Software Protection:
How to Crack Programs, and
Defend Against Cracking

Lecture 5: Code Obfuscation I
Moscow State University, Spring 2014

Christian Collberg
University of Arizona

WWW.CS.arizona.edu/~collberg
© March 26, 2014 Christian Collberg

www.cs.arizona.edu/~collberg

Last week’s lecture

@ What is an opaque predicate?

66

Last week’s lecture

@ What is an opaque predicate?

@ Give two methods for constructing opaque
predicates!

66

Last week’s lecture

@ What is an opaque predicate?

@ Give two methods for constructing opaque
predicates!

@ Give two algorithms that make use of
opaque predicates!

Today’s lecture

@ Dynamic obfuscation
algorithms

Dynamic
Obfuscation

Static vs. Dynamic obfuscation

@ Static obfuscations transform the code prior
to execution.

66

Static vs. Dynamic obfuscation

@ Static obfuscations transform the code prior
to execution.

@ Dynamic algorithms transform the program
at runtime.

66

Static vs. Dynamic obfuscation

@ Static obfuscations transform the code prior
to execution.

@ Dynamic algorithms transform the program
at runtime.

@ Static obfuscation counter attacks by static
analysis.

Static vs. Dynamic obfuscation

@ Static obfuscations transform the code prior
to execution.

@ Dynamic algorithms transform the program
at runtime.

@ Static obfuscation counter attacks by static
analysis.

@ Dynamic obfuscation counter attacks by
dynamic analysis.

Dynamic Obfuscation: Definitions

@ A dynamic obfuscator runs in two phases:
@ At compile-time transform the program to an
initial configuration and add a
runtime code-transformer.
©@ At runtime, intersperse the execution of the
program with calls to the transformer.

Dynamic Obfuscation: Definitions

@ A dynamic obfuscator runs in two phases:
@ At compile-time transform the program to an
initial configuration and add a
runtime code-transformer.
©@ At runtime, intersperse the execution of the
program with calls to the transformer.

@ A dynamic obfuscator turns a “normal”
program into a self-modifying one.

Modeling dynamic obfuscation —
compile-time

Modeling dynamic obfuscation —

compile-time

J

2 ﬁ> Createlnitial
Configuration

Bt

@ Transformer / creates &7’s initial
configuration.

7/66

Modeling dynamic obfuscation —
compile-time

J J

VAN r—' .
2 ﬁ> Create I nitial J Embed Runtimeﬁ> .
Configuration .(Transformer ¢

@ Transformer [creates &’s initial
configuration.

@ T is the runtime obfuscator, embedded in
P

Modeling dynamic obfuscation —
runtime

=

@ Transformer T continuously modifies &’ at
runtime.

66

Modeling dynamic obfuscation —
runtime

frin g

@ Transformer T continuously modifies &’ at
runtime.

66

Modeling dynamic obfuscation —
runtime

Cringm e @

@ Transformer T continuously modifies &’ at
runtime.

Modeling dynamic obfuscation —
runtime

et @ e

@ Transformer T continuously modifies &’ at
runtime.

Modeling dynamic obfuscation —
runtime

ﬁ> ﬁ> ﬁ> 2 ...

@ Transformer T continuously modifies &’ at
runtime.

Modeling dynamic obfuscation —
runtime

Crin e @e e

@ Transformer T continuously modifies &’ at
runtime.

@ We'd like an infinite, non-repeating series of
configurations.

@ In practice, the configurations repeat.

66

Algorithm Ideas

Basic algorithm ideas

@ Build-and-execute: generate code for a
routine at runtime, and then jump to it.

@ Self-modification: modify the executable
code.

@ Encryption: The self-modification is
decrypting the encrypted code before
executing it.

@ Move code: Every time the code executes,
it is in different location.

10/66

File-Level Encryption: Packers

Encrypt ed > find key
code)
E> > find decryptor
Key
> decrypt
Decr ypt or

@ Packers are simple tools that encrypt the
binary, and include a routine that will
decrypt at runtime.

11/66

Function-Level Encryption

f = Ex(£00) Sl ke
(o0 D[
Iln
foo = Dy(f
foo(;(() > decrypt

\J

@ You can also decrypt a function just before
it gets called.

12/66

Build-And-Execute

f=Dbuild(foo)

[E0LE e

foo()

@ You can generalize “encryption” to any
embedded function that constructs the
“real” code at runtime.

13/66

Self-Modifying Code

00:

f
(o | (R

fixup_foo()
foo()

@ Leave “holes” in foo, fix them just before
foo gets called.

14/66

Move Code Around

o] []

[o)

foo(); nove();
foo(); move();

Y

@ Continously move code around to make it
harder to find.

15/66

Granularity

@ These operations can be applied at
different levels of granularity:
o File-level
@ Function-level
@ Basic block-level
@ Instruction-level

16/66

Attack Goals

@ The attacker’s goal can be to:

@ recover the original code
@ modify the original code

17/66

N
int modexp(int y, int x[], int w, int n, int mode) {

int R, L, k =0, s =1, t;
charx p=&&begin;
while (p<(charx)é&&end) *p++ "= 99;

if (mode==1) return 0;
while (k < w) {

begin:

end

k++;

p=&&begin; while (p<(charx)s&&end) x*p++ "= 99;
return L;
}
int main() {
makeCodeWritable (:--);
modexp (0, NULL, O, 0, 1);

modexp(..., cee, e, eee, O);

Code Explanation

@ The blue code is xor:ed with a key (99).

@ When the code is to be executed it gets
“decrypted”, executed, and re-encrypted.

@ The green code would normally execute at
obfuscation time.

@ Every subsequent time the modexp routine
gets called the pink code first decrypts the
blue code, executes it, and then the yellow
code re-encrypts it.

19/66

Practical issues

@ Pages have to be modifiable and
executable. (See next slide).

@ You have to flush the CPU’s data cache
before executing new code you have
generated. (Why?) X86 does this
automatically.

20/66

~

void makeCodeWritable (caddr_t first, caddr_t last)

caddr_t firstpage =

first - ((int)first % getpagesize());
caddr_t lastpage =
last - ((int)last % getpagesize());

int pages=(lastpage-firstpage) /getpagesize ()+1;
if (mprotect (
firstpage,
pagesxgetpagesize (),
PROT_READ | PROT_EXEC |PROT_WRITE
) ==-1)
perror ("mprotect");

N
{

Decrypting by Emulation

@ “Encrypting” binaries is often re-invented!

@ Attack: run the program inside an emulator
that prints out every executed instruction.

@ The instruction trace can be analyzed
(re-rolling loops, removing
decrypt-and-jump artifacts, etc.) and the
original code recovered.

22/66

Replacing
Instructions

Kanzaki’'s Algorithm

@ Motivation: make it hard for the adversary
to snapshot the code.

@ Idea: replace real instructions by bogus
ones.

@ Right before execution, the bogus
instruction is replaced by the real one.

@ Just after execution, the real instruction is
replaced by the bogus one!

24/66

int player_main (int argc, char xargv([])
char orig = (*(caddr_t)&&target);

(* (caddr_t) &&target) = 0;

for (i=0; i<len;i++) {

(x (caddr_t) &&target) = orig;
target:
printf ("$£f\n", decoded) ;
(x (caddr_t) &&target) = 0;
}
}
int main (int argc, char xargv([]) {
makeCodeWritable (...);

player_main (argc,argv) ;

{

Algorithm Detalils

@ Find three points A, B, C in the control flow

graph:
move orig,target
target: ;
ExID)

move bogus,target

26/66

Algorithm Detalils

@ Every path to B must flow through A and
every path from B must flow through C:

move orig,target
target:

move bogus,target

Algorithm Detalils

@ At A: insert an instruction which overwrites
the target instruction with its original value:

move orig,target
target:

move bogus,target

28/66

Algorithm Detalils

@ At C: insert an instruction which overwrites
the target with the bogus value:

move orig,target
target:

move bogus,target

29/66

Attack: set pages unwritable!

@ The attacker calls mprotect to set the
code region to readable and executable, but
not writable. (See next slide).

@ When the program tries to write into the
code stream the operating system throws
an exception.

@ Under debugging, see where this happens!

30/66

(gdb) call (int)mprotect (0x2000,0x3000,5)

(gdb) cont

EXC_BAD_ACCESS, Could not access memory.
KERN_PROTECTION_FAILURE at address: 0x00002934
0x000028c0 in player_main

30 (* (caddr_t) &&target) = orig;

(gdb) x/1i S$pc

0x28c0 <player_main+220>: stb r0,0(xr2)
(gdb) print (char)$r0

$7 = -64

(gdb) print/x (int) S$r2
$10 = 0x2934

31/66

Code Merging

Madou’s Algorithm: Dynamic Code
Merging

@ Motivation: Keep the program in constant
flux!

33/66

Madou’s Algorithm: Dynamic Code
Merging

@ Motivation: Keep the program in constant
flux!

@ Every time the adversary looks at the code,
it's different!

33/66

Madou’s Algorithm: Dynamic Code
Merging

@ Motivation: Keep the program in constant
flux!

@ Every time the adversary looks at the code,
it's different!

@ |dea: Two or more functions share the
same location in memory!

33/66

Madou’s Algorithm: Dynamic Code
Merging

@ Motivation: Keep the program in constant
flux!

@ Every time the adversary looks at the code,
it's different!

@ |dea: Two or more functions share the
same location in memory!

@ Before f is called, patch memory to ensure
f is loaded.

33/66

Example: Original Code

@ Obfuscate a program that contains two
functions f; and f:

f, A
0[10 0[10
1[5 179
2 6 2173
320 320
499

@ To the left is byte index in the function, to
the right the code byte at the location.

@ Note: Atindex 0, both f; and £, have the
same code byte (10).

34/66

Example: Obfuscation Time

@ During obfuscation replace f; and f with
the template T and two edit scripts e; and

€.

T

OO

10

?

?

20

99

e = [1—5,2— 6]
e = [1—-9,2—-3]

35/66

Example: Calling f;() at Run Time

@ Program calls fi(): patch T using ey.

@ Replace the code-byte at offset 1 with 5
and the code-byte at offset 2 with 6.

T
010
177 e = [1—5,2—6]
2| 7] e = [1—9,2— 3|
3120
4199

36/66

Example: Calling f;() at Run Time

@ If you call f; again (without intervening calls
to), no need to patch!!!

T
010
177 e = [1—5,2— 6]
2| 7] e = [1—9,2— 3|
3120
4199

Example: Calling () at Run Time

@ If you call f; again (without intervening calls
to 1), no need to patch!!!
@ Program calls () : patch T using e».

@ T memory region will constantly change,
first containing an incomplete function and
then alternating between containing the
code-bytes for f; and f.

38/66

Algorithm step 1: Clustering

@ Decide which functions should be in the
same cluster, i.e. reside in the same
template at runtime.

39/66

Algorithm step 1: Clustering. ..

@ Avoid putting fy and £ in the same cluster if
they are called like this:
while (1) {

f();
B();
}

40/66

Algorithm step 2: Make scripts and
patch routine

@ Create a template T, containing the
intersection of the code-bytes of the
functions in cy.

@ For each function f; in ¢, create an edit
script e; such that applying e; to the
code-bytes of T creates the code-bytes of
f.

41/66

Dynamic Code Merging

@ Original code:

-
int val = 0;

void fl (intx v)
void f2 (intx* v)

fl(&val);
f2 (&val);

{*v=99;}
{xv=42;}

int main (int argc, char xargv([])

{

42/66

EDIT scriptl[200], script2[200];
charx template;

int template_len, script_len = 0;
typedef wvoid (xFUN) (int~) ;
int val, state = 0;

void fl_stub() {
if (state != 1) {
patch (scriptl, script_len, template);
((FUN) template) (&val);
}
void f2_stub () {
if (state != 2) {
patch (script2,script_len, template);
((FUN) template) (&val);
}
int main (int argc, char xargv([]) {
fl_stub(); f2_stub();

state

state

1;}

Attacks

@ Note: the patch routine is in the clear!

44/66

Attacks

@ Note: the patch routine is in the clear!
@ Note: the scripts are in the clear!

44/66

Attacks

@ Note: the patch routine is in the clear!

@ Note: the scripts are in the clear!
@ Static attack:

@ Analyze binary, find patch routine an scripts.
© Running each call to patch(Tk, &) to recover
the code!

44/66

Attacks

@ Note: the patch routine is in the clear!

@ Note: the scripts are in the clear!
@ Static attack:

@ Analyze binary, find patch routine an scripts.
© Running each call to patch(Tk, &) to recover
the code!

@ Counterattack: Encrypt the scripts.

44/66

Attacks

@ Note: the patch routine is in the clear!

@ Note: the scripts are in the clear!
@ Static attack:

@ Analyze binary, find patch routine an scripts.
© Running each call to patch(Tk, &) to recover
the code!

@ Counterattack: Encrypt the scripts.

@ Counter-counterattack: Intercept the
decrypted scripts at runtime.

44/66

Self-Modifying
State Machine

Aucsmith’s algorithm

@
N

@ A function is split into cells.

46/66

Aucsmith’s algorithm

Cs: -
Cy: -
Cs: -

@ A function is split into cells.

@ The cells are divided into two regions in
memory, upper and lower.

46/66

1T
S16
TR E

ori

47/66

XOR!

Why does this work?

A B
I

Why does this work?

B+~ BapA

A B
B
I
__Jiiii

Why does this work?

A B
Il
[} B+~ BgpA

[} A—A®B

50/66

Why does this work?

A B
Il
[} B+~ BgpA

[} A~ AaB

[} B+~ BgA

50/66

Runtime
Encryption

Code as key material

@ Encrypt the code to keep as little code as
possible in the clear at any point in time
during execution.

52/66

Code as key material

@ Encrypt the code to keep as little code as
possible in the clear at any point in time
during execution.

@ Extremes:

@ Decrypt the next instruction, execute it,
re-encrypt it, ... = only one instruction is ever
in the clear!

52/66

Code as key material

@ Encrypt the code to keep as little code as
possible in the clear at any point in time
during execution.

@ Extremes:

@ Decrypt the next instruction, execute it,
re-encrypt it, ... = only one instruction is ever
in the clear!

© Decrypt the entire program once, prior to
execution, and leave it in cleartext. = easy for

the adversary to capture the code.

52/66

Code as key material

@ The entire program is encrypted — except
for main.

53/66

Code as key material

@ The entire program is encrypted — except
for main.

@ Before you jump to a function you decrypt it.

53/66

Code as key material

@ The entire program is encrypted — except
for main.

@ Before you jump to a function you decrypt it.
@ When the function returns you re-encrypt it.

Code as key material

@ The entire program is encrypted — except
for main.

@ Before you jump to a function you decrypt it.
@ When the function returns you re-encrypt it.
@ On entry, a function first encrypts its caller.

53/66

Code as key material

@ The entire program is encrypted — except
for main.

@ Before you jump to a function you decrypt it.
@ When the function returns you re-encrypt it.
@ On entry, a function first encrypts its caller.

@ Before returning, a function decrypts its
caller.

53/66

Code as key material

@ The entire program is encrypted — except
for main.

@ Before you jump to a function you decrypt it.
@ When the function returns you re-encrypt it.
@ On entry, a function first encrypts its caller.

@ Before returning, a function decrypts its
caller.

@ = At most two functions are ever in the
clear!

53/66

Code as key material

@ What do we use as key? The code itself!

54/66

Code as key material

@ What do we use as key? The code itself!

@ What cipher do we use?
Something simple!

54/66

@ Simple case: tree-shaped call-graph:

get key

@ Simple case: tree-shaped call-graph:

get key

@ Before/after procedure call: call guard
function to decrypt/re-encrypt the callee.

@ Simple case: tree-shaped call-graph:

pl ay

get key

@ Before/after procedure call: call guard
function to decrypt/re-encrypt the callee.

@ Entry/exit of the callee: encrypt/decrypt the
caller.

@ Simple case: tree-shaped call-graph:

pl ay

get key

@ Before/after procedure call: call guard
function to decrypt/re-encrypt the callee.

@ Entry/exit of the callee: encrypt/decrypt the
caller.

@ Key: Hash of the cleartext of the
caller/callee.

int player_main (int argc, char xargv[]) {
int user_key = 0Oxca7call5;
int digital_media[] = {10,102};
guard(play,playSIZE,player_main,player_mainSIZE) ;
play (user_key,digital_media, 2);
guard(play,playSIZE,player_main,player mainSIZE) ;

}

int getkey (int user_key) {
guard (decrypt,decryptSIZE, getkey, getkeySIZE) ;
int player_key = 0Oxbabeca’75;
int v = user_key " player_key;
guard (decrypt,decryptSIZE, getkey, getkeySIZE) ;
return v;

}

int decrypt (int user_key, int media) {
guard (play,playSIZE, decrypt,decryptSIZE) ;
guard (getkey, getkeySIZE, decrypt, decryptSIZE) ;
int key = getkey (user_key);
guard (getkey, getkeySIZE, decrypt,decryptSIZE) ;
int v = media ° key;
guard(play,playSIZE, decrypt,decryptSIZE) ;
return v;

float decode (int digital) {
guard (play,playSIZE, decode, decodeSIZE) ;
float v = (float)digital;
guard (play,playSIZE, decode, decodeSIZE) ;
return v;

}

void play (int user_key, int digital_medial[], int len) {
int i;
guard (player_main,player_mainSIZE,play,playSIZE) ;
for (i=0; i<len;i++) {

}

guard (decrypt,decryptSIZE, play,playSIZE) ;
int digital = decrypt (user_key,digital medialil]);
guard (decrypt,decryptSIZE, play,playSIZE) ;

guard (decode, decodeSIZE, play,playSIZE) ;
printf ("$f\n",decode (digital));
guard (decode, decodeSIZE, play,playSIZE) ;

guard (player_main,player_mainSIZE,play,playSIZE) ;

void crypto (waddr_t proc,uint32 key,int words)
int i;
for (i=1; i<words; i++) {
*proc "= key;
proc++;

void guard (waddr_t proc,int proc_words,
waddr_t key_proc,int key_words) {
uint32 key = hashl (key_proc, key_words) ;
crypto (proc, key, proc_words) ;

Discussion

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

60/66

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

@ Prevent collusion — make every program
unique to prevent diffing attacks

60/66

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

@ Prevent collusion — make every program
unique to prevent diffing attacks

@ Code Privacy — make programs hard to
understand to protect algorithms

60/66

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

@ Prevent collusion — make every program
unique to prevent diffing attacks

@ Code Privacy — make programs hard to
understand to protect algorithms

@ Data Privacy — make programs hard to
understand to protect secret data (keys)

60/66

Code Obfuscation — What’s it Good
For?

@ Diversification — make every program
unique to prevent malware attacks

@ Prevent collusion — make every program
unique to prevent diffing attacks

@ Code Privacy — make programs hard to
understand to protect algorithms

@ Data Privacy — make programs hard to
understand to protect secret data (keys)

@ Integrity — make programs hard to
understand to make them hard to change

60/66

Evaluate Me!

Mid-Course Evaluation!

@ Take a piece of paper that | pass around.
@ Write GOOD on one side of the paper.

@ Write BAD on the other side of the paper.

© Write undergraduate/master/PhD.
@ Write your year/maijor.

62/66

What should | write?

@ You can write in English or Russian.

@ You can be anonymous, of course!

@ You can be brutally honest!

@ Be as specific and constructive as you can!

63/66

What should | comment on?

@ On either side of the paper, please
comment on:

Difficulty of the course.

English is easy/hard to follow?

Topics covered in the course.

Style of lectures.

In-class exercises.

@ Slides.

@ Anything else you would like to say!

© 6 06 6660

64/66

How else can | evaluate you?

@ You can also comment on me on
ratemyprofessors.com/
ShowRatings. jsp?tid=787531

Q@ Of course, you can always send me email
to tell me how you feel about the course!

@ Thank you — this will help me the next time
| teach this course!

65/66

ratemyprofessors.com/
ShowRatings.jsp?tid=787531

Next week’s lecture

@ Tamperproofing algorithms

@ Please check the website for
Important announcements:

WWW.CS.arizona.edu/~collberg/

Teaching/mgu/2014

66/66

www.cs.arizona.edu/~collberg/
Teaching/mgu/2014

