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Last week’s lecture

What form does the program take that that
the adversary gets to attack?
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Last week’s lecture

What form does the program take that that
the adversary gets to attack?

List some attack techniques!
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In-Class Exercise

Alice writes a program that she only wants
Bob to execute 5 times.

At the end of each run, the program writes
a file .AliceSecretCount with the
number of runs so far.

At the beginning of each run, the program
reads the file .AliceSecretCount and, if
the number of runs so far is ≥ 5, it exits with
an error message BAD BOB! .

Draw a detailed attack tree with all attacks
available to Bob!
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Today’s lecture

1 Program analysis
2 Control flow analysis
3 Disassembly
4 Decompilation
5 Self-modifying code
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Program Analysis



Protection

Tool

Analyses
Program

S S

Defenders analyze their program to protect it!



Tool

Analyses
Program

AttackS S

Attackers analyze our program to modify it!



Program Analysis

Attackers: need to analyze our program to
modify it!

Defenders: need to analyze our program to
protect it!
Two kinds of analyses:

1 static analysis tools collect information about a
program by studying its code;

2 dynamic analysis tools collect information from
executing the program.

8 / 60



Analyses
Static

}

while (...){

add r1,r2
mov r2,2(r3)
jmp L3

A[v]=x
x=x+y;

S



Static Analyses

control-flow graphs: representation of
(possible) control-flow in functions.
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Static Analyses

control-flow graphs: representation of
(possible) control-flow in functions.

call graphs: representation of (possible)
function calls.

disassembly: turn raw executables into
assembly code.

decompilation: turn raw assembly code into
source code.
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Input data

while (...){

add r1,r2
mov r2,2(r3)
jmp L3

Trace
data Analyses

Dynamic

A[v]=x
x=x+y;

}

S



Dynamic Analyses

debugging: what path does the program
take?
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Dynamic Analyses

debugging: what path does the program
take?

tracing: which functions/system calls get
executed?
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Dynamic Analyses

debugging: what path does the program
take?

tracing: which functions/system calls get
executed?

profiling: what gets executed the most?
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Control-Flow
Graphs



Control-flow Graphs (CFGs)

A way to represent the
possible flow of control inside a function.

Nodes are called basic blocks.

Each block consists of straight-line code
ending (possibly) in a branch.

An edge A→ B: control could flow from A
to B.
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✞ ☎

int modexp(int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
✝ ✆

✞ ☎

(1) k=0

(2) s=1

(3) if (k>=w) goto (12)

(4) if (x[k]!=1) goto (7)

(5) R=(s*y)%n

(6) goto (8)

(7) R=s

(8) s=R*R%n

(9) L=R

(10) k++

(11) goto (3)

(12) return L
✝ ✆



The resulting graph

(1) k=0
(2) s=1

(7) R=s(5) R=(s*y) mod n

(12) return L

(8) s=R*R mod n
(9) L = R

(10) k++
(11) goto B1

B0 :

B4 :B3 :

(6) goto B5

B6 :

B1 :
(3) if (k>=w)goto B6

(4) if (x[k]!=1) goto B4
B2 :

B5 :
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Step 1: Generate Three-Address

Statements

Compile the function into a sequence of
simpler statements:

x = y + z

if (x < y) goto L

goto L

These are called
three-address statements.

Other representations are possible, for
example expression trees.
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Step 2: Build the graph

BUILDCFG(F ):

1 Mark every instruction which can start a basic
block as a leader:

the first instruction is a leader;
any target of a branch is a leader;
the instruction following a conditional
branch is a leader.

2 A basic block consists of the instructions from a
leader up to, but not including, the next leader.

3 Add an edge A→ B if A ends with a branch to B
or can fall through to B.
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In-Class Exercise I
✞ ☎

int gcd(int x, int y) {

int temp;

while (true) {

if (x%y == 0) break;

temp = x%y;

x = y;

y = temp;

}

}
✝ ✆

1 Turn this function into a sequence of
three-address statements.

2 Turn the sequence of simplified statements
into a CFG.
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In-Class Exercise II

✞ ☎

X := 20;

WHILE X < 10 DO

X := X-1;

A[X] := 10;

IF X = 4 THEN

X := X - 2;

ENDIF;

ENDDO;

Y := X + 5;
✝ ✆

✞ ☎

(1) X := 20

(2) if X>=10 goto (8)

(3) X := X-1

(4) A[X] := 10

(5) if X<>4 goto (7)

(6) X := X-2

(7) goto (2)

(8) Y := X+5
✝ ✆

1 Construct the corresponding CFG.
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Call Graphs



Interprocedural control flow

Interprocedural analysis also considers
flow of information between functions.

Call graphs are a way to represent
possible function calls.

Each node represents a function.

An edge A→ B: A might call B.
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Building call-graphs

✞ ☎

void h();

void f(){ h(); }

void g(){ f(); }

void h() { f(); g(); }

void k() {}

int main() {

h();

void (*p)() = &k;

p();

}
✝ ✆

h

f

gmain

k
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In-Class Exercise

Build the call graph for the Java program on
the next slide.
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✞ ☎

class M {

public void a () {System.out.println("hello");}

public void b () {}

public void c () {System.out.println("world!")}

}

class N extends M {

public void a () {super.a();}

public void b () {this.b(); this.c();}

public void c () {}

}

class Main {

public static void main (String args[]) {

M x = (args.length > 0)? new M() : new N();

x.a();

N y = new N(); y.b();

}

}
✝ ✆



Disassembly



Protection

Tool

strip

gcc
p.exe

6 9 19 245
99 23 255
50 89 88 90
1 23 45 71

S

S
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6 9 19 245
99 23 255
50 89 88 90
1 23 45 71

p.exe

mov R1,R2
add R2,R2
jmp L3
L4: call Q

p.as
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Instruction Set

On the next slide you will see an instruction
set for a small architecture.

All operators and operands are one byte
long.

Instructions can be 1-3 bytes long.
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Instruction set 1

opcode mnemonic operands semantics

0 call addr function call to addr

1 calli reg function call to ad-
dress in reg

2 brg offset branch to pc + offset
if flags for > are set

3 inc reg reg← reg+1

4 bra offset branch to pc+offset

5 jmpi reg jump to address in
reg

6 prologue beginning of function

7 ret return from function
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Instruction set 2

opcode mnemonic operands semantics

8 load reg1,(reg2) reg1← [reg2]
9 loadi reg, imm reg← imm

10 cmpi reg, imm compare reg and
imm and set flags

11 add reg1, reg2 reg1← reg1 + reg2

12 brge offset branch to pc + offset
if flags for ≥ are set

13 breq offset branch to pc + offset
if flags for = are set

14 store (reg1), reg2 [reg1]← reg2
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Disassembly — example

✞ ☎

6 0 10 9 0 43 1 0 7 0 6 9 0 1 10

0 1 2 26 9 1 30 11 1 0 8 2 1 5 2

32 37 9 1 3 4 7 9 1 4 4 2 7 6 9 0

3 7 6 9 0 1 7 42 2 4 3 1 7 4 3 4 1
✝ ✆

Next few slides show the results of different
disassembly algorithms.

Correctly disassembled regions are in pink.
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✞ ☎
main: # ORIGINAL PROGRAM

0: [6] prologue

1: [0,10] call foo

3: [9,0,43] loadi r0,43

6: [1,0] calli r0

8: [7] ret

9: [0] .align 2

foo:

10:[6] prologue

11:[9,0,1] loadi r0,1

14:[10,0,1 cmpi r0,1

17:[2,26] brg 26

19:[9,1,30] loadi r1,30

22:[11,1,0] add r1,r0

25:[8,2,1] load r2,(r1)

28:[5,2] jmpi r2

30:[32] .byte 32

31:[37] .byte 37

32:[9,1,3] loadi r1,3

35:[4,7] bra 7

37:[9,1,4] loadi r1,4

40:[4,2] bra 2

42:[7] ret
✝ ✆

✞ ☎
bar:

43:[6] prologue

44:[9,0,3] loadi r0,3

47:[7] ret

baz:

48:[6] prologue

49:[9,0,1] loadi r0,1

52:[7] ret

life:

53:[42] .byte 42

fred:

54:[2,4] brg 4

56:[3,1] inc r1

58:[7] ret

59:[4,3] bra 3

61:[4,1] bra 1
✝ ✆



✞ ☎
# LINEAR SWEEP DISASSEMBLY

0: [6] prologue

1: [0,10] call 10

3: [9,0,43] loadi r0,43

6: [1,0] calli r0

8: [7] ret

9: [0,6] call 6

11:[9,0,1] loadi r0,1

14:[10,0,1] cmpi r0,1

17:[2,26] brg 26

19:[9,1,30] loadi r1,30

22:[11,1,0] add r1,r0

25:[8,2,1] load r2,(r1)

28:[5,2] jmpi r2

30:[32] ILLEGAL 32

31:[37] ILLEGAL 37

32:[9,1,3] loadi r1,3

35:[4,7] bra 7

37:[9,1,4] loadi r1,4

40:[4,2] bra 2

42:[7] ret
✝ ✆

✞ ☎
43:[6] prologue

44:[9,0,3] loadi r0,3

47:[7] ret

48:[6] prologue

49:[9,0,1] loadi r0,1

52:[7] ret

53:[42] ILLEGAL 42

54:[2,4] brg 4

56:[3,1] inc r1

58:[7] ret

59:[4,3] bra 3

61:[4,1] bra 1
✝ ✆



✞ ☎
f0: # RECURSIVE TRAVERSAL

0: [6] prologue

1: [0,10] call 10

3: [9,0,43] loadi r0,43

6: [1,0] calli r0

8: [7] ret

9: [0] .byte 0

f10:

10:[6] prologue

11:[9,0,1] loadi r0,1

14:[10,0,1] cmpi r0,1

17:[2,26] brg 26

19:[9,1,30] loadi r1,30

22:[11,1,0] add r1,r0

25:[8,2,1] load r2,(r1)

28:[5,2] jmpi r2

30:[32] .byte 32

31:[37] .byte 37
✝ ✆

✞ ☎
32:[9,1,3] loadi r1,3

35:[4,7] bra 7

37:[9,1,4] loadi r1,4

40:[4,2] bra 2

42:[7] ret

43:[6] prologue

44:[9,0,3] loadi r0,3

47:[7] ret

48:[6] .byte 6

49:[9] .byte 9

50:[0] .byte 0

51:[1] .byte 1

52:[7] .byte 7

53:[42] .byte 42

54:[2] .byte 2

..........

59:[4] .byte 4

60:[3] .byte 3

61:[4] .byte 4

62:[1] .byte 1
✝ ✆



Exercise

1 Disassemble this binary instruction
sequence:

✞ ☎

6 0 4 7

6 9 0 1 10 0 1 2 26 9 1 30

11 1 0 8 2 1 5 2 32 37 9 1 3

4 7 9 0 38 1 0 7 99

6 9 0 3 7
✝ ✆
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opcode mnemonic operands semantics

0 call addr function call to addr

1 calli reg function call to ad-
dress in reg

2 brg offset branch to pc + offset
if flags for > are set

3 inc reg reg← reg+1

4 bra offset branch to pc+offset

5 jmpi reg jump to address in
reg

6 prologue beginning of function

7 ret return from function



opcode mnemonic operands semantics

8 load reg1,(reg2) reg1← [reg2]
9 loadi reg, imm reg← imm

10 cmpi reg, imm compare reg and
imm and set flags

11 add reg1, reg2 reg1← reg1 + reg2

12 brge offset branch to pc + offset
if flags for ≥ are set

13 breq offset branch to pc + offset
if flags for = are set

14 store (reg1), reg2 [reg1]← reg2



Why is disassembly hard?

Variable length instruction sets —
overlapping instructions.
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Why is disassembly hard?

Variable length instruction sets —
overlapping instructions.

Mixing data and code — misclassify data
as instructions.

Indirect jumps — must assume that any
location could be the start of an instruction!

Find the beginning of functions if all calls
are indirect.
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Why is disassembly hard. . . ?

Finding the end of fuctions — if no
dedicated return instruction.
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Why is disassembly hard. . . ?

Finding the end of fuctions — if no
dedicated return instruction.

Handwritten assembly code — won’t
conform to the standard calling
conventions.

code compression — the code of two
functions may overlap.

Self-modifying code.
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Decompilation



Protection

Tool

strip

gcc
p.exe

6 9 19 245
99 23 255
50 89 88 90
1 23 45 71

S

S
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6 9 19 245
99 23 255
50 89 88 90
1 23 45 71

p.exe

mov R1,R2
add R2,R2
jmp L3
L4: call Q

p.as

41 / 60



99 23 255
50 89 88 90
1 23 45 71

mov R1,R2
add R2,R2
jmp L3
L4: call Q

p.as p.exe

6 9 19 245

p.c

while (...){
   a += b;
   Q();
}
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cmpi    r1,5
brge

loadi   r0,100
loadi   r1,(r0)
cmpi    r1,10
brge

loadi   r0,100
loadi   r1,(r0)
inc     r1
inc     r1
store   (r0),r1
bra

braloadi   r0,100
loadi   r1,(r0)
inc     r1
store   (r0),r1

call    0x459F8
bra

ret

goto
x=x+2

return

if (x>=10)

x=1

x=x+1

call    printf
goto

prolog
loadi   r0,100
loadi   r1,1
store   (r0),r1

loadi   r0,100
loadi   r1,(r0)

if (x>=5) 
B7

B2

B6

B1

B7

B4

B5

B4

B3

B1

B5

B6

B5

B4

B6

B6

B1

B0

B3

B5

B1

B2

B0

B4



n

x
t

rightcond left

if−else<=

left right

var x const 10

e
n

x
t

++

left

var x

e
n

x
t

left right

+=

var x const 2

printf

call

<=

left right

var x const 5

return
while

e
n

x
t

cond body
e
n

x
t

left right

=

var x const 1

e
n

x
t

body

function

foo

e



✞ ☎

void foo() {

x=1;

while (x<10} {

if (x<5)

x++;

else

x+=2;

printf();

}

}
✝ ✆



What’s so hard about decompilation?

Disassembly — first step of any
decompiler!
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What’s so hard about decompilation?

Disassembly — first step of any
decompiler!

Target language — assembly code may not
correspond to any legal source code.

Standard library functions — (call
printf()⇒ call foo96()).

Idioms of different compilers (xor
r0,r0⇒r0=0).

45 / 60



What’s so hard about decompilation?

Artifacts of the target architecture
(unnecessary jumps-to-jumps).
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What’s so hard about decompilation?

Artifacts of the target architecture
(unnecessary jumps-to-jumps).

Structured control-flow — from mess of
machine code branches.

Compiler optimizations — undo loop
unrolling, shifts and adds⇒ original
multiplication by a constant.

Loads/stores –⇒ operations on arrays,
records, pointers, and objects.
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Self-Modifying
Code



Abnormal Programs

In a “normal” program, the code segment
doesn’t change.

But, the programs in this course are not
normal!

Programs which change the code segment
are called self-modifying.

48 / 60



Example

✞ ☎

0: [9,0,12] loadi r0,12

3: [9,1,4] loadi r1,4

6: [14,0,1] store (r0),r1

9: [11,1,1] add r1,r1

12: [3,4] inc r4

14: [4,-5] bra -5

16: [7] ret
✝ ✆
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Instruction set 1

opcode mnemonic operands semantics

0 call addr function call to addr

1 calli reg function call to ad-
dress in reg

2 brg offset branch to pc + offset
if flags for > are set

3 inc reg reg← reg+1

4 bra offset branch to pc+offset

5 jmpi reg jump to address in
reg

6 prologue beginning of function

7 ret return from function
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Instruction set 2

opcode mnemonic operands semantics

8 load reg1,(reg2) reg1← [reg2]
9 loadi reg, imm reg← imm

10 cmpi reg, imm compare reg and
imm and set flags

11 add reg1, reg2 reg1← reg1 + reg2

12 brge offset branch to pc + offset
if flags for ≥ are set

13 breq offset branch to pc + offset
if flags for = are set

14 store (reg1), reg2 [reg1]← reg2
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Building the CFG is simple!

add    r1,r1
inc    r4
bra    −5

store  (r0),r1
loadi  r1,4
loadi  r0,12

ret    
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Building the CFG is simple!

add    r1,r1
inc    r4
bra    −5

store  (r0),r1
loadi  r1,4
loadi  r0,12

ret    

The CFG isn’t even connected!

The backwards branch at position 14 forms
an infinite loop!
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Look again!
✞ ☎

0: [9,0,12] loadi r0,12

3: [9,1,4] loadi r1,4

6: [14,0,1] store (r0),r1

9: [11,1,1] add r1,r1

12: [3,4] inc r4

14: [4,-5] bra -5

16: [7] ret
✝ ✆

The store instruction is writing the byte 4
to position 12, changing the inc r4

instruction into a bra 4 !
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Actual CFG

The actual control flow graph looks like this:

store  (r0),r1
loadi  r1,4
loadi  r0,12

add    r1,r1

bra    4

ret    
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Actual CFG

The actual control flow graph looks like this:

store  (r0),r1
loadi  r1,4
loadi  r0,12

add    r1,r1

bra    4

ret    

If the codebytes are changing at runtime, a
standard control flow graph isn’t sufficient.
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New CFG Model

1 Add a codebyte data structure to the graph
that represents all the different states each
instruction can be in.

2 Add conditions to the edges; only if the
condition on an edge is true can control
take that path.

11

1

9

11
10

1

9

3

bra    4

ret    

12

3
4

[12]==4

store  (r0),r1
loadi  r1,4
loadi  r0,12

add    r1,r1

inc    r4

bra    −5

[12]==3
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New CFG Model. . .

11

1

9

11
10

1

9

3

bra    4

ret    

12

3
4

[12]==4

store  (r0),r1
loadi  r1,4
loadi  r0,12

add    r1,r1

inc    r4

bra    −5

[12]==3
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New CFG Model. . .

1 The add instruction comprises three bytes
〈11,1,1〉 at addresses 9-11.

2 Code byte addresses are in pink and the
code bytes themselves in blue.

3 At location 12, two values can be stored, 3
and 4.

4 The outgoing edges from add’s basic block
are conditional on what is stored at 12,
either 3 or 4.
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New CFG Model. . .

1 Nice representation of a self-modifying
function!

2 But, hard to build in practice.

3 Computer viruses are often self-modifying.

4 We will see self-modifying protection
algorithms later in the course.
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Next week’s lecture

1 Obfuscation algorithms
2 Please check the website for

important announcements:

www.cs.arizona.edu/˜collberg/

Teaching/mgu/2014
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