Software Protection:
How to Crack Programs,
and
Defend Against Cracking

Minsk, Belarus, Spring 2014

Christian Collberg
University of Arizona

WWW.CS.arizona.edu/~collberg
© May 27, 2014 Christian Collberg

www.cs.arizona.edu/~collberg

About me

@ PhD from 5NR

@ Five years on the faculty at
@ One year at
(A E R A

INSTITUTE OF AUTOMATION CHINESE ACADEMY OF SCIENCES

@ Currently Professor at

/45

Professional Interests

@ Software Protection
(tigress.cs.arizona.edu)

@ Compilers
@ Programming Languages
@ Scientific Ethics

@ Secure Provenance
(haathi.cs.arizona.edu).

tigress.cs.arizona.edu
haathi.cs.arizona.edu

Personal Interests

@ Travel (35 countries so far. . .)

@ Photography:
WWW.CS.arizona.edu/~collberg/#travel

@ Foreign Languages

@ Music:

www.cs.arizona.edu/~collberg/#travel

Education

ARE

Christian Collber
iR, Mo B i

@ | teach courses on programming
languages, compilers, computer security.

Contact me

@ www.cs.arizona.edu/~collberg

® collberg@gmail.com
@ Office: Room 571

@ MSU, Sector B!
@ See me if you want to talk about

@ this course

@ studying in the US

@ computer security research

@ travel, Russia, music, languages . ..
@ ... anything, really!

www.cs.arizona.edu/~collberg
collberg@gmail.com

This Course

Overview

@ What is Software Protection?

@ When do you need Software
Protection?

@ Making programs hard to read
(obfuscation).

@ Making programs hard to
modify (anti-tamper).

When? Where? Why?

@ When?

When? Where? Why?

@ When? Wednesday 18:00

When? Where? Why?

@ When? Wednesday 18:00
@ Where?

When? Where? Why?

@ When? Wednesday 18:00
@ Where? Auditorium 612

When? Where? Why?

@ When? Wednesday 18:00
@ Where? Auditorium 612
Q@ Why?

When? Where? Why?

@ When? Wednesday 18:00
@ Where? Auditorium 612
Q@ Why? It will be super cool!

When? Where? Why?

@ When? Wednesday 18:00
@ Where? Auditorium 612

Q@ Why? It will be super cool!
o WWW?

When? Where? Why?

@ When? Wednesday 18:00
@ Where? Auditorium 612
Q@ Why? It will be super cool!
o WWW?

WWw.CS.arizona.edu/~collberg/

Teaching/bsuir/2014

www.cs.arizona.edu/~collberg/
Teaching/bsuir/2014

What we will learn

@ How to be crack code (be a bad guy!).
@ How to be protect code (be a good guy!).
@ Using software protection tools (Tigress).

10/45

What we will do

@ | will lecture. ..

@ In-class exercises. ..
@ “Homework” exercises:

@ Hack this code!
@ Protect this code from hacking!

11/45

Prerequisites

@ An understanding of C programming.

@ Some assembly code knowledge is good.

@ Some Unix, like shell commands, editing
(emacs, vi), compiling (gcc), debugging
(gdb).

@ It's good if you know a little about
cryptography, compilers, and computer
security, but not necessary.

12/45

Class behavior

@ Please interrupt with questions!

@ You can ask a question in Russian (if
someone will translate for me!).

@ Bring a linux/Mac OS laptop to class if you
want, but don’t play games, check email,
etc.

13/45

Today’s lecture

@ Software Protection Scenarios
@ Software Protection Tools

@ Overview of Obfuscation

@ Overview of Tamperproofing

MATE Scenarios

Software piracy

@ Alice is a software developer.

16/45

Software piracy

Alice > .
i N - o :’5

@ Alice is a software developer.
@ Bob buys one copy of Alice’s program.

16/45

Software piracy

Alice
=
JL &8 o

@ Alice is a software developer.
@ Bob buys one copy of Alice’s program.
@ Bob illegally sells copies to his friends.

16/45

License check tampering

7145

License check tampering

17/45

License check tampering

P
Alice I Bob
if (today()>"Aug 17") \
@ abort () % P
) > =L | .f”(.flal se)
<— abort ()

@ Bob removes license checks to be able to
run the program whenever he wants.

17/45

License check tampering

if (today()>"Aug 17")
@ abort ()

@ Bob removes license checks to be able to
run the program whenever he wants.

@ Alice protects her program so that it won't
run after being tampered with.

17/45

Malicious reverse engineering

Alice P

2=A— 1,
JL

@ Alice’s program contains a valuable trade
secret (a clever algorithm or design).

18/45

Malicious reverse engineering

@ Alice’s program contains a valuable trade
secret (a clever algorithm or design).

@ Bob, a rival developer, copies .# into his
own program (code lifting).

18/45

Malicious reverse engineering

@ Alice’s program contains a valuable trade
secret (a clever algorithm or design).

@ Bob, a rival developer, copies .# into his
own program (code lifting).

18/45

Malicious reverse engineering

@ Alice’s program contains a valuable trade
secret (a clever algorithm or design).

@ Bob, a rival developer, copies .# into his
own program (code lifting).

18/45

Digital rights management (DRM)

@ A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19/45

Digital rights management (DRM)

Alice
Encrypted) Bob
Z= 4

@ A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19/45

Digital rights management (DRM)

@ A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19/45

Digital rights management (DRM)

Cleartext media

Alice l::>
Encrypted @
@ media

@ A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19/45

Digital rights management (DRM)

Cleartext media

Crypto keys —
Alice £ g Bob | Software Player l::>
ncrypte i
@ media ©
& > \Z
J 1

= - -t

@ A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19/45

Scenario: Protecting networked
computer games

JL

Scenario: Protecting networked
computer games

Alice Bob

K ' N
JL g *

Scenario: Protecting networked
computer games

Alice

20/45

Scenario: Protecting networked
computer games

20/45

Scenario: Protecting networked
computer games

Alice

S N

JL

20/45

Scenario: Protecting networked
computer games

Alice

20/45

Protocol discovery

Alice

Call mnutes

.

JL

@ Alice sells voice-over-IP call minutes.

21/45

Protocol discovery

Alice Bob

@ Cal | minutes = 5
S

JL

@ Alice sells voice-over-IP call minutes.

@ Bob examines the VoIP client to discover
proprietary protocols to build his own rival
client.

21/45

Protecting military software

* 1
Al ice E
s D
— =
JL

@ The military want to be able to track
classified software.

22/45

Protecting military software

JL

@ The military want to be able to track
classified software.

@ In 2001, an EP-3 spy/reconnaissance plane
landed on Hainan Island in China after a

collision. The crew was unable to destroy
all equipment.

22/45

Protecting military software

~

#
@ The military want to be able to track
classified software.
@ In 2001, an EP-3 spy/reconnaissance plane
landed on Hainan Island in China after a

collision. The crew was unable to destroy
all equipment.

22/45

The Man-At-The-End Problem

23/45

The Man-At-The-End Problem

The Man-At-The-End Problem

Debugger ~ Emulator
Tracer Disassembler
Slicer Decompiler

23/45

The Man-At-The-End Problem

Debugger ~ Emulator
Tracer Disassembler
Slicer Decompiler

23/45

The Man-At-The-End Problem

23/45

The Man-At-The-End Problem

% H\:
| gz

WG

=3

atic/Dynami ¢ Anal ysis
dify

o
-

23/45

The Man-At-The-End Problem

Static/dynam c anal ysis
| ect code
lect transformation

1.
2. Se
3. Se
4. Aplytransformaﬂon
5. Done

i

23/45

The Man-At-The-End Problem

. Static/dynam c anal ysis

. Sel ect code

. Select transformation

. Apply transformation
Done?

Code l::>
Transformations

23/45

The Man-At-The-End Problem

Methods | [All Methods]

23/45

Tigress

tigress.cs.arizona.edu/#flatten

O tigress.cs.arizona.edu/ “overview

‘What is Tigress?

Tigeess is a virtualizer for the C language that supports many novel defenscs against well-known de-virtualization
attacks, such as Rolles' and Rotalume. In addition to the virtualization transformation, Tigress contains a collection of
traditional such as 1flow flattening, opaque predicate insertion, and function merging
and splitting. These are used to make the generated interpreters stealthier, more diverse, and more resilient to attack.

In the past we have used Tigress to build a system for distributed application tamper detection via continuous software
updates and we are currently using it for studies into diversity.

Design. Tigress s a source-to-source transformer built in OCaml on top of the CIL infrastructure. This has multiple
advantages: Tigress supports all of the C language, including gec extensions; the transformed code can be easily
examined, which is useful in a pedagogical setting; and Tigress' output, once compiled and stripped of symbols, becomes
a good target for reverse engineering and de-virtualization cxercises.

Diversity. Tigress is designed such that, from a single source program, it s possible to generate large numbers of highly
diversified variants. This diversity is both static and dynamic, i.e. two variants will differ both in their machine code and
in the resulting instruction traces. In esscnce, every decision Tigress makes is dependent on a randomization seed,
controllable by the user.

Future. Tigress is under active development and we continue to add new features to the virtualizer. A further goal is to
make Tigress the first frecly available C language obfuscator that supports a lasge collcction of classical obfuscating and
tamperproofing transformations, the way that SandMark did for Java. The absence of a general tool for experimentation
into the security and performance of software protection algorithms for binary code has severely hampered progress in
the area, and we hope Tigress will fll this void.

24/45

Code
Obfuscation

Code obfuscation

@ To obfuscate a program means to

transform it into a form that is more
difficult for an adversary to
understand or change than the
original code.

26/45

Code obfuscation

@ To obfuscate a program means to
transform it into a form that is more
difficult for an adversary to
understand or change than the
original code.

@ Vague definition of difficult:
The obfuscated program requires
more human time, more money, or
more computing power to analyze
than the original program.

26/45

Code obfuscation — Example
obfuscated code

public class C {
static Object getO(Object[] I) {
Integer I7, I6, I4, I3; int t9, t8;
I7=new Integer (9);
for (;;) {
if (((Integer)I[0]).intValue ()% ((Integer)I[1l]).intValue ()==0)
{t9=1; t8=0;} else {t9=0; t8=0;}
I4=new Integer (t8);
I6=new Integer (t9);
if ((I4.intValue () "I6.intValue()) !=0)
return new Integer (((Integer)I[1l]).intValue());
else {
if ((((I7.intValue()+ I7.intValue()*I7.intValue())%2!=0)720:1)!=1)
return new Integer (0);
I3=new Integer (((Integer)I[0]).intValue ()%
((Integer)I[1l]).intValue());
I[0]=new Integer(((Integer)I[l]).intValue());
I[l]=new Integer (I3.intValue());

}
} 27/45

Code obfuscation — Example original

code
public class C {
static int gcd(int x, int y) {
int t;
while (true) {
boolean b = x & y == 0;

if (b) return y;
t=x%y; x=y;y=t;
}
}
}

@ An obfuscation tool turns the original code
into obfuscated code.

@ We want obfuscating transformations that
make the program as hard to understand as
possible.

28/45

Types of obfuscation

@ Abstraction transformations

@ Destroy module structure, classes, functions,
etc.!

29/45

Types of obfuscation

@ Abstraction transformations

@ Destroy module structure, classes, functions,
etc.!

@ Data transformations

@ Replace data structures with new
representations!

29/45

Types of obfuscation

@ Abstraction transformations

@ Destroy module structure, classes, functions,
etc.!

@ Data transformations

@ Replace data structures with new
representations!

© Control transformations
@ Destroy if-, while-, repeat-, etc.!

29/45

Types of obfuscation

@ Abstraction transformations

@ Destroy module structure, classes, functions,
etc.!

@ Data transformations

@ Replace data structures with new
representations!

© Control transformations
@ Destroy if-, while-, repeat-, etc.!

© Dynamic transformations
@ Make the program change at runtime!

29/45

Obfuscation example: original

program
int main() {
int vy = 6; int foo(int x) {
y = foo(y); return xx*7;
bar (y,42); }

void bar (int x, int z) {
if (x==z2)
printf ("$i\n", x);

30/45

After abstraction transformation

int main() {
int y = 6;
y = foobar(y,99,1);
foobar (y,42,2);

}

int foobar (int x, int z, int s) {
if (s==1)
return xx7;
else if (s==2)
if (x==2z2)
printf ("%$i\n", x);

@ It appears as if main calls the same
function twice!

31/45

After data transformation

int main() {
int v = 12;
y = foobar(y,99,1);
foobar (y,36,2);

}

int foobar(int x, int z, int s) {
if (s==1)
return (x*37)%51;
else if (s==2)
if (x==z) {
int x2=x*x % 51, x3=x2*x % 51;
int x4=x2*x2 % 51, x8=x4xx4 % 51;

int x11=x8%x3 % 51; printf ("%$i\n",x11);

32/45

After control transformation

int foobar(int x, int
char* next = &&cell
int retval = 0;
cell0: next = (s==1
celll: retVal=(x*37
cell?2: next = (s==2
cell3: next = (x==z
celld: {
int x2=xxx % 51,
int x4=x2%x2 % 5
int x11=x8*x3 %

printf ("%$i\n", x1
}

end: return retVal;

z, int s) {

0;

) ?&&celll:&&cell?2;
)%$51; goto end;

) ?&&cell3: &&end;
) ?&&celld: &&end;

goto xnext;

goto *next;
goto *next;

x3=x2*x % 51;
, xX8=x4+x4 % 51;

goto end;

45

Anti-Tamper

What is code tampering?

@ Bob wants to modify the program binary so
that it does something different than we
want:

@ remove functionality (license check)
@ change data (password, cryptographic key)
@ add functionality (print, save game)

@ Tamperproofing the code makes it stop
working if Bob changes as little as a byte of
the binary!

35/45

Two phases of tamperproofing

@ Tamperproofing has to do two things:

@ detect tampering
@ respond to tampering

36/45

Two phases of tamperproofing

@ Tamperproofing has to do two things:

@ detect tampering
@ respond to tampering

@ Essentially:
if (tampering-detected()) abort
but this is too unstealthy!

36/45

Two phases of tamperproofing

@ Detection:

@ has the code been changed?
@ are variables in an OK state?

7145

Two phases of tamperproofing

@ Detection:

@ has the code been changed?
@ are variables in an OK state?

@ Response:

@ refuse to run,
@ crash randomly,
© phone home, ...

37/45

Algorithm Chang & Atallah: Checker
network

foo()({
} e

\

check() {
I f (hash(foo)!=42)
abort ()

}

Hash functions

uint32 hashl (addr_t addr,int words) {
uint32 h = xaddr;
int i;
for (i=1; i<words; i++) {
addr++;
h "= xaddr;
}

return h;

39/45

Hash functions

void important_function () {
}
int main () {
int v = hash (important_function,1000);

if (v != 0x4C49F346) {
crash the program
}

important_function(...)

40/45

Algorithm Chang & Atallah: Checker
network

foo()({
} e

\

check() {
I f (hash(foo)!=42)
abort ()

}

Algorithm Chang & Atallah: Checker
network

foo()({
}

Algorithm Chang & Atallah: Checker
network

foo(){ foo(){
y o3) o0

Algorithm Chang & Atallah: Checker
network

foo()({ foo(){
oo E>}...

\

check() {
I f (hash(foo)!=42)

foo(){ foo(){
cp

Algorithm Chang & Atallah: Checker
network

S R
m

}

check() { P
I f (hash(foo)!=42)

foo(){| |foo(){
cp

Repairing Hacked Functions

void copy_of_important_function () {
}

void important_function () {

}

int main () {
int v = hash (important_function,1000);
if (v != 0x4C49F346) {
memcpy (important_function,
copy_of_important_function,
1000)
}

important_function(...)

J
42/45

Checker network

o

Co o Lo
o <P

Ca o [oe]

@ |code|— code blocks
@ c; — checkers
@ rj — repairers

43/45

Skype’s hash function

uint32 hash7() {
addr_t addr=(addr_t) ((uint32)addr” (uint32)addr) ;

addr = (addr_t) ((uint32)addr + 0x688ES5C);
uint32 hash = 0x320E83 ~ 0x1C4C4;
int bound = hash + OxFFCCS5AFD;
do {
uint32 data=x*((addr_t) ((uint32)addr + 0x10));
goto bl; asm volatile(".byte 0x19"),; Dbl:
hash = hash @& data; addr -= 1; bound--;
} while (bound!=0);
goto b2; asm volatile(".byte 0x73"); b2:
goto b3; asm volatile (" .word 0xC8528417,..."); b3:
hash-=0x4C49F346; return hash;

44/45

Next week’s lecture

@ Software Hacking Techniques

@ Bring a Linux/MacOS laptop, if
you have. Make sure gcc and
gdb have been installed.

@ Look at Exercise 1 files on the
website.

