
Surreptitious Software

Exercise

Attacks

Breaking on System Functions

Christian Collberg
Department of Computer Science, University of Arizona

February 26, 2014

Introduction

player1 is a digital rights management program. You call it like this:

> player1 userkey sample1 sample2 sample3

where userkey is a 32-bit cryptographic key and the samples are integers that you want to “play”. In
actuality, all that happens is that decode samples are written to the file audio. Example:

> player1 0xca7ca115 10000 20000 30000 60000

Please enter activation code: 42

> cat audio

3133074688.000000

3133047808.000000

3133062912.000000

3133022208.000000

Figure 1 shows a block diagram of the DRM player. Figure 2 shows the actual C code.

audioplayer key

encrypted
media

tamper−detectlicense−check

decrypt decode

analogue

fingerprintviolation−response

activation
code

user key

Figure 1: Block diagram of the player.

1

✞ ☎
typedef unsigned int uint32;

typedef char* caddr_t;

typedef uint32* waddr_t;

uint32 the_player_key = 0xbabeca75;

FILE* audio;

uint32 play(uint32 user_key , uint32 encrypted_media [], int media_len) {

int code;

int i;

for(i=0;i<media_len;i++) {

uint32 key = user_key ^ the_player_key;

uint32 decrypted = key ^ encrypted_media [i];

if (time (0) > 1221011472) {

fprintf(stderr ,"%s!\n", "Program expired!");

((int)NULL)=99;

}

float decoded = (float)decrypted;

fprintf(audio ,"%f\n",decoded); fflush(audio);

}

}

uint32 player_main (uint32 argc , char *argv []) {

uint32 user_key = atoi(argv [1]);

int i;

uint32 encrypted_media [100];

for(i=2; i<argc; i++)

encrypted_media [i-2] = atoi(argv[i]);

int media_len = argc -2;

play(user_key ,encrypted_media ,media_len);

}

int main (uint32 argc , char *argv []) {

printf("This is player1. Usage: player1 0xca7ca115 10000 20000 30000 60000\n");

audio = fopen("audio", "w");

player_main(argc ,argv);

return 0;

}
✝ ✆

Figure 2: The code.

Prerequisites

Before working the exercise make sure you download, install, and build the following:

1. Install the following tools:

tool url Linux MacOS X Windows

gcc z gcc

build-essential

gdb ftp.gnu.org/gnu/gdb/ z gdb

2. Download program and data files:

(a) wget ’http://www.cs.arizona.edu/~collberg/tmp/ssx.zip’

(b) unzip ssx.zip

(c) cd ssx/attack-defense attack1

2

3. Build the player1 executable which you will be working on from now on:

> make

Software protections

The player1 program has one simple software protection built in. It also fails when its use-by date has been
exceeded:

> player1 0xca7ca115 10000 20000 30000 60000

Program expired!

Bus error

In future exercises we will add more interesting protection techniques!
This is what the protection code looks like:

✞ ☎
if (time (0) > 1221011472) {

fprintf(stderr ,"%s!\n", "Program expired!");

((int)NULL)=99;

}
✝ ✆

Algorithm — Breaking on system function

We already know that the executable is dynamically linked. This means that many library functions can
be easily found by name. Most likely, the program calls the time() function in the standard library and

p. 73

compares the result to a predefined value. So, the idea we’re going to use is to

1. set a breakpoint on time,

2. run the program until the breakpoint is hit,

3. go up one level in the call stack (to see who called time),

4. look at the assembly code in the vicinity of the call to time for the equivalent of
✞ ☎
if (time (0) > @{\em some value })\ ldots@
✝ ✆

and replace it with
✞ ☎
if (time (0) <= @{\em some value })\ ldots@
✝ ✆

Crack — Remove the use-by check!

So, let’s go ahead and remove the pesky check that makes the program say Program expired! instead of
playing music for us!

1. Build and start the player1 program under gdb:
✞ ☎
> make

> gdb -write -silent player1
✝ ✆

2. Set a breakpoint on the system time function.

3

Table 1: X86 condition codes. Taken from http://courses.ece.uiuc.edu/ece390/resources/opcodes.

html.
.

CCCC Name Means

0000 O overflow
0001 NO Not overflow
0010 C/B/NAE Carry, below, not above nor equal
0011 NC/AE/NB Not carry, above or equal, not below
0100 E/Z Equal, zero
0101 NE/NZ Not equal, not zero
0110 BE/NA Below or equal, not above
0111 A/NBE Above, not below nor equal
1000 S Sign (negative)
1001 NS Not sign
1010 P/PE Parity, parity even
1011 NP/PO Not parity, parity odd
1100 L/NGE Less, not greater nor equal
1101 GE/NL Greater or equal, not less
1110 LE/NG Less or equal, not greater
1111 G/NLE Greater, not less nor equal

✞ ☎
(gdb) break time
✝ ✆

3. Start the program by typing the command
✞ ☎
(gdb) run 0xca7ca115 10000 20000 30000 60000
✝ ✆

0xca7ca115 is the secret key. 10000 20000 30000 60000 are the input “samples” to the program.

4. What location is the time library function called from? Use the where command!

Nest use the up command to walk up the caller’s stack frame and x/i $pc to find the address of the
current instruction.

5. Find the location where the value time returns is tested and the branch that follows the test!

4

6. The jle instruction is two bytes long (how can you tell?). What’s the value of these two bytes (in
hex)?

7. Now The the second four bits of the jle opcode is the condition code. See Table 1 for a list of the
X86 processor’s condition codes. You now need to invert the branch from a less-than-or-equal to a
greater-than! What should the X86 instruction be, in hex?

8. Now you know the location to patch at and what the new instruction should be! It’s time to do the
actual patch! Start by quitting gdb, and then re-entering gdb.

NOTE: gdb is really picky about this — you have to start gdb from a

“clean slate” before you edit the executable or the changes won’t actually

affect the executable file.

Show the gdb instructions you used:
✞ ☎
(gdb) quit

> gdb -write -silent player1

do the patch here!

(gdb) quit
✝ ✆

5

9. Exit gdb. Run player1. Does it behave better now?

10. Compare the new player1 with the original one:
✞ ☎
> vbindiff player1 player1.orig
✝ ✆

Can you find the difference?

6

