEE Concurrency,
8(2):62–69, 2000.

[141] O. Spatscheck, J. S. Hansen, J. H. Hartman, and L. L. Peterson. Optimizing TCP forwarder perfor-
mance. IEEE/ACM Transactions on Networking, 8(2):146–157, 2000.

[142] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Muller. On integrating visualization techniques
for effective software exploration. pages 38–45, 1997.

[143] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove, and M. Hind. Using hard-
ware performance monitors to understand the behavior of java applications. In 3rd Virtual Machine
Research and Technology Symposium (VM’04), May 2004.

[144] terragen — photorealistic scenery rendering software. http://www.planetside.co.uk/
terragen/tgd/tgd.shtml, 2005.

[145] VMware, Inc. VMware virtual machine technology. http://www.vmware.com, 2005.

[146] L. Voinea, A. Telea, and J. J. van Wijk. Cvsscan: visualization of code evolution. In SOFTVIS, pages
47–56, 2005.

[147] Q. Wang, W. Wang, R. Brown, K. Driesen, B. Dufour, L. J. Hendren, and C. Verbrugge. Evolve: An
open extensible software visualisation framework. In SOFTVIS, pages 37–46, 2003.

[148] A. Whitaker, R. S. Cox, , and S. D. Gribble. Diagnosing computer problems using time travel. In
Proceedings of the 11th SIGOPS European Workshop, Sept. 2004.

[149] M. Whitney, M. Bernstein, R. D. Mori, K. Kontogiannis, B. Corrie, H. M&#252;ller, S. Tilley,
E. Merlo, J. Mylopoulos, K. Wong, J. H. Johnson, J. McDaniel, and M. Stanley. Using an inte-
grated toolset for program understanding. In CASCON ’95: Proceedings of the 1995 conference of
the Centre for Advanced Studies on Collaborative research, page 59. IBM Press, 1995.

[150] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation. In Measurement and
Modeling of Computer Systems, pages 68–79, 1996.

[151] P. Young and M. Munro. A new view of call graphs for visualising code structures, 1997.

[152] P. Young and M. Munro. Visualizing software in virtual reality. In IWPC, pages 19–27, 1998.

[153] M. Zelkowitz. Reverse execution. Communications of the ACM, 16(9), Sept. 1973.
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F.1 Christian S. Collberg

Department of Computer Science, University of Arizona, Tucson, AZ 85721, (520) 621-6612,
collberg@cs.arizona.edu

Professional Preparation

Exchange student Tulane University, 1979-1980.
BSc Computer Science and Numerical Analysis, May 1986, Lund Univer-

sity, Sweden.
Ph.D. Computer Science, Dec. 1992, Lund University, Sweden. Advisor: An-

ders Edenbrandt.

Appointments

Jan. 1993 – Dec. 1993 Temporary lecturer, The University of Lund, Sweden.
Jan. 1994 – Dec. 1998 Lecturer (Assistant Prof. in the US system), The University of Auck-

land, New Zealand.
Aug. 1998 Continuation (similar to tenure in the US system) awarded, The Univer-

sity of Auckland, New Zealand.
Jan. 1999 – May 2006 Assistant Prof., The University of Arizona.
Jun 2006 – Associate Prof., The University of Arizona.

Articles most relevant to this proposal

1. Christian Collberg, Automatic derivation of compiler machine descriptions, ACM Transactions on
Programming Languages and Systems, Valume 24, Number 8, 2002.

2. C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn, and M. Stepp. Dynamic path-
based software watermarking. Proceedings of the ACM SIGPLAN ’04 Conference on Programming
Language Design and Implementation, June 2004.

3. C. Collberg, S. G. Kobourov, S. Kobes, B. Smith, S. Trush, and G. Yee. Tetratetris: An application
of multi-user touch-based human-computer interaction. 9th International Conference on Human-
Computer Interaction (INTERACT), pages 81–88, 2003.

4. C. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system for graph-based visualiza-
tion of the evolution of software. ACM Symposium on Software Visualization (SoftVis), pages 77–86,
2003.

5. Christian Collberg, Ginger Myles, Andrew Huntwork, The SANDMARK Software Protection Re-
search Tool, IEEE Magazine on Security and Privacy.

Additional relevant articles

1. C. Collberg, E. Carter, S. Kobourov, and C. Thomborson. Error-correcting graphs. Workshop on
Graphs in Computer Science (WG’2003), June 2003.

2. Christian Collberg, Clark Thomborson and Douglas Low, Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs, ACM Principles of Programming Languages (POPL’98), San Diego,
CA, Jan 1998.

3. Christian Collberg and Clark Thomborson, Software Watermarking — Models and Dynamic Embed-
dings, ACM Principles of Programming Languages (POPL’99), San Antonio, TX, Jan 1999.

4. Christian Collberg and Clark Thomborson, Watermarking, Tamper-Proofing, and Obfuscation – Tools
for Software Protection, IEEE Transactions on Software Engineering, Volume 28, Number 8, pp.
735–746, August 2002.
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5. Ginger Myles, Christian Collberg, Software Watermarking Through Register Allocation: Implemen-
tation, Analysis, and Attacks, ICISC 2003.

Synergistic activities

Service:
• Conference committees: ACM SIGPLAN PLDI’99, Compiler Construction 2002, Information

Hiding 2004, Information Hiding 2005, Digital Rights Management: Technology, Issues, Chal-
lenges and Systems (DRMTICS 2005), Second Symposium on Intelligence and Security Infor-
matics (ISI-2004).

• Journal reviews: IEEE Security & Privacy, Software Quality Journal, Crossroads special issue
on Ethics and Computer Science, Software — Practice and Experience,Journal of Systems and
Software.

• Conference reviews: ACM POPL, ACM PLDI, WG 2005, DYNAMO 1999, Electronic Com-
merce 2000, 20th Intl. Conf. on Distributed Computing Systems (ICDCS-20), ACM Symposium
on Principles of Distributed Computing (PODC 2000), RSA 2002.

• Research proposal review: Innovation and Technology Commission for the Hong Kong Special
Administrative Region, NSF (two panels), Dutch Technology Foundation.

• PhD reviewer, Queensland University of Technology.

• Community software: SPlaT is a tool for detecting self-plagiarism among academics (Collberg
and Kobourov, Self-plagiarism in computer science, CACM, Volume 48, Number 4, 2005).

Teaching: Revamped graduate and undergraduate compiler and programming language classes. Educa-
tional software:

• AlgoVista: An Algorithmic Search Tool in an Educational Setting, 35th Technical Sympo-
sium on Computer Science Education (SIGCSE), 2004.

Software: Led the development of ALGOVISTA, SANDMARK, ART, and an automatic compiler retargeting
tool. Participated in the development of Slinky.

Graduate and Post-Doctoral Advisors

Dr. Anders Edenbrandt (current affiliation unknown)

Thesis Adviser and Postgraduate-Scholar Sponsor

Edward Carter (Berkeley), Kelly Heffner (Harvard University), Douglas Low (University of Washington)
Ginger Myles (IBM Almaden), Jasvir Nagra (University of Auckland), Ashok Ramasamy (current affiliation
unknown), Michael Stepp (UC San Diego)

Total no. graduate students advised: 7

Total no. postdoctoral scholars advised: 0

Collaborators (last four years)

Clark Thomborson (University of Auckland), Todd Proebsting (Microsoft Research), Jasvir Nagra (Univer-
sity of Auckland), Stephen Kobourov, Steven Kobes, Ben Smith, Stephen Trush, Gary Yee, Edward Carter,
Joshua Louie, Thomas Slattery, Suzanne Westbrook, Ginger Myles, Tapas Sahoo, Richard T. Snodgrass,
Shilong Yao, Gregg Townsend, Kelly Heffner, John H. Hartman, Sridivya Babu, Sharath K. Udupa, Zachary
Heidepriem, Armand Navabi, Michael Stepp, Saumya Debray, Cullen Linn (all at University of Arizona).
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F.2 John H. Hartman

Department of Computer Science, University of Arizona, Tucson, AZ 85721.
Phone: 520-621-2733; Email: jhh@cs.arizona.edu

a. Professional Preparation

Sc.B. Computer Science, Brown University, May 1987
M.S. Computer Science, University of California at Berkeley, May 1990
Ph.D. Computer Science, University of California at Berkeley, December 1994

b. Appointments

Associate Professor, University of Arizona, since 2001.
Research Fellow, Princeton University, Sept. 2003 to Jan. 2004.
Assistant Professor, University of Arizona, 1994–2001.

c.i Related Publications

[1] Christian Collberg, John H. Hartman, Sridivya Babu, and Sharath K. Udupa, “Slinky: Static
Linking Reloaded”. Proceedings of the 2005 Usenix Technical Conference, April 2005.

[2] Steve Muir, Larry Peterson, Marc Fiuczynski, Justin Cappos, and John Hartman, “Proper:
Privileged Operations in a Virtualized System Environment” (short paper), Proceedings of
the 2005 Usenix Technical Conference, April 2005.

[3] Larry Peterson, Yitzchak Gottlieb, Steve Schwab, Mike Hibler, Patrick Tullmann, Jay Lep-
reau, and John Hartman, “An OS Interface for Active Routers”, IEEE Journal on Selected
Areas in Communications –Active and Programmable Networks, 2001.

[4] John H. Hartman, Larry Peterson, Andy Bavier, Peter Bigot, Patrick Bridges, Brady
Montz, Rob Piltz, Todd Proebsting, and Oliver Spatscheck, “Experiences Building a
Communication-Oriented JavaOS”, Software: Practice & Experience 30, 10, August 2000,
1107–1126.

[5] John H. Hartman, Larry Peterson, Andy Bavier, Peter Bigot, Patrick Bridges, Brady
Montz, Rob Piltz, Todd Proebsting, and Oliver Spatscheck, “Joust: A Platform for
Communications-Oriented Liquid Software”, IEEE Computer 32, 4, April 1999, 50–56.

c.ii Additional relevant articles

[1] John H. Hartman, Scott Baker, and Ian Murdock, “Customizing the Swarm Storage System
using Agents”, Software: Practice & Experience. To appear.

[2] Scott Baker and John H. Hartman, “The Design and Implementation of the Gecko NFS Web
proxy”, Software: Practice & Experience 31, 7, (2001), 637–665.

[3] Oliver Spatscheck, Jorgen S. Hansen, John H. Hartman, and Larry L. Peterson, “Optimizing
TCP Forwarder Performance”, IEEE/ACM Transactions on Networking 8, 2 (April 2000),
146–157.

[4] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim Newsham,
and Scott A. Watterson, “Toba: Java For Applications: A Way Ahead of Time (WAT) Com-
piler”, Proceedings of the 3rd USENIX Conference on Object-Oriented Technologies and
Systems, June 1997.

[5] John H. Hartman, Ian Murdock, and Tammo Spalink, “The Swarm Scalable Storage Sys-
tem”, Proceedings of the 19th IEEE International Conference on Distributed Computing
Systems, June 1999, 74–81.
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d. Synergistic activities

• Service

– Program committees: Supercomputing ’02, OpenArch ’02, OSDI ’99, IOPADS ’99, SIGMET-
RICS ’98, and ICPP ’98.

– NSF Panels: PDOS 2005, CAREER 2003

– Local arrangements chair for HotOS-VII, April 1999.

• Teaching
Revamped graduate and undergraduate operating systems course curricula. Helped redesign under-
graduate program curriculum to streamline prerequisites. Helped develop undergraduate course on
system software and assembly language programming.

• Software Produced
Participated in the development the Sprite and Scout operating systems and the TopoVista GIS system.
Led the development the Zebra, Gecko, Swarm, and Mirage file systems. Led the development of
the Stork environment service, the Toba run-time system for Java, and the Joust system for active
networks. All of these systems have been made publicly available.

e. Collaborators and other affiliations

(i) Recent Collaborators (within the last 48 months) :
Larry Peterson (Princeton University), Yitzchak Gottlieb (Princeton University), Steve Schwab (Net-
work Associates), Mike Hibler (University of Utah) Patrick Tullmann (VMware) Jay Lepreau (Uni-
versity of Utah), Hrishikesh Dandekar, Andrew Purrell (current affiliation unknown), Prasenjit Sarkar
(IBM Almaden), Andy Bavier (Princeton University), Peter Bigot (Rincon Research), Patrick Bridges
(University of New Mexico), Brady Montz (current affiliation unknown), Rob Piltz (current affili-
ation unknown), Todd Proebsting (Microsoft Research), Oliver Spatscheck (AT&T Labs) Jorgen S.
Hansen (current affiliation unknown), Tammo Spalink (Princeton University), Garth Gibson (CMU),
Scott Baker (University of Arizona), Ian Murdock (Progeny) Steve Muir (Princeton University) Marc
Fiuczynski (Princeton University) Justin Cappos (University of Arizona) Sridivya Babu (University
of Arizona) Sharath Udupa (University of Arizona)

(ii) Graduate and Post-Doctoral Advisers :
John Ousterhout, Electric Cloud, Inc.

(iii) Thesis Adviser and Postgraduate-Scholar Sponsor:
Scott Baker (University of Arizona)
Justin Cappos (University of Arizona)
Wanda Chiu (current affiliation unknown)
Huilong Hui (University of Arizona)
Prasenjit Sarkar (IBM Almaden)
Tammo Spalink (Princeton University)

Total no. graduate students advised: 6

Total no. postdoctoral scholars advised: 0
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F.3 Stephen G. Kobourov

Department of Computer Science, University of Arizona, Tucson, AZ 85721.
Phone: 520-621-4324; Email: kobourov@cs.arizona.edu
Education

DARTMOUTH COLLEGE Computer Science, Mathematics B.S. (summa cum laude) 1995
JOHNS HOPKINS UNIVERSITY Computer Science M.S. 1997
JOHNS HOPKINS UNIVERSITY Computer Science Ph.D. 2000

Appointments

Since 2000 Assistant Professor, Computer Science, UNIVERSITY OF ARIZONA

Summer 2004 Visiting Researcher, LANCASTER UNIVERSITY, LANCASTER, UK

Summer 2003 Visiting Researcher, DIMACS, RUTGERS UNIVERSITY

1998 – 1999 Visiting Instructor, Computer Science, DARTMOUTH COLLEGE

Five Publications Most Related to this Project

1. P. Gajer and S. G. Kobourov, “GRIP: Graph Drawing with Intelligent Placement,” Journal of
Graph Algorithms and Applications, vol. 6, no. 3, p. 203–224, 2002. (Invited to this special
issue on the best papers from GD’2000.)

2. P. Gajer, M. T. Goodrich, and S. G. Kobourov, “A Multi-Dimensional Approach to Force-
Directed Layouts of Large Graphs,” Computational Geometry: Theory and Applications,
vol. 29(1), p. 3-18, 2004. (Invited to this special issue on the best papers from CGC’2001.)

3. S. G. Kobourov and K. Wampler, “Non-Euclidean Spring Embedders,” IEEE Transactions on
Visualization and Computer Graphics, to appear in 2005. (Preliminary version appeared in 10th
IEEE Symposium on Information Visualization (INFOVIS), p. 207–214, 2004.)

4. C. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler, “A System for Graph-Based
Visualization of the Evolution of Software,” ACM Symposium on Software Visualization (SOFT-
VIS), pp. 77–86, 2003.

5. B. Dux, A. Iyer, S. Debray, D. Forrester, and S. G. Kobourov, “Visualizing the Behavior of
Dynamically Modifiable Code.” 13th IEEE International Workshop on Program Comprehension
(IWPC), p. 337-340, 2005.

Five Additional Most Significant Publications

1. C. A. Duncan, M. T. Goodrich, and S. G. Kobourov, “Balanced Aspect Ratio Trees: Combining
the Advantages of k-d Trees and Octrees,” Journal of Algorithms, vol. 38, p. 303–333, 2001.
(Invited to this special issue on best papers from SODA’99.)

2. C. A. Duncan, M. T. Goodrich, and S. G. Kobourov, “Balanced Aspect Ratio Trees and Their
Use for Drawing Large Graphs,” Journal of Graph Algorithms and Applications, vol. 4, p. 19–
46, 2000. (Invited to this special issue on best papers from GD’98.)

3. C. Erten and S. G. Kobourov, “Simultaneous Embedding of a Planar Graph and Its Dual on the
Grid,” Theory of Computing Systems, vol.38(3), p.313-327, 2005. (Invited to this special issue
on the best papers from ISAAC 2002).

4. C. Collberg, S. G. Kobourov, S. Kobes, B. Smith, S. Trush, and G. Yee, “TetraTetris: An Appli-
cation of Multi-User Touch-Based Interaction using DiamondTouch,” 9th International Confer-
ence on Human-Computer Interaction (INTERACT), p. 81–88, 2003.

5. C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee, “GraphAEL: Graph Anima-
tions with Evolving Layouts,” 11th Symposium on Graph Drawing (GD), p. 98–110, 2003.
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Synergistic Activities

Conferences • Steering Committee, Graph Drawing, 2001–current
• Editorial Board, Graph Drawing E-print Archive, 2005–current
• Organizer, Dagstuhl Workshop on Graph Drawing, Dagstuhl, Germany, 2005
• Chair of Program Committee of 10th Symposium on Graph Drawing (GD), 2002
• Program Committee, 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006
• Organizing Committee, 22nd ACM Symposium on Computational Geometry, 2006
• Chair of 12th Annual Graph Drawing Contest, Limerick, Ireland, 2005
• Chair of 11th Annual Graph Drawing Contest, New York, NY, 2004

Journal Ref. SIAM Journal of Computing, ACM Transactions on Graphics, Journal of Algo-
rithms,Journal of Discrete and Computational Geometry, Journal of Discrete Applied
Mathematics, Journal of Graph Algorithms and Applications, Journal of Computational
Geometry: Theory and Applications, Journal of Combinatorics, Algorithmica, Networks,
IEEE Transactions of Visualization and Computer Graphics, Software Practice and
Experience

Conf. Ref. Symposium on Graph Drawing (GD), ACM Symposium on Computational Geometry
(SCG), ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM Symposium on
Theory of Computing (STOC), IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE Conference on Information Visualization (INFOVIS), European Symposium
on Algorithms (ESA), Workshop on Algorithm Engineering and Experiments (ALENEX),
Conference on Current Trends in Theory and Practice of Informatics (SOFSEM)

Courses Created new course at U Arizona: Information Visualization and Graph Drawing
Organizer of weekly seminar on Computational Geometry and Information Visualization

Educ. Tools • “SAIL: Generating, Archiving and Retrieving Specialized Assignments In LATEX,”
31st Technical Symposium on Computer Science Education, (SIGCSE), p. 300–304, 2000.
• “PILOT: An Interactive Tool for Learning and Grading,”
31st Technical Symposium on Computer Science Education (SIGCSE), p. 139–143, 2000.
• “AlgoVista: An Algorithmic Search Tool in an Educational Setting,”
35th Technical Symposium on Computer Science Education (SIGCSE), p. 462–466, 2004.
• “AlgoVista: A Tool to Enhance Algorithm Design and Understanding,”
7th Ann. Symp. on Innovation and Technology in CS Education (ITiCSE), p.228–228, 2002.
• “Increasing Undergraduate Involvement in Computer Science Research,”
8th World Conference on Computers in Education (WCCE), to appear in 2005.

Recent Collaborators (within the last 48 months)

J. Abello (DIMACS), T. Biedl (U Waterloo), F. Brandenburg (U Passau), P. Brass (CUNY), C. Coll-
berg (U Arizona), S. Debray (U Arizona), E. Demaine (MIT), C. A. Duncan (U Miami), A. Efrat
(U Arizona), D. Eppstein (UC–Irvine), R. Fleischer (Hong Kong U), H. H. Gonzáles-Baños (Honda
Research), M. T. Goodrich (UC–Irvine), D. Ismailescu (Hofstra), V. S. A. Kumar (Los Alamos Na-
tional Labs), G. Liotta (U Perugia), A. Lubiw (U Waterloo), J. S. B. Mitchell (Stony Brook), P. Mutzel
(U Dortmund), C. Thomborson (U. Auckland), C. Wenk (U Texas–San Antonio), S. Westbrook (U
Arizona)

Graduate and Post-Doctoral Advisors: Prof. Michael T. Goodrich (University of California)

Thesis Advisor and Postgraduate-Scholar Sponsor: Cesim Erten ( ISIK University, Istanbul, Turkey)

Total no. of graduate students advised: 1; postdoctoral scholars sponsored: 0.
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G Budget Justification

Senior Personnel. One month’s summer support in 2005, 2006, and 2007 each for Hartman, Kobourov, and
Collberg. Anticipated salary increases are 1.7% per year in years 2 and 3. Fringe benefit rate for faculty is
26.7%.

Fringe benefits have been computed as follows:

Year 1: 7 months @ 26.7%; 5 months @ 27.1%.

Year 2 and 3: 27.1%.

Graduate Students. Since the proposed research requires a significant amount of systems implementation,
we request support for 2 doctoral students. They will be supported at 20 hrs/week during the academic year
and 40 hrs/week during the summer. Anticipated stipend increases of 1.7% per year in years 2 and 3.

Fringe benefits have been computed as follows:

Year 1: 7 months @ 29.5% (18.3% is tuition remission that is exempt from indirect costs). 5
months @ 31.5% (20.9% is tuition remission that is exempt from indirect costs).

Year 2 and 3: 31.5% (20.9% is tuition remission that is exempt from indirect costs).

Postdoctoral Researcher. We request support for 1 post-doctoral researcher. This person (tentatively, Scott
Baker who will be graduating from our department this year) will be leading the software development effort
and help in advising the undergraduate students.

Undergraduate Students. We request support for 2 undergraduate-level students. The PIs have had much
success mentoring undergraduates in the past. We get them involved with research early, and have been suc-
cessful in getting them admitted into prestigious graduate programs based on their outstanding publication
records. Students will be supported at 10 hrs/week during the academic year and 40 hrs/week during the
summer.

Travel. We request support for one trip per PI and graduate student, for a total of six trips per year, to attend
scientific conferences and present our results. We have budgeted approximately $1670 per trip, including
air fare, hotel costs, and conference registration, for a total of $10,000 per year.

Capital Equipment. We request funds to purchase one Linux multiprocessor, three large displays optimized
for graphics and text, and a workstation to drive the monitors. The following table breaks down the cost of
a possible system:

Three 30" Apple Cinema displays, 2560x1600 pixels 3x$3000=$9,000
One Apple Dual G5 workstation to drive displays, 1GB RAM $3,348
Two NVIDIA GeForce 6800 Ultra DDL graphics cards (each can
drive two 30" displays)

2x$600=$1,200

Western Scientific FusionA8 8-way Opteron 848 (2.2GHz) server
with 16GB RAM, 1.2TB disk, and four 1Gb NICs

$20,500

Rack, monitor, keyboard, mouse, cabling, display mounting hard-
ware, etc.

$500

Total $34558

We have chosen this particular display technology to allow us to view fast animations and high-resolution
graphics and text. This will be necessary to adequately display source code along with our fly-through
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geographic graphics. At the present time, it is not possible to connect more than two 30" monitors to an
Apple G5, but we expect solutions to appear during the course of the project.

Operations We request funds to purchase three desktop workstations, one for each PhD student and post-
doctoral researcher supported by this grant, and four laptops for the undergraduate students:

Three desktop systems 3x$1,000=$3,000
Four laptops 2x$1,500=$3,000

Total $6,000

This amounts to $6,000 in year 1. Additionally, we request $3,000 in years 2 and 3 for printer paper, toner
cartridges, copying, phone calls, and similar items; page charges for journals; preparation and dissemination
of documentation on the software systems that will be developed.

Indirect Costs. These are as follows:

Year 1: 7 months @ 50.5% of direct costs except for equipment; 5 months @ 51%.

Year 2 and 3: 51.0% of direct costs except for equipment.
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H Current and Pending Support
Richard Snodgrass and Christian Collberg, Tamperproof Audit Logs, NSF IDM grant, September 1, 2005 -
August 31, 2008, $330,000. Christian Collberg is budgeted at $2,500/summer.
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I Facilities, Equipment, and Other Resources
The Computer Science Department is located on the 2nd, 7th, 8th, and 9th floors of the Gould-Simpson
Science Building. We currently provide five computing laboratories within Gould-Simpson: A combined
Graphics and Instructional Lab in Gould-Simpson 930 (a 42-station Pentium 4 based Windows XP and
Linux PC facility with high resolution LCD monitors), a second Instructional Lab in Gould-Simpson 228 (a
56-station Pentium 4 based Windows XP and Linux lab), and three Research Labs in Gould-Simpson 748,
756, and 913. There are numerous short term project rooms scattered throughout our floors. The department
maintains a three year (or sooner) replacement cycle on all computing equipment. Our newest computing
addition is a 32-node Pentium 4 cluster supporting non-blocking, switched gigabit ethernet. We also have a
10-node Pentium 4 cluster on switched gigabit ethernet for computation-intensive projects. In an effort to
harness wasted CPU power from otherwise idle desktop computers, the department offers CSGrid. Using
the Wisconsin Condor software, workstations within the department are made available for remote batch
computing. CSGrid is currently 24 nodes and growing.
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