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@ What form does the program take that that
the adversary gets to attack?
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Last week’s lecture

@ What form does the program take that that
the adversary gets to attack?

@ List some attack techniques!
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In-Class Exercise

@ Alice writes a program that she only wants
Bob to execute 5 times.

@ At the end of each run, the program writes
afile .AliceSecretCount with the
number of runs so far.

@ At the beginning of each run, the program
reads the file .AliceSecretCount and, if
the number of runs so far is > 5, it exits with
an error message BAD BOB!.

@ Draw a detailed attack tree with all attacks
available to Bob!



Today’s lecture

@ Program analysis

@ Control flow analysis
@ Disassembly

@ Decompilation

@ Self-modifying code



Program Analysis
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Program Analysis

@ Attackers: need to analyze our program to
modify it!
@ Defenders: need to analyze our program to
protect it!
@ Two kinds of analyses:
@ static analysis tools collect information about a
program by studying its code;
@ dynamic analysis tools collect information from
executing the program.



add r1,r2
mov r2,2(r3)
jmp L3

while (...){
X=X+Y;
A[v]=x

Static
Analyses

A




Static Analyses

@ control-flow graphs: representation of
(possible) control-flow in functions.
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Static Analyses

@ control-flow graphs: representation of
(possible) control-flow in functions.

@ call graphs: representation of (possible)
function calls.

@ disassembly: turn raw executables into
assembly code.

@ decompilation: turn raw assembly code into
source code.
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add r1,r2
mov r2,2(r3)
jmp L3

while (...
X=XtYy,
Alv]=x

Trace
data

Y

A

-

Input data

4

Dynamic
Analyses




Dynamic Analyses

@ debugging: what path does the program
take?
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Dynamic Analyses

@ debugging: what path does the program
take?

@ tracing: which functions/system calls get
executed?
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Dynamic Analyses

@ debugging: what path does the program
take?

@ tracing: which functions/system calls get
executed?

@ profiling: what gets executed the most?
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Control-Flow
Graphs



Control-flow Graphs (CFGs)

@ A way to represent the
possible flow of control inside a function.

@ Nodes are called basic blocks.

@ Each block consists of straight-line code
ending (possibly) in a branch.

@ An edge A — B: control could flow from A
to B.
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int modexp (int y,int x[]
int w,int n)
int R, L; (1) k=0
int k 0; (2) s=1
int s = 1; (3) if (k>=w) goto (12)
while (k < w) { (4) if (x[k]!=1) goto (7)
if (x[k] == 1) (5) R=(s*y)%n
R = (s*xy) % n; IE:> (6) goto (8)
else (7) R=s
R = s; (8) s=R*R%n
s = R+xR % nj; (9) L=R
L = R; (10) k++
k++; (11) goto (3)
} (12) return L
return L;
}




The resulting graph

By :| (1)k=0
(2)s=1

v v

| (3) if (k>=w)goto E%‘

Bs : (12) return L

N

Bs: (5) R=(s*y) mod n
(6) goto Bs

~

(8) s=R*R mod n
9L=R
(10) k++
(11) goto B

|

B5Z
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Step 1: Generate Three-Address
Statements

@ Gompile the function into a sequence of
simpler statements:

Q@ x =y + 2z
@ if (x < y) goto L
@ goto L
@ These are called
three-address statements.

@ Other representations are possible, for
example expression trees.
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Step 2: Build the graph

BUILDCFG(F):

@ Mark every instruction which can start a basic
block as a leader:

@ the first instruction is a leader;

@ any target of a branch is a leader;

@ the instruction following a conditional
branch is a leader.

© A basic block consists of the instructions from a
leader up to, but not including, the next leader.

© Add an edge A — Bif Aends with a branch to B
or can fall through to B. O
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In-Class Exercise |

int gcd(int x, int y) {
int temp;
while (true) {
if (x%y == 0) break;
temp = x%y;
X =Y
y = temp;

@ Turn this function into a sequence of
three-address statements.

@ Turn the sequence of simplified statements
into a CFG.
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In-Class Exercise |l

- . ~
;<VH£LE2)(;I< 10 DO (1) X := 20
X iz X—1: (2) if X>=10 goto (8)
A[X] . 3_0. (3) X 1= X-1
(5) if X<>4 goto (7)
X =X - 2;
ENDIF: (6) X 1= X=-2
ENDDO; (7) goto (2)
(8) Y := X+5
Y := X + 55

@ Construct the corresponding CFG.

20/60



Call Graphs



Interprocedural control flow

@ Interprocedural analysis also considers
flow of information between functions.

@ Call graphs are a way to represent
possible function calls.

@ Each node represents a function.
@ An edge A — B: A might call B.
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Building call-graphs

void h{();
void £(){ h(); }
void g(){ £(); }
void h() { £(0); g();
void k() {}
int main () {

h();

void (xp) () = &k;

pQ);
}

}

23/60



In-Class Exercise

@ Build the call graph for the Java program on
the next slide.
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~
class M {

public void a () {System.out.println("hello");}
public void b () {}
public void ¢ () {System.out.println ("world!")}

}

class N extends M {
public void a () {super.a();}
public void b () {this.b(); this.c();}
public void c () {}

}

class Main {

public static void main (String args[]) {
M x = (args.length > 0)? new M() : new N{();
x.a();

I~ 1

N y new N(); y.b();




Disassembly



p.exe

gcc
strip 69 19 245
Protection 99 23 255
50 89 88 90
Tool LD |:> e

A
Y
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p.as

mov R1,R2
add R2,R2

jmp L3

L4: call Q

p.exe

69 19 245
99 23 255
50 89 88 90
1234571

A

Y
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Instruction Set

@ On the next slide you will see an instruction
set for a small architecture.

@ All operators and operands are one byte
long.
@ Instructions can be 1-3 bytes long.
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Instruction set 1

| opcode | mnemonic | operands | semantics

0 call adar function call to addr

1 calli reg function call to ad-
dress in reg

2 brg offset branch to pc + offset
if flags for > are set

3 inc reg reg < reg +1

4 bra offset branch to pc + offset

5 jmpi reg jump to address in
reg

6 prologue beginning of function

7 ret return from function
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Instruction set 2

| opcode | mnemonic | operands | semantics |

8 load regq,(reg,) | regy < [regs]

9 loadi reg,imm reg < imm

10 cmpi reg,imm compare reg and
imm and set flags

11 add regi,reg> | regq < reg;+reg,

12 brge offset branch to pc + offset
if flags for > are set

13 breq offset branch to pc + offset
if flags for = are set

14 store (regq),regs | [reg4] < reg,
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Disassembly — example

0 10 9043 1 07 06 90110

1 226 9130111082152
2379134791442 7¢6 90

76 9017 42 2 4 317 4341

@ Next few slides show the results of different
disassembly algorithms.

@ Correctly disassembled regions are in pink.
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main:

O 0 oy WK O

[6]
[0,10]
[9,0,43]
[1,0]
[7]

[01]

foo:

11:
14:
17:
19:
22
25:
28:
30:
31:
32:
35
37:
40:
42

:[6]

[9,0,1]
[10,0,1
[2,26]
[9,1,30]

:[11,1,0]

[8,2,1]
[5,2]
[32]
[37]
[9,1,3]

1 [4,7]

[9,1,4]
[4,2]
[7]

# ORIGINAL PROGRAM

prologue

call foo
loadi r0,43
calli rQ0
ret

.align 2
prologue

loadi r0,1
cmpi r0,1
brg 26
loadi rl, 30
add rl,r0
load r2, (rl)
Jmpi r2
.byte 32
.byte 37
loadi rl,3
bra 7
loadi rl,4
bra 2

ret

-
bar:

43:[6] prologue
44:19,0,3]1 loadi r0,3
47:[7] ret

baz:

48:[6] prologue
49:19,0,11 1loadi r0,1
52:[7] ret

life:

53:[42] .byte 42
fred:

54:[2,4] brg

56:[3,1] inc rl
58:[7] ret

59:[4,3] bra 3
61:[4,1] bra 1
-




LINEAR SWEEP DISASSEMBLY

[6]
[0,10]
[9,0,43]
[1,0]
[7]
[0,6]
:[9,0,1]
:[10,0,1]
1 [(2,26]
:[9,1,30]
:[11,1,0]
:08,2,1]
1 [5,2]

1 [32]

1 [37]
:19,1,3]
1 04,7]
:09,1,4]
1 [4,2]

1 [7]

prologue
call
loadi
calli
ret

call
loadi
cmpi

brg
loadi
add

load r2,
Jmpi
ILLEGAL
ILLEGAL
loadi
bra
loadi
bra

EET

10
r0,43
r0

6
r0,1
r0,1
26
rl, 30
rl, r0
(rl)
r2

32

37
rl,3
7
rl,4
2

(43:[6] prologue
44:19,0,3] loadi r0, 3
47:17] ret
48:[6] prologue
49:19,0,11 1loadi r0,1
52:[7] ret
53:[42] ILLEGAL 42
54:12,4] brg 4
56:[3,1] inc rl
58:[7] ret
59:[4,3] bra 3
61:[4,1] bra 1




f0: # RECURSIVE TRAVERSAL
0: [6] prologue

1: [0,10] call 10

3: [9,0,43] loadi r0,43
6: [1,0] calli r0

8: [7] ret

9: [0] .byte 0
£f10:

10:[6] prologue
11:[9,0,11 1loadi r0,1
14:[10,0,1] cmpi r0,1
17:[2,26] brg 26
19:[9,1,30] loadi rl,30
22:[11,1,0] add rl,r0
25:18,2,1] load «r2, (rl)
28:[5,2] Jmpi r2
30:[32] .byte 32
31:[37] .byte 37

-
32:
35:
37:
40:
42
43:
44:
47:

48:
49:
50:
51:
52:
53:
54:

59:
60:
61:
62:

, 31 loadi
] bra

, 4] loadi
, 2] bra

1 ret
] prologue
,0,3] loadi

7] ret

[6] .byte
[9] .byte
[0] .byte
[1] .byte
[7] .byte
[42] .byte
[2] .byte

rl,3

rl,4

r0,3

N> 9 O wwo

s W




Exercise

@ Disassemble this binary instruction
sequence:

6 0 4 7

6 90110012 26 91 30
11108 21523237913
4 8 1 0 7 99

6

O J
[@2ENe]
w O
~ W
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| opcode | mnemonic | operands | semantics |

0 call aaar function call to addr

1 calli reg function call to ad-
dress in reg

2 brg offset branch to pc + offset
if flags for > are set

3 inc reg reg < reg + 1

4 bra offset branch to pc+ offset

5 jmpi reg jump to address in
reg

6 prologue beginning of function

7 ret return from function




| opcode | mnemonic | operands | semantics

8 load regq,(reg,) | regy < [regs|

9 loadi reg,imm reg < imm

10 cmpi reg,imm compare reg and
imm and set flags

11 add reg{,reg, | regy < reg¢+regs

12 brge offset branch to pc + offset
if flags for > are set

13 breq offset branch to pc + offset
if flags for = are set

14 store (regy),reg, | [regq] < reg,




Why is disassembly hard?

@ Variable length instruction sets —
overlapping instructions.
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Why is disassembly hard?

@ Variable length instruction sets —
overlapping instructions.

@ Mixing data and code — misclassify data
as instructions.

@ Indirect jumps — must assume that any
location could be the start of an instruction!

@ Find the beginning of functions if all calls
are indirect.

38/60



Why is disassembly hard...?

@ Finding the end of fuctions — if no
dedicated return instruction.
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Why is disassembly hard...?

@ Finding the end of fuctions — if no
dedicated return instruction.

@ Handwritten assembly code — won'’t
conform to the standard calling
conventions.

@ code compression — the code of two
functions may overlap.

@ Self-modifying code.

39/60



Decompilation



p.exe

gcc
strip 69 19 245
Protection 99 23 255
50 89 88 90
Tool LD |:> e

A
Y
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p.as

mov R1,R2
add R2,R2

jmp L3

L4: call Q

p.exe

69 19 245
99 23 255
50 89 88 90
1234571

A

Y
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p.c p.as
while (...){ mov R1,R2
a+=b; <::l add R2,R2
Q0; jmp L3
} L4: call Q

p.exe

69 19 245
99 23 255
50 89 88 90
1234571

A

Y

41

/60



prolog Bo
loadi r0,100
loadi r1,1

store (r0),r1

u—£

loadi r0,100
loadi r1,(r0) By
cmpi r1,10
brge Bg

By

loadi r0,100

loadi r1,(r0) Bg By
cmpi rl,5 return i =
brge By ‘ ‘ ‘If =) = ‘

5, /\ 5, [EE> By \ By

loadi 10,100 By ;;;(;2 B
loadi r1,(r0) >
inc 1 By Bs /
store (r0),r1 loadi 10,100 call printf
loadi r1,(r0) goto By
inc rl
inc rl \—
store (r0),r1
bra Bs
Bs /
call O0x459F8
bra By

r |



function

foo body

X o>

while

left right

|var| | |const[ i/ \
<= if-else call

left | ”ght cond |left [right

|var|x||const| 10|/ A \

++ +=

"'><(D3
X o>

cond body

~ X 0>
A

printf

left right

— X ® 3
X o>

left ] right left

A
|var| X ||const 5| |var X | |var| X | |const[ 2|




void foo () {
x=1;
while (x<10}
if (x<5)
xX++;
else
x+=2;
printf ();




What'’s so hard about decompilation?

@ Disassembly — first step of any
decompiler!
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What'’s so hard about decompilation?

@ Disassembly — first step of any
decompiler!

@ Target language — assembly code may not
correspond to any legal source code.

@ Standard library functions — (call
printf () = call foo096()).

@ Idioms of different compilers (xor
r0, r0=r0=0).
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What'’s so hard about decompilation?

@ Artifacts of the target architecture
(unnecessary jumps-to-jumps).
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What'’s so hard about decompilation?

@ Artifacts of the target architecture
(unnecessary jumps-to-jumps).

@ Structured control-flow — from mess of
machine code branches.

@ Compiler optimizations — undo loop
unrolling, shifts and adds =- original
multiplication by a constant.

@ Loads/stores — = operations on arrays,
records, pointers, and objects.

46/60



Self-Modifying
Code



Abnormal Programs

@ In a “normal” program, the code segment
doesn’t change.

@ But, the programs in this course are not
normal!

@ Programs which change the code segment
are called self-modifying.
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Example

o W O

,0,12] loadi r0,12
1,4 loadi rl,4
] store (r0),rl
] add rl,rl
inc ré
bra -5
ret
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Instruction set 1

| opcode | mnemonic | operands | semantics

0 call adar function call to addr

1 calli reg function call to ad-
dress in reg

2 brg offset branch to pc + offset
if flags for > are set

3 inc reg reg < reg +1

4 bra offset branch to pc + offset

5 jmpi reg jump to address in
reg

6 prologue beginning of function

7 ret return from function

50/60



Instruction set 2

| opcode | mnemonic | operands | semantics |

8 load regq,(reg,) | regy < [regs]

9 loadi reg,imm reg < imm

10 cmpi reg,imm compare reg and
imm and set flags

11 add regi,reg> | regq < reg;+reg,

12 brge offset branch to pc + offset
if flags for > are set

13 breq offset branch to pc + offset
if flags for = are set

14 store (regq),regs | [reg4] < reg,
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Building the CFG is simple!

loadi r0,12
loadi r1,4
store (r0),r1
v v
add ri,r1
inc r4
bra -5

[

ret
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Building the CFG is simple!

loadi r0,12
loadi r1,4
store (r0),r1
v v
add ri,r1
inc r4
bra -5

[

ret

@ The CFG isn’'t even connected!

@ The backwards branch at position 14 forms
an infinite loop!

52/60



Look again!

0: [9,0,12] loadi r0,12
3: [9,1,4] loadi rl,4

o: [14,0,1] store (r0),rl
9: [11,1,1] add rl,rl
12: [3,4] inc rd

14: [4,-5] bra -5

16: [7] ret

@ The store instruction is writing the byte 4
to position 12, changing the inc r4
instruction into a bra 4!
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Actual CFG

@ The actual control flow graph looks like this:

loadi r0,12
loadi r1,4
store (r0),r1

!

| add ri,rl |

|

|bra 4 |

!

| ret |
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Actual CFG

@ The actual control flow graph looks like this:

loadi r0,12
loadi r1,4
store (r0),r1

!

| add ri,rl |

|

|bra 4 |

!

| ret |

@ If the codebytes are changing at runtime, a
standard control flow graph isn’t sufficient.
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New CFG Model

@ Add a codebyte data structure to the graph
that represents all the different states each
instruction can be in.

@ Add conditions to the edges; only if the
condition on an edge is true can control

take that path.

9]
loadi r0,12 -m
loadi r1,4
store (r0),r1
v 1
add ri,rl
- [12]==4

=]
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New CFG Model...

9
loadi r0,12
IgZd: ;1,4 - 10
store (rOj,rl 11 1
v 1
| add ri,r1 |
R2l=3 .- Tl [12==4
|inc r4 “ | 132 |bra 4* |
v 4 v
| bra -5 | 5 | ret |
I 3
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New CFG Model...

@ The add instruction comprises three bytes
(11,1,1) at addresses 9-11.

@ Code byte addresses are in pink and the
code bytes themselves in blue.

@ Atlocation 12, two values can be stored, 3
and 4.

© The outgoing edges from add’s basic block
are conditional on what is stored at 12,
either 3 or 4.

7/60



New CFG Model...

@ Nice representation of a self-modifying
function!

@ But, hard to build in practice.
© Computer viruses are often self-modifying.

@ We will see self-modifying protection
algorithms later in the course.
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Next week’s lecture

@ Obfuscation algorithms

@ Please check the website for
Important announcements:

WWW.CS.arizona.edu/~collberg/

Teaching/mgu/2014
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