
Surreptitious Software
Exercise

Attacks

Techniques

Christian Collberg
Department of Computer Science, University of Arizona

February 26, 2014

Learning about the executable (Linux)

1. objdump prints out information about an executable file. It has lots of options, depending on what you
want. The -T option prints the dynamic symbols:

p. 72

✞ ☎
> objdump -T player2

DYNAMIC SYMBOL TABLE:

00000000 DF *UND* 00000039 GLIBC_2 .0 printf

00000000 DF *UND* 0000002b GLIBC_2 .0 atoi

00000000 DF *UND* 00000024 GLIBC_2 .0 fprintf

00000000 DF *UND* 00000020 GLIBC_2 .0 time
✝ ✆

2. objdump can also disassemble:
✞ ☎
> objdump -d player2 | head

080483 f4 <.init >:

80483 f4: 55 push %ebp

80483 f5: 89 e5 mov %esp ,%ebp

80483 f7: 83 ec 08 sub $0x8 ,%esp
✝ ✆

3. objdump gives you the start address:
✞ ☎
> objdump -f player2 | grep start

start address 0x080484f0
✝ ✆

4. objdump gives you the address and size of the string (read-only date) and text segments:
✞ ☎
> objdump -x player2 | egrep ’rodata|text|Name’

Idx Name Size VMA LMA File off Algn

11 .text 00000508 080484 f0 080484 f0 000004 f0 2**4

13 .rodata 00000075 08048 a14 08048 a14 00000 a14 2**2
✝ ✆

Learning about the executable (Mac OS X)

On Mac OS X we have to use otool instead of objdump for some operations.

1. To print the dynamic symbols:
✞ ☎
> objdump -T player2
✝ ✆

1

2. To disassemble:
✞ ☎
> otool -t -v player2
✝ ✆

3. To get the start address:
✞ ☎
> otool -t -v player2 | head
✝ ✆

4. To get the address and size of the string and text segments:
✞ ☎
otool -l player2 | gawk ’/__text/,/size/{ print}’

otool -l player2 | gawk ’/__cstring /,/size/{ print}’
✝ ✆

NOTE: otool sometimes displays addresses like “00000bd0”, and sometimes
like “0000000100000bd0.” Inside gdb use “0x100000bd0” since this is the ac-
tual virtual address. (Avoid leading zeros since this indicates an octal
address.)

Tracing the executable

1. ltrace traces library calls:
✞ ☎
> ltrace -i -e printf player2

[0 x804884e] printf("hash=0x%x\n", 0x478a1c90hash =0 x478a1c90) = 16

tampered!

[0 x8048702] printf("Please enter activation code: ") = 30

Please enter activation code:
✝ ✆

2. strace traces system calls:
✞ ☎
> strace -i -e write player2

[110425] write(1, "hash=0 x478a1c90\n", 16hash=0 x478a1c90) = 16

[110425] write(2, "tampered !\n", 10 tampered !) = 10

[110425] write(1, "Please enter activation code: " ,...) = 30
✝ ✆

Gdb

1. To start gdb:
✞ ☎
gdb -write -silent --args player2 0xca7ca115 1000 2000 3000 4000
✝ ✆

2. The latest version of gdb (7.0 and above) has the new find command which searches for a string in
an executable:
✞ ☎
(gdb) find startaddress , +length , "string"

(gdb) find startaddress , stopaddress , "string"
✝ ✆

NOTE: Note that you have to give the entire string you’re looking for —
find doesn’t do partial searches. I believe it looks for the string including

the null character at the end, so any trailing spaces, tabs, etc. have to be
included in the search.

You can also search for bytes, words, etc.

2

3. To set a breakpoint at a particular address:
✞ ☎
(gdb) break *0x......

(gdb) hbreak *0x......
✝ ✆

hbreak sets a hardware breakpoint which doesn’t modify the executable itself.

NOTE: Note that on x86-64, the program must be started before you can
set a hardware breakpoint!

4. To set a watchpoint at a particular address:
✞ ☎
(gdb) rwatch *0x......

(gdb) awatch *0x......
✝ ✆

rwatch only checks for reads of the location.

NOTE: Note that on x86-64, the program must be started before you can
set a hardware watchpoint!

5. To disassemble instructions:
✞ ☎
(gdb) disass startaddress endaddress
✝ ✆

or, if you only want to see a certain number (here, 3) of instructions:
✞ ☎
(gdb) x/3i address

(gdb) x/i $pc
✝ ✆

The second command prints the instruction at the current address,

6. To examine a data word (x=hex,s=string, d=decimal, b=byte,. . .):
✞ ☎
(gdb) x/x address

(gdb) x/s address

(gdb) x/d address

(gdb) x/b address
✝ ✆

You can hit return multiple times to examine consequtive locations.

7. To print register values:
✞ ☎
(gdb) info registers
✝ ✆

8. To examine the callstack:
✞ ☎
(gdb) where

(gdb) bt -- same as where

(gdb) up -- previous frame

(gdb) down -- next frame
✝ ✆

9. To step one instruction at a time:
✞ ☎
(gdb) display/i $pc

(gdb) stepi

(gdb) si -- same as stepi

(gdb) nexti -- like step , but don’t step into functions

(gdb) ni -- same as nexti
✝ ✆

The display command only has to be set once. It makes sure that gdb prints the instruction it’s
stepping over.

3

10. To modify a value in memory:
✞ ☎
(gdb) set {unsigned char}address = value

(gdb) set {int}address = value
✝ ✆

Patching executables with gdb

Cracking an executable proceedes in these steps:

1. find the right address in the executable,

2. find what the new instruction should be,

3. modify the instruction in memory,

4. save the changes to the executable file.

This process is called patching.
gdb can patch the executable for us, but it is very picky about how to go about it. There are two ways

to start the program to allow patching:

method 1:
✞ ☎
> gdb -write -q player1
✝ ✆

method 2:
✞ ☎
> gdb -q player1

(gdb) set write

(gdb) exec -file player1 # reload the file!
✝ ✆

gdb doesn’t allow us to patch the executable when it is running. It’s therefore best to:

1. Run the program under gdb and find the address of the instruction you want to patch.

2. Exit gdb.

3. Start gdb again using one of the two methods above.

4. Make the patch and exit:
✞ ☎
(gdb) set {unsigned char} 0x804856f = 0x7f

(gdb) quit
✝ ✆

Prerequisites

Before working the exercise make sure you download, install, and build the following:

4

tool url Linux MacOS X Windows
gcc z gcc

build-essential

gdb v7.2 ftp.gnu.org/gnu/gdb/

• Linux: ./configure; make install; sudo chgrp procmod

/usr/local/bin/gdb; sudo chmod g+s /usr/local/bin/gdb

• Mac OS X: Same as for Linux

• Windows:

objdump www.gnu.org/software/

binutils

z binutils

5

