Software Protection:
How to Crack Programs, and
Defend Against Cracking

Lecture 4: Code Obfuscation
Moscow State University, Spring 2014

Christian Collberg
University of Arizona

WWW.CS.arizona.edu/~collberg
© March 19, 2014 Christian Collberg

www.cs.arizona.edu/~collberg

Last week’s lecture

@ Who needs program analysis?

82

Last week’s lecture

@ Who needs program analysis?

@ What is the result of a
control flow analysis ?

82

Last week’s lecture

@ Who needs program analysis?

@ What is the result of a
control flow analysis ?

@ Give two algorithms for disassembly!

Last week’s lecture

@ Who needs program analysis?

@ What is the result of a
control flow analysis ?

@ Give two algorithms for disassembly!

@ Give some reasons why disassembly is
hard!

Last week’s lecture

@ Who needs program analysis?

@ What is the result of a
control flow analysis ?

@ Give two algorithms for disassembly!

@ Give some reasons why disassembly is
hard!

@ What is a script kiddie ?

Today’s lecture

@ Static obfuscation algorithms
@ Computer viruses
@ Code Diversity

Overview

Code obfuscation — what is it?

@ Informally, to obfuscate a program P means
to transform it into a program P’ that is still
executable but for which it is hard to extract
information.

Code obfuscation — what is it?

@ Informally, to obfuscate a program P means
to transform it into a program P’ that is still
executable but for which it is hard to extract
information.

@ “Hard?” = Harder than before!

Code obfuscation — what is it?

@ static obfuscation = obfuscated programs
that remain fixed at runtime.
@ tries to thwart static analysis
@ attacked by dynamic techniques (debugging,
emulation, tracing).

Code obfuscation — what is it?

@ static obfuscation = obfuscated programs
that remain fixed at runtime.
@ tries to thwart static analysis
@ attacked by dynamic techniques (debugging,
emulation, tracing).
@ dynamic obfuscators = transform

programs continuously at runtime, keeping
them in constant flux.

@ tries to thwart dynamic analysis

Bogus Control
Flow

Complicating control flow

@ Transformations that make it difficult for an
adversary to analyze the flow-of-control:

@ insert bogus control-flow

82

Complicating control flow

@ Transformations that make it difficult for an
adversary to analyze the flow-of-control:
@ insert bogus control-flow
@ flatten the program

82

Complicating control flow

@ Transformations that make it difficult for an
adversary to analyze the flow-of-control:

@ insert bogus control-flow

@ flatten the program

© hide the targets of branches to make it difficult
for the adversary to build control-flow graphs

Complicating control flow

@ Transformations that make it difficult for an
adversary to analyze the flow-of-control:
@ insert bogus control-flow
@ flatten the program
© hide the targets of branches to make it difficult
for the adversary to build control-flow graphs

@ None of these transformations are immune
to attacks

Opaque Expressions

@ Simply put:
an expression whose value is
known to you as the defender (at
obfuscation time) but which is
difficult for an attacker to figure out

Opaque Expressions

@ Simply put:
an expression whose value is
known to you as the defender (at
obfuscation time) but which is
difficult for an attacker to figure out

@ Notation:
o PT for an opaquely true predicate
@ Pf for an opaquely false predicate
@ P’ for an opaquely indeterminate predicate
@ E=V for an opaque expression of value v

Opaque Expressions

@ Graphical notation:

ltr_ue@f?{s_e }t%@faﬁl twe‘ folse
v v

@ Building blocks for many obfuscations.

10/82

Opaque Expressions

@ An opaquely true predicate:

11/82

Opaque Expressions

@ An opaquely true predicate:

@ An opaquely indeterminate predicate:

true @ false

11/82

Inserting bogus control-flow

@ Insert bogus control-flow into a function:
@ dead branches which will never be taken

12/82

Inserting bogus control-flow

@ Insert bogus control-flow into a function:

@ dead branches which will never be taken
@ superfluous branches which will always be
taken

12/82

Inserting bogus control-flow

@ Insert bogus control-flow into a function:
@ dead branches which will never be taken
© superfluous branches which will always be
taken
© branches which will sometimes be taken and
sometimes not, but where this doesn’t matter

12/82

Inserting bogus control-flow

@ Insert bogus control-flow into a function:

@ dead branches which will never be taken

© superfluous branches which will always be
taken

© branches which will sometimes be taken and
sometimes not, but where this doesn’t matter

@ The resilience reduces to the resilience of
the opaque predicates.

12/82

Inserting bogus control-flow

@ A bogus block (green) appears as it might
be executed while, in fact, it never will:

13/82

Inserting bogus control-flow

@ Sometimes execute the blue block,
sometimes the green block.

@ The green and blue blocks should be
semantically equivalent.

|
) E> H_T |

14/82

Inserting bogus control-flow

@ Extend a loop condition P by conjoining it
with an opaquely true predicate P :

15/82

Control Flow
Flattening

Control-flow flattening

@ Removes the control-flow structure of
functions.

7/82

Control-flow flattening

@ Removes the control-flow structure of
functions.

@ Put each basic block as a case inside a
switch statement, and wrap the switch
inside an infinite loop.

Control-flow flattening

@ Removes the control-flow structure of
functions.

@ Put each basic block as a case inside a
switch statement, and wrap the switch
inside an infinite loop.

@ Chenxi Wang'’s PhD thesis:

17/82

int modexp (int y,int x[]
int w,int n)

int R, L;
int k = 0;
int s = 1;
while

w) |
if =

(k <
(x[k] == 1)
R = (s*y) % n;

~

pEl

Bs:

=]
s=1
[ron |
¢

et | \ it (k==

Bs: R=(s*y) mod n

/

=%

55:
L=R
k++

s=R*R mod n

goto By

L |

int modexp (int vy,
int R, L, k, s;
int next=0;
for(;;)
switch (next)
case 0 :
case
case
case
case
case
case

o U W NP

int x[], int w, int n) {
{
k=0; s=1; next=1l; break;
if (k<w) next=2; else next=6; break
if (x[k]==1) next=3; else next=4;

R=(s*y) %n; next=5; break;
R=s; next=5; break;

s=RxR%n;
return L;

L=R; k++; next=1; break;

b

rea

next=0

A

v

switch(next)

k=0 if (k<w) if (x[k]==1) R=(s*y)%n R=s S=R*R%N | return L
s=1 next=2 next=3 next=5 next=5 L=R
next=1 | | else else B, B, K++ Bs
By next=6 next=4 next=1
Bs

By \Bz‘\

>

Performance penalty

@ Replacing 50% of the branches in three
SPEC programs slows them down by a
factor of 4 and increases their size by a
factor of 2.

21/82

Performance penalty

@ Replacing 50% of the branches in three
SPEC programs slows them down by a
factor of 4 and increases their size by a

factor of 2.
@ Why?

@ The for loop incurs one jump,

21/82

Performance penalty

@ Replacing 50% of the branches in three
SPEC programs slows them down by a
factor of 4 and increases their size by a

factor of 2.
@ Why?
@ The for loop incurs one jump,
@ the switch incurs a bounds check the next
variable,

21/82

Performance penalty

@ Replacing 50% of the branches in three
SPEC programs slows them down by a
factor of 4 and increases their size by a
factor of 2.

@ Why?

@ The for loop incurs one jump,

@ the switch incurs a bounds check the next
variable,

© the switch incurs an indirect jump through a
jump table.

21/82

Performance penalty

@ Replacing 50% of the branches in three
SPEC programs slows them down by a
factor of 4 and increases their size by a

factor of 2.
@ Why?
@ The for loop incurs one jump,
@ the switch incurs a bounds check the next
variable,
© the switch incurs an indirect jump through a
jump table.
@ Optimize?

21/82

Performance penalty

@ Replacing 50% of the branches in three
SPEC programs slows them down by a
factor of 4 and increases their size by a

factor of 2.
@ Why?
@ The for loop incurs one jump,
@ the switch incurs a bounds check the next
variable,
© the switch incurs an indirect jump through a
jump table.
@ Optimize?
@ Keep tight loops as one switch entry.

21/82

Performance penalty

@ Replacing 50% of the branches in three
SPEC programs slows them down by a
factor of 4 and increases their size by a

factor of 2.
@ Why?
@ The for loop incurs one jump,
@ the switch incurs a bounds check the next
variable,
© the switch incurs an indirect jump through a
jump table.
@ Optimize?
@ Keep tight loops as one switch entry.
Use gcc’s labels-as-values = a jump table
lets you jump directly to the next basic block.

21/82

Attack against Control-flow flattening

@ Attack:
@ Work out what the next block of every block is.

22/82

Attack against Control-flow flattening

@ Attack:

@ Work out what the next block of every block is.
@ Rebuild the original CFG!

22/82

Attack against Control-flow flattening

@ Attack:

@ Work out what the next block of every block is.
@ Rebuild the original CFG!

@ How does an attacker do this?
@ use-def data-flow analysis

22/82

Attack against Control-flow flattening

@ Attack:

@ Work out what the next block of every block is.
@ Rebuild the original CFG!

@ How does an attacker do this?

@ use-def data-flow analysis
© constant-propagation data-flow analysis

22/82

next as an opaque predicate!

int modexp (int vy,

int R, L,

int next=E=0;

for(;;)

switch (next)

case
case
case

case
case

case
case

K,

0
1
2

o U W

int x[], int w, int n) {

{
k=0; s=1; next=E='; break;
if (k<w) next=E=2; else next=E=%; brea
if (x[k]==1) next=E=3; else next=E=%;
break;
R=(s*y) %n; next=FE=%; break;
R=s; next=E=%; break;
s=R*R%n; L=R; k++; next=E='; break;
return L;

23/82

In-Class Exercise

@ Flatten this CFG:
X = 20; o
v

if x >= 10 goto B4

4\

A[X] :=10; Y =X +5;

if X <> 4 goto B6
B5
X:=X=-2; 2

v ()

B2

B4

@ Give the source code for the flattened graph

ahnAvo 24/82

Constructing
Opaque
Predicates

Opaque values from array aliasing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
136 |58 14623 |5|16/65|2]41 2|7]1]37[0]11]16

Invariants:

@ every third cell (in pink), starting will cell 0,
iIs =1 mod 5;

Q cells 2 and 5 (green) hold the values 1 and
5, respectively;

@ every third cell (in blue), starting will cell 1,
iIs=2mod 7;

©Q cells 8 and 11 (yellow) hold the values 2
and 7, respectively.

26/82

Opaque values from array aliasing

@ You can update a pink element as often as
you want, with any value you want, as long
as you ensure that the value is always
=1 mod 5!

@ That is, make any changes you want, while
maintaining the invariant.

@ This will make static analysis harder for the
attacker.

7/82

int g[] = {36,58,1,46,23,5,16,65,2,41,
2,7,1,37,0,11,16,2,21,16};

if ((gl3] % gl5])==gl2])
printf ("true!\n");

[5] = (gll]lxg[4])%g[1ll] + g[6]%g[5];
gl[l4] = rand();
gl[4] = rand()*g[ll]+g[8];

Q

int six = (g[4] + gl[7] + gl[10]1)%g[11];
int seven = six + g[3]1%g[5];
int fortytwo = six % seven;

@ pink: opaquely true predicate.
@ blue: g is constantly changing at runtime.
@ green: an opaque value 42.

Initialize o at runtime!

int modexp (int vy, int x[], int w, int n) {
int R, L, k, s;
int next=0;
int g[] = {10,9,2,5,3};
for(;;)
switch (next) {

case 0 : k=0; s=1; next=g[0]%gl[l] 1; break;
case 1 : if (k<w) next=g[g[2]]:

else next=g[0]-2xg[2] 6; break;
case 2 : if (x[k]==1) next=g[3]-g[2]2;

else next=2*g[21—4, break;

case 3 : R=(s*y)5%n; next:g[4]+g[2]:5; break;

case 4 : R=s; next=g[0]—g[3]:5; break;

case 5 : s=R*R%n; L=R; k++; next=g[gl[4]]1%g[2]
break;

case 6 : return L;

=1

Opaque predicates from pointer
aliasing
@ Create an obfuscating transformation from

a known computationally hard static
analysis problem.

30/82

Opaque predicates from pointer
aliasing

@ Create an obfuscating transformation from
a known computationally hard static
analysis problem.

@ We assume that

@ the attacker will analyze the program statically,
and

© we can force him to solve a particular static
analysis problem to discover the secret he’s
after, and

© we can generate an actual hard instance of this
problem for him to solve.

30/82

Opaque predicates from pointer
aliasing

@ Create an obfuscating transformation from
a known computationally hard static
analysis problem.

@ We assume that

@ the attacker will analyze the program statically,
and

© we can force him to solve a particular static
analysis problem to discover the secret he’s
after, and

© we can generate an actual hard instance of this
problem for him to solve.

@ Of course, these assumptions may be false!

30/82

@ Construct one or more heap-based graphs,
keep pointers into those graphs, create
opaque predicates by checking properties
you know to be true.

BEPS

@ Construct one or more heap-based graphs,
keep pointers into those graphs, create
opaque predicates by checking properties
you know to be true.

@ g1 and g» point into two graphs Gy (pink)
and Go (blue):

L[?»@»@% @J E;

Lo
=

a2

@ Construct one or more heap-based graphs,
keep pointers into those graphs, create
opaque predicates by checking properties
you know to be true.

@ g1 and g» point into two graphs Gy (pink)
and Go (blue):

lit @»E j insert
I" 9"{ % 9" E> qt E>
[C?» a2 :@_, i

a2

Ll

v

a2

@ Construct one or more heap-based graphs,
keep pointers into those graphs, create
opaque predicates by checking properties
you know to be true.

@ g1 and g» point into two graphs Gy (pink)
and Go (blue):

split %‘ insert
L i
@»@—@—@ N @)

g1

=9 @

@ Construct one or more heap-based graphs,
keep pointers into those graphs, create
opaque predicates by checking properties
you know to be true.

@ g1 and g» point into two graphs Gy (pink)
and Go (blue):

lit @»E j insert
I" 9"{ % 9" E> qt E>
[C?» a2 :@_, i

Q;»@ . BEE = @
®

g1

=9 @

Invariants

@ Two invariants:
@ “Gy and Go are circular linked lists”
@ “gq points to a node in Gy and g» points to a
node in Go.”

32/82

Invariants

@ Two invariants:

@ “Gy and Gy are circular linked lists”
@ “gq points to a node in Gy and g» points to a
node in Go.”

@ Perform enough operations to confuse even
the most precise alias analysis algorithm,

32/82

Invariants

@ Two invariants:

@ “Gy and Gy are circular linked lists”
@ “gq points to a node in Gy and g» points to a
node in Go.”

@ Perform enough operations to confuse even
the most precise alias analysis algorithm,

@ Insert opaque queries such as (g1 # g)7
into the code.

32/82

Branch Functions

Jumps through branch functions

@ Replace unconditional jumps with a call to a
branch function.
@ Calls normally return to where they came

from. .. But, a branch function returns to the
target of the jump!

a bf() {
jmp b a call bf return to T[h(a)]+a

: }
E> b T[h(a)]=b-a

b: b: TIh(..)]=...

34/82

Jumps through branch functions

@ Designed to confuse disassembly.

@ 39% of instructions are incorrectly
assembled using a linear sweep
disassembly.

@ 25% for recursive disassembly.
@ Execution penalty: 13%
@ Increase in text segment size: 15%.

35/82

Breaking opaque
predicates

Breaking opaque predicates

X1 %...;
X2(_...;

b+ f(x1,X2,...);
if b goto ...

-

@ find the instructions that make up
f(Xq,%o,...);

Q find the inputsto f, i.e. xq,Xo...;

@ find the range of values Ry of xq,...;

@ compute the outcome of f for all input
values;

@ Kill the branch if f = true.

7/82

Breaking opaque predicates

(int X = some complicated W
expression;

int v = 42;

zZ = ...

boolean b = (34*y*xy-1)==x*x;

if b goto ...

@ Compute a backwards slice from b,
@ Find the inputs (x and v),
© Find range of x and y,

© Use number-theory/brute force to
determine b= false.

38/82

Breaking Vx € Z : n|p(x)

@ Mila Dalla Preda:

@ Attack opaque predicates confined to a
single basic block.

39/82

Breaking Vx € Z : n|p(x)

@ Mila Dalla Preda:

@ Attack opaque predicates confined to a
single basic block.

@ Assume that the instructions that make up
the predicate are contiguous.

39/82

Breaking Vx € Z : n|p(x)

@ Mila Dalla Preda:

@ Attack opaque predicates confined to a
single basic block.

@ Assume that the instructions that make up
the predicate are contiguous.

@ Start at a conditional jump instruction j and
incrementally extend it with the 1,2,...
instructions until an opaque predicate (or

39/82

Breaking Vx € Z : n|p(x)

@ Mila Dalla Preda:

@ Attack opaque predicates confined to a
single basic block.

@ Assume that the instructions that make up
the predicate are contiguous.

@ Start at a conditional jump instruction j and
incrementally extend it with the 1,2,...
instructions until an opaque predicate (or

39/82

Breaking Vx € Z : 2|(x* + x)
Opaquely true predicate Vx € Z : 2|(x? + x):

(1) (2) (3)

*

MKOKKX
I o + X
o ~.

~ DX
N~ o~

B O KK X

i

(4)

40/82

Breaking Vx € Z : 2|(x* + x)

Opaquely true predicate Vx € Z : 2|(x? + x):

(1) (2) (3) (4)

N N
X = X = ...
y = X*X; y = X*X;
y =y + x|y =y + X
V=Y % 2;||ly =y % 2
b = y==0; b = y==0
if b if b ...

41/82

Opaquely true predicate Vx € Z : 2|(x? + x):

Breaking Vx € Z : 2|(x* + x)

(1)

(2)

B O KK X

X*X;
y t x;
y % 2;
y==0;

B O KK X

~

X*xX;
y + x%x;
vy % 2;
y==0;

B oK KK X

X*X;

y t x;
y % 2;

y==0;

~

42/82

Opaquely true predicate Vx € Z : 2|(x? + x):

Breaking Vx € Z : 2|(x* + x)

A A N A
X = . X = ... X = ... X = ...
y = X*X; y = X*X; y = X*X; y = X*X;
y =y +txilly =y +xi||ly =y + xi||ly =y t+ x%;
Y=Y %5 2;||ly =Y % 2;||ly =Y % 2;||y =Y % 2;
if b . if if if

)) AN J

43/82

Breaking Vx € Z : 2|(x* + x)

Opaquely true predicate Vx € Z : 2|(x? + x):

N N N N
X = . X = ... X = ... X = ... X = ...
y = X*Xy y = X*Xy y = X*Xy y = X*Xy y = X*Xy
y =y +txi|l|ly =y +t x|y =y +t x|y =yt Ry =yt x;
V=Y %5 2|y =Y 32|y =Y % 2|y =Y 5% 2|y =Y % 2;
if b . if if if i

)) AN NS

44/82

Using Abstract Interpretation

Consider the case when x is an even

X = even number; X = even;

y = X * X Yy = X xg X = eVenxgeven=even;
v =y + x ﬁ> vy = vy +a x = even-+even= even;
z =y %2 z =y %3 2 = evenmod2=0;

b = z==0; b = z==0; = true

if b ... if b ...

45/82

Using Abstract Interpretation

Consider the case when x starts out being odd:

x = odd number; x = odd;

y = X * X; y = x %5 x = oddx*z0dd = odd;
y =y t x; E> y =y +a x = odd+5o0dd = even;
z =y % 2; z =y %3 2 = evenmod2=0;

b = z==0; b = z==0; = true

if b ... if b .

@ Regardless of whether x’s initial value is
even or odd, b is true!

46/82

Breaking Vx € Z : n|p(x)

@ Regardless of whether x’s initial value is
even or odd, b is true!

7/82

Breaking Vx € Z : n|p(x)

@ Regardless of whether x’s initial value is
even or odd, b is true!

@ You've broken the opaque predicate,
efficiently!!

7/82

Breaking Vx € Z : n|p(x)

@ Regardless of whether x’s initial value is
even or odd, b is true!

@ You've broken the opaque predicate,
efficiently!!

@ By constructing different abstract domains,
Algorithm REPMBG is able to break all
opaque predicates of the form
Vx € Z : n|p(x) where p(x) is a polynomial.

In-Class Exercise

@ An obfuscator has inserted the opaquely
true predicate Vx € Z : 2|(2x +4):

X = ...
if ((((2%x+4) 3 2) == 0)7) |
some statement

}

Or, in simpler operations:

X

oo
NN
I oo + * ™
e

0
£fb ..

- J

@ Play we're an attacker! 4o

B O N KK

@ Do a symbolic evaluation, using these rules:

X Y || X*ay X Yy || X+ay
even|even| even even|even| even
even| odd | even even| odd | odd
odd | even | even odd | even| odd
odd | odd | odd odd | odd | even

x || x mod 22

even 0

odd 1

@ First, let’s assume that x is even.

X = even;
Yy = 2 %3 X =
X even;
Y =2 y =y +a 4 =
y =y + 4; E>
z =y % 2;
b = z==0; z =Y %a2 =
if b ...
b = z==0; =

O N K K X

© Now, let's assume that x is odd.

x = odd;
Yy = 2 %3 X =
= odd;
A y =y +a 4 =
=y + x; [j>
=y % 2;
= z==0; z =Yy % 2 =
£ b
b = z==0,;, =

Computer
Viruses

Computer Viruses

@ Viruses
@ are self-replicating ;
©@ attach themselves to other files;
Q requires user assistance to to replicate.
©Q use obfuscation to hide!

53/82

Computer Viruses: Phases

Dormant

Propagation

T~

Triggering

Y

Action

54/82

Computer Viruses: Phases...

@ Dormant — lay low, avoid detection.

@ Propagation — infect new files and
systems.

@ Triggering — decide to move to action
phase

@ Action — execute malicious actions, the
payload.

Virus Types

@ Program/File virus:

56/82

Virus Types

@ Program/File virus:
@ Attaches to: program object code.

56/82

Virus Types

@ Program/File virus:

@ Attaches to: program object code.
@ Run when: program executes.

56/82

Virus Types

@ Program/File virus:

@ Attaches to: program object code.
@ Run when: program executes.
@ Propagates by: program sharing.

56/82

Virus Types

@ Program/File virus:

@ Attaches to: program object code.
@ Run when: program executes.
@ Propagates by: program sharing.

@ Doocument/Macro virus:

56/82

Virus Types

@ Program/File virus:

@ Attaches to: program object code.
@ Run when: program executes.
@ Propagates by: program sharing.

@ Doocument/Macro virus:
@ Attaches to: document (.doc,.pdf,...).

56/82

Virus Types

@ Program/File virus:
@ Attaches to: program object code.
@ Run when: program executes.
@ Propagates by: program sharing.
@ Doocument/Macro virus:

@ Attaches to: document (.doc,.pdf,...).
@ Run when: document is opened.

56/82

Virus Types

@ Program/File virus:
@ Attaches to: program object code.
@ Run when: program executes.
@ Propagates by: program sharing.
@ Doocument/Macro virus:
@ Attaches to: document (.doc,.pdf,...).
@ Run when: document is opened.
@ Propagates by: emailing documents.

56/82

Virus Types

@ Program/File virus:
@ Attaches to: program object code.
@ Run when: program executes.
@ Propagates by: program sharing.
@ Doocument/Macro virus:

@ Attaches to: document (.doc,.pdf,...).
@ Run when: document is opened.
@ Propagates by: emailing documents.

@ Boot sector virus:

56/82

Virus Types

@ Program/File virus:
@ Attaches to: program object code.
@ Run when: program executes.
@ Propagates by: program sharing.
@ Doocument/Macro virus:

@ Attaches to: document (.doc,.pdf,...).
@ Run when: document is opened.
@ Propagates by: emailing documents.

@ Boot sector virus:
@ Attaches to: hard drive boot sector.

56/82

Virus Types

@ Program/File virus:
@ Attaches to: program object code.
@ Run when: program executes.
@ Propagates by: program sharing.
@ Doocument/Macro virus:
@ Attaches to: document (.doc,.pdf,...).
@ Run when: document is opened.
@ Propagates by: emailing documents.
@ Boot sector virus:

@ Attaches to: hard drive boot sector.
@ Run when: computer boots.

56/82

Virus Types

@ Program/File virus:
@ Attaches to: program object code.
@ Run when: program executes.
@ Propagates by: program sharing.
@ Doocument/Macro virus:
@ Attaches to: document (.doc,.pdf,...).
@ Run when: document is opened.
@ Propagates by: emailing documents.

@ Boot sector virus:

@ Attaches to: hard drive boot sector.
@ Run when: computer boots.
@ Propagates by: sharing floppy disks.

56/82

Computer Viruses: Propagation

File Header

File Header

Original
Program

Virus

Original
Program

57/82

Virus Defenses

@ Signatures: Regular expressions over the
virus code used to detect if files have been
infected.

@ Checking can be done

@ Dperiodically over the entire filesystem;
whenever a new file is downloaded.

58/82

Virus Countermeasures

@ Viruses need to protect themselves against
detection.

@ This means hiding any distringuishing
features, making it hard to construct
signatures.

@ By encrypting its payload, the virus hides
its distinguishing features.

@ Encryption is often no more than xor with a
constant.

Virus Countermeasures: Encryption

@ By encrypting its payload, the virus hides
its distinguishing features.

@ The decryption routine itself, however, can
be used to create a signature!

60/82

Computer Countermeasures:
Encryption. ..

File Header

Decryption
File Header Routine

Key

Original

Program Encrypted

— Virus Code

Original
Program

61/82

Virus Countermeasures:
Polymorphism

@ Each variant is encrypted with a different
key.

62/82

Virus Countermeasures:
Metamorphism

@ To prevent easy creation of signatures for
the decryption routine, metamorphic
viruses will mutate the decryptor, for each
infection.

@ The virus contains a mutation engine which
can modify the decryption code while
maintaining its semantics.

63/82

Computer Countermeasures:

Metamorphism. ..

File Header

File Header

Mutated
Decryption
Routine

Key

Original
Program

Encrypted
Virus Code

Mutation
Engine

Original
Program

64/82

Virus Countermeasures:
Metamorphism. ..

@ To counter metamorphism, virus detectors
can run the virus in an emulator.

@ The emulator gathers a trace of the
execution.

@ A virus signature is then constructed over
the trace.

@ This makes it easier to ignore garbage
instructions the mutation engine may have
inserted.

65/82

Virtualization

Interpreters

@ An interpreter is program that behaves like
a CPU, but which has its own
@ instruction set,
@ program,
@ program counter
@ execution stack
@ Many programming languages are
implemented by constructing an interpreter
for them, for example Java, Python, Perl,
etc.

7/82

Interpreters for Obfuscation

prog=[ADD,...];

stack=...;

int pc=...;

int sp=...;

while (1)

switch (progl[pc])

case ADD: ...

stack[sp]=...
pc++; sp——;

void foo() {

a=a+5; I::>

68/82

Interpreter Engine

Instruct—
ionstream

add » ‘ | := Get next instruction. ‘
store

mul *

Decode the instruction.
Op := the opcode
Argl := 1st argument
Memory Arg2 := 2nd argument
Stack ¢
+ Perform the function
* of the opcode.
,,,,,,,,,
Heap
Static
Data

69/82

Diversity

@ Viruses want diversity in the code they
generate.

@ This means, every version of the virus
should look different, so that they are hard
for the virus detector to find.

@ We want the same when we protect our
programs!

70/82

Tigress Diversity

@ tigress.cs.arizona.edu
@ Interpreter diversity:

@ 8 kinds of instruction dispatch: switch, direct,
indirect, call, ifnest, linear, binary, interpolation

© 2 kinds of operands: stack, registers

© arbitrarily complex instructions

@ operators are randomized

@ Along with: flatten, merge functions, split
functions, opaque predicates, etc.

71/82

tigress.cs.arizona.edu

Tigress Diversity

@ Every input program generates a unique
interpreter.

@ A seed sets the random number generator
that allows us to generate many different
interpreters for the same input program.

@ The split transformation can be used to
break up the interpreter in pieces, to make
it less easy to detect.

72/82

In-class Exercise

tigress —--Transform=Virtualize —--Functions=fib \
——VirtualizeDispatch=switch \
—-—out=vl.c testl.c

gcc —o vl vl.c

tigress —--Transform=Virtualize —--Functions=fib \
——VirtualizeDispatch=indirect \
—-—out=v2.c testl.c

gcc -0 v2 v2.cC

73/82

In-class Exercise

tigress —-Transform=Virtualize —--Functions=fib \
-—VirtualizeDispatch=switch \
-—-Transform=Virtualize —--Functions=fib \

——VirtualizeDispatch=indirect \
—-—out=v3.c testl.c
gcc -o v3 v3.c

tigress —--Transform=Virtualize —--Functions=fib \
——VirtualizeDispatch=switch \
——VirtualizeSuperOpsRatio=2.0 \
——-VirtualizeMaxMergeLength=10 \
-—VirtualizeOptimizeBody=true \
—-—out=v4.c testl.c

gcc -o v4d véd.c

N\

74/82

Attack 1

@ Reverse engineer the instruction set!

@ Look at the instruction handlers, and figure
out what they do:

case 0233:
(pc) ++;
s[{sp - 1].1 = s[sp - 1]1.1i < s[spl.i;
(sp) —=;
break;

@ Then recreate the original program from the
virtual one.

75/82

Counter Attack 1

@ Make instructions with complex semantics,

using super operators:

case 098:
(pc) ++;
*((int x)s[sp + 0].v) = s[sp + -1].1i;
* ((int *) ((void x) (1 + »((int) (pc + 4))))) =
*((int) ((void *) (1 + = ((int x)pc))));

s[sp + -1]1.1i =
*((int x) (pc + 12));

s[sp + 0].v = (void x) (1 + x((int *) (pc + 16)));
pc += 20;
break;

*((int x) ((void x) (1 + *((int) (pc + 8)

@ Then recreate the original program from the

virtual one.

76/82

Attack 2

@ Dynamic attack: run the program, collect all
instructions, look for patterns that look like
the virtual PC:

Program i
add switch (Program[PC]) {
store ADD: ...
mul SUB: ...
}
PC++,
JUMP ...

Trace:switch,ADD,PC++,JUMP,switch,...

Counter Attack 2

@ Tigress can merge several programs, so
they execute in tandem, making it harder to
detect what is the PC (there are many
PCs!).

Program

add switch (Program[PC]) {
E> ADD: ...
SUB: ...

store
}

mul

'

PC1++; PC2++; PC3++;

JUMP ...

78/82

Discussion

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

80/82

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

@ Prevent collusion — make every program
unique to prevent diffing attacks

80/82

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

@ Prevent collusion — make every program
unique to prevent diffing attacks

@ Code Privacy — make programs hard to
understand to protect algorithms

80/82

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

@ Prevent collusion — make every program
unique to prevent diffing attacks

@ Code Privacy — make programs hard to
understand to protect algorithms

@ Data Privacy — make programs hard to
understand to protect secret data (keys)

80/82

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

@ Prevent collusion — make every program
unique to prevent diffing attacks

@ Code Privacy — make programs hard to
understand to protect algorithms

@ Data Privacy — make programs hard to
understand to protect secret data (keys)

@ Integrity — make programs hard to
understand to make them hard to change

80/82

Next week’s lecture

@ Dynamic obfuscation
algorithms

@ Tamperproofing algorithms

© Please check the website for
Important announcements:

WWw.CS.arizona.edu/~collberg/
Teaching/mgu/2014

81/82

www.cs.arizona.edu/~collberg/
Teaching/mgu/2014

