
c© May 27, 2014 Christian Collberg

Software Protection:

How to Crack Programs,
and

Defend Against Cracking

Minsk, Belarus, Spring 2014

Christian Collberg
University of Arizona

www.cs.arizona.edu/˜collberg

www.cs.arizona.edu/~collberg

About me

PhD from

Five years on the faculty at

One year at

Currently Professor at

2 / 45

Professional Interests

Software Protection
(tigress.cs.arizona.edu)

Compilers

Programming Languages

Scientific Ethics

Secure Provenance
(haathi.cs.arizona.edu).

3 / 45

tigress.cs.arizona.edu
haathi.cs.arizona.edu

Personal Interests

Travel (35 countries so far. . .)

Photography:
www.cs.arizona.edu/˜collberg/#travel

Foreign Languages

Music:

4 / 45

www.cs.arizona.edu/~collberg/#travel

Education

I teach courses on programming
languages, compilers, computer security.

5 / 45

Contact me

www.cs.arizona.edu/˜collberg

collberg@gmail.com

Office: Room 571

MSU, Sector B!
See me if you want to talk about

this course
studying in the US
computer security research
travel, Russia, music, languages . . .
. . . anything, really!

6 / 45

www.cs.arizona.edu/~collberg
collberg@gmail.com

This Course

Overview

1 What is Software Protection?
2 When do you need Software

Protection?
3 Making programs hard to read

(obfuscation).
4 Making programs hard to

modify (anti-tamper).

8 / 45

When? Where? Why?

1 When?

9 / 45

When? Where? Why?

1 When? Wednesday 18:00

9 / 45

When? Where? Why?

1 When? Wednesday 18:00
2 Where?

9 / 45

When? Where? Why?

1 When? Wednesday 18:00
2 Where? Auditorium 612

9 / 45

When? Where? Why?

1 When? Wednesday 18:00
2 Where? Auditorium 612
3 Why?

9 / 45

When? Where? Why?

1 When? Wednesday 18:00
2 Where? Auditorium 612
3 Why? It will be super cool!

9 / 45

When? Where? Why?

1 When? Wednesday 18:00
2 Where? Auditorium 612
3 Why? It will be super cool!
4 WWW?

9 / 45

When? Where? Why?

1 When? Wednesday 18:00
2 Where? Auditorium 612
3 Why? It will be super cool!
4 WWW?

www.cs.arizona.edu/˜collberg/

Teaching/bsuir/2014

9 / 45

www.cs.arizona.edu/~collberg/
Teaching/bsuir/2014

What we will learn

How to be crack code (be a bad guy!).

How to be protect code (be a good guy!).

Using software protection tools (Tigress).

10 / 45

What we will do

I will lecture. . .

In-class exercises. . .
“Homework” exercises:

Hack this code!
Protect this code from hacking!

11 / 45

Prerequisites

An understanding of C programming.

Some assembly code knowledge is good.

Some Unix, like shell commands, editing
(emacs, vi), compiling (gcc), debugging
(gdb).

It’s good if you know a little about
cryptography, compilers, and computer
security, but not necessary.

12 / 45

Class behavior

Please interrupt with questions!

You can ask a question in Russian (if
someone will translate for me!).

Bring a linux/Mac OS laptop to class if you
want, but don’t play games, check email,
etc.

13 / 45

Today’s lecture

1 Software Protection Scenarios
2 Software Protection Tools
3 Overview of Obfuscation
4 Overview of Tamperproofing

14 / 45

MATE Scenarios

Software piracy

Alice
P

Alice is a software developer.

16 / 45

Software piracy

Alice Bob

P

P

Alice is a software developer.

Bob buys one copy of Alice’s program.

16 / 45

Software piracy

Alice BobP

P

P

P

Alice is a software developer.

Bob buys one copy of Alice’s program.

Bob illegally sells copies to his friends.
16 / 45

License check tampering

......

abort()
if (today()>"Aug 17")

Alice

P

17 / 45

License check tampering

......

abort()
if (today()>"Aug 17")

Alice
Bob

P

17 / 45

License check tampering

......

abort()
if (today()>"Aug 17")

......

if (false)
abort()

Alice
Bob

P

P

Bob removes license checks to be able to
run the program whenever he wants.

17 / 45

License check tampering

if (today()>"Aug 17")
abort()

......

......

if (false)
abort()

Alice
Bob

P

P
P ′

Bob removes license checks to be able to
run the program whenever he wants.

Alice protects her program so that it won’t
run after being tampered with.

17 / 45

Malicious reverse engineering

Alice
M

P

Alice’s program contains a valuable trade
secret (a clever algorithm or design).

18 / 45

Malicious reverse engineering

Alice Bob
M

P

Alice’s program contains a valuable trade
secret (a clever algorithm or design).

Bob, a rival developer, copies M into his
own program (code lifting).

18 / 45

Malicious reverse engineering

BobAlice
M

P

M

Alice’s program contains a valuable trade
secret (a clever algorithm or design).

Bob, a rival developer, copies M into his
own program (code lifting).

18 / 45

Malicious reverse engineering

Alice Bob
M

P

M
M

Q

Alice’s program contains a valuable trade
secret (a clever algorithm or design).

Bob, a rival developer, copies M into his
own program (code lifting).

18 / 45

Digital rights management (DRM)

Alice

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19 / 45

Digital rights management (DRM)

media
Encrypted

Alice Bob

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19 / 45

Digital rights management (DRM)

Software Player

media

Crypto keys

Encrypted
Alice Bob

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19 / 45

Digital rights management (DRM)

Software Player

Cleartext media
Crypto keys

Encrypted
media

Alice Bob

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19 / 45

Digital rights management (DRM)

Software Player

Cleartext media
Crypto keys

Encrypted
media

Carol

Alice Bob

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

19 / 45

Scenario: Protecting networked

computer games

Alice

P

20 / 45

Scenario: Protecting networked

computer games

BobAlice

P

20 / 45

Scenario: Protecting networked

computer games

Alice Bob

P

P

20 / 45

Scenario: Protecting networked

computer games

Cached data

BobAlice

P

P

20 / 45

Scenario: Protecting networked

computer games

Cached data

BobAlice

P

P

20 / 45

Scenario: Protecting networked

computer games

Cached data

Alice Bob

P

P

20 / 45

Protocol discovery

Call minutes

Alice Bob

P

Alice sells voice-over-IP call minutes.

21 / 45

Protocol discovery

Call minutes

mySkype!

Alice Bob

P P ′

Alice sells voice-over-IP call minutes.

Bob examines the VoIP client to discover
proprietary protocols to build his own rival
client.

21 / 45

Protecting military software

Alice Bob

The military want to be able to track
classified software.

22 / 45

Protecting military software

BobAlice

The military want to be able to track
classified software.
In 2001, an EP-3 spy/reconnaissance plane
landed on Hainan Island in China after a
collision. The crew was unable to destroy
all equipment.

22 / 45

Protecting military software

BobAlice

P

The military want to be able to track
classified software.
In 2001, an EP-3 spy/reconnaissance plane
landed on Hainan Island in China after a
collision. The crew was unable to destroy
all equipment.

22 / 45

The Man-At-The-End Problem

S
P

23 / 45

The Man-At-The-End Problem

S
S

P

P

P P

P

23 / 45

The Man-At-The-End Problem

Emulator

Decompiler
Disassembler

Debugger
Tracer
Slicer

S
S

P

P

PP

P

23 / 45

The Man-At-The-End Problem

Tracer
Slicer

Emulator
Disassembler
Decompiler

Debugger

S
S

P

P

P

P P

23 / 45

The Man-At-The-End Problem

1. Static/Dynamic Analysis
2. Modify
3. Test
4. Did it work?

S
S

P

P

P

PP

23 / 45

The Man-At-The-End Problem

4. Did it work?

2. Modify
1. Static/Dynamic Analysis

3. Test

S
S

P

P

PP

P

23 / 45

The Man-At-The-End Problem

1. Static/dynamic analysis
2. Select code
3. Select transformation
4. Apply transformation
5. Done?

S
S

P

P

P

P P

23 / 45

The Man-At-The-End Problem

1. Static/dynamic analysis

3. Select transformation

5. Done?

2. Select codeCode

4. Apply transformation
Transformations

S
S

P

P

PP

P

23 / 45

The Man-At-The-End Problem

S
S

P

P

P P

P

23 / 45

Tigress

24 / 45

Code
Obfuscation

Code obfuscation

To obfuscate a program means to

transform it into a form that is more
difficult for an adversary to
understand or change than the
original code.

26 / 45

Code obfuscation

To obfuscate a program means to

transform it into a form that is more
difficult for an adversary to
understand or change than the
original code.

Vague definition of difficult:

The obfuscated program requires
more human time, more money, or
more computing power to analyze
than the original program.

26 / 45

Code obfuscation — Example

obfuscated code
public class C {

static Object get0(Object[] I) {

Integer I7, I6, I4, I3; int t9, t8;

I7=new Integer(9);

for (;;) {

if (((Integer)I[0]).intValue()%((Integer)I[1]).intValue()==0)

{t9=1; t8=0;} else {t9=0; t8=0;}

I4=new Integer(t8);

I6=new Integer(t9);

if ((I4.intValue()ˆI6.intValue())!=0)

return new Integer(((Integer)I[1]).intValue());

else {

if ((((I7.intValue()+ I7.intValue()*I7.intValue())%2!=0)?0:1)!=1)

return new Integer(0);

I3=new Integer(((Integer)I[0]).intValue()%

((Integer)I[1]).intValue());

I[0]=new Integer(((Integer)I[1]).intValue());

I[1]=new Integer(I3.intValue());

}

}

}
27 / 45

Code obfuscation — Example original

code
public class C {

static int gcd(int x, int y) {

int t;

while (true) {

boolean b = x % y == 0;

if (b) return y;

t = x % y; x = y; y = t;

}

}

}

An obfuscation tool turns the original code
into obfuscated code.
We want obfuscating transformations that
make the program as hard to understand as
possible.

28 / 45

Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!

29 / 45

Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!

2 Data transformations
Replace data structures with new
representations!

29 / 45

Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!

2 Data transformations
Replace data structures with new
representations!

3 Control transformations
Destroy if-, while-, repeat-, etc.!

29 / 45

Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!

2 Data transformations
Replace data structures with new
representations!

3 Control transformations
Destroy if-, while-, repeat-, etc.!

4 Dynamic transformations
Make the program change at runtime!

29 / 45

Obfuscation example: original

program

✞ ☎

int main() {

int y = 6;

y = foo(y);

bar(y,42);

}
✝ ✆

✞ ☎

int foo(int x) {

return x*7;

}
✝ ✆

✞ ☎

void bar(int x, int z) {

if (x==z)

printf("%i\n",x);

}
✝ ✆

30 / 45

After abstraction transformation
✞ ☎

int main() {

int y = 6;

y = foobar(y,99,1);

foobar(y,42,2);

}
✝ ✆

✞ ☎

int foobar(int x, int z, int s) {

if (s==1)

return x*7;

else if (s==2)

if (x==z)

printf("%i\n",x);

}
✝ ✆

It appears as if main calls the same
function twice!

31 / 45

After data transformation
✞ ☎

int main() {

int y = 12;

y = foobar(y,99,1);

foobar(y,36,2);

}
✝ ✆

✞ ☎

int foobar(int x, int z, int s) {

if (s==1)

return (x*37)%51;

else if (s==2)

if (x==z) {

int x2=x*x % 51, x3=x2*x % 51;

int x4=x2*x2 % 51, x8=x4*x4 % 51;

int x11=x8*x3 % 51; printf("%i\n",x11);

}

}
✝ ✆

The integers are encrypted with RSA!
32 / 45

After control transformation

✞ ☎

int foobar(int x, int z, int s) {

char* next = &&cell0;

int retVal = 0;

cell0: next = (s==1)?&&cell1:&&cell2; goto *next;

cell1: retVal=(x*37)%51; goto end;

cell2: next = (s==2)?&&cell3:&&end; goto *next;

cell3: next = (x==z)?&&cell4:&&end; goto *next;

cell4: {

int x2=x*x % 51, x3=x2*x % 51;

int x4=x2*x2 % 51, x8=x4*x4 % 51;

int x11=x8*x3 % 51;

printf("%i\n",x11); goto end;

}

end: return retVal;

}
✝ ✆33 / 45

Anti-Tamper

What is code tampering?

Bob wants to modify the program binary so
that it does something different than we
want:

remove functionality (license check)
change data (password, cryptographic key)

add functionality (print, save game)

Tamperproofing the code makes it stop
working if Bob changes as little as a byte of
the binary!

35 / 45

Two phases of tamperproofing

Tamperproofing has to do two things:
1 detect tampering
2 respond to tampering

36 / 45

Two phases of tamperproofing

Tamperproofing has to do two things:
1 detect tampering
2 respond to tampering

Essentially:

if (tampering-detected()) abort

but this is too unstealthy!

36 / 45

Two phases of tamperproofing

Detection:
1 has the code been changed?
2 are variables in an OK state?

37 / 45

Two phases of tamperproofing

Detection:
1 has the code been changed?
2 are variables in an OK state?

Response:
1 refuse to run,
2 crash randomly,
3 phone home, . . .

37 / 45

Algorithm Chang & Atallah: Checker

network

abort()

...
foo(){

check(){

}

if (hash(foo)!=42)

}

38 / 45

Hash functions

✞ ☎

uint32 hash1 (addr_t addr,int words) {

uint32 h = *addr;

int i;

for(i=1; i<words; i++) {

addr++;

h ˆ= *addr;

}

return h;

}
✝ ✆

39 / 45

Hash functions

✞ ☎

void important_function () {

...

}

int main () {

int v = hash (important_function,1000);

if (v != 0x4C49F346) {

crash the program

}

important_function(...)

}
✝ ✆

40 / 45

Algorithm Chang & Atallah: Checker

network

abort()

...
foo(){

check(){

}

if (hash(foo)!=42)

}

41 / 45

Algorithm Chang & Atallah: Checker

network

foo(){
...

}

41 / 45

Algorithm Chang & Atallah: Checker

network

}

foo(){ foo(){
...

}
...

41 / 45

Algorithm Chang & Atallah: Checker

network

}

foo(){
...

}

foo(){

foo(){
...

}cp

...

check(){

}

}

if (hash(foo)!=42)

...
foo(){

41 / 45

Algorithm Chang & Atallah: Checker

network

if (hash(...)!=42)

foo(){
...

}

foo(){
...

}cp

}

check(){
if (hash(foo)!=42)

...
foo(){

check(){

}
cp

foo(){
...

}

}
41 / 45

Repairing Hacked Functions
✞ ☎

void copy_of_important_function () {

...

}

void important_function () {

...

}

int main () {

int v = hash (important_function,1000);

if (v != 0x4C49F346) {

memcpy(important_function,

copy_of_important_function,

1000)

}

important_function(...)

}
✝ ✆

42 / 45

Checker network

decrypt

play

getkey

decode

main

r1 c1

c0

c2r2

r3

c3

code — code blocks
ci — checkers
ri — repairers

43 / 45

Skype’s hash function

✞ ☎

uint32 hash7() {

addr_t addr=(addr_t)((uint32)addrˆ(uint32)addr);

addr = (addr_t)((uint32)addr + 0x688E5C);

uint32 hash = 0x320E83 ˆ 0x1C4C4;

int bound = hash + 0xFFCC5AFD;

do {

uint32 data=*((addr_t)((uint32)addr + 0x10));

goto b1; asm volatile(".byte 0x19"); b1:

hash = hash ⊕ data; addr -= 1; bound--;

} while (bound!=0);

goto b2; asm volatile(".byte 0x73"); b2:

goto b3; asm volatile(".word 0xC8528417,..."); b3:

hash-=0x4C49F346; return hash;

}
✝ ✆

44 / 45

Next week’s lecture

1 Software Hacking Techniques
2 Bring a Linux/MacOS laptop, if

you have. Make sure gcc and

gdb have been installed.
3 Look at Exercise 1 files on the

website.

45 / 45

