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What is an opaque predicate?

Give two methods for constructing opaque
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opaque predicates!
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Today’s lecture

1 Dynamic obfuscation

algorithms
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Dynamic
Obfuscation



Static vs. Dynamic obfuscation

Static obfuscations transform the code prior
to execution.
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Dynamic Obfuscation: Definitions

A dynamic obfuscator runs in two phases:
1 At compile-time transform the program to an

initial configuration and add a
runtime code-transformer .

2 At runtime, intersperse the execution of the
program with calls to the transformer.
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Dynamic Obfuscation: Definitions

A dynamic obfuscator runs in two phases:
1 At compile-time transform the program to an

initial configuration and add a
runtime code-transformer .

2 At runtime, intersperse the execution of the
program with calls to the transformer.

A dynamic obfuscator turns a “normal”
program into a self-modifying one.
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Modeling dynamic obfuscation —

compile-time

P
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Modeling dynamic obfuscation —

compile-time

Transformer
Embed Runtime

Configuration
Create Initial

I T

P P ′ P ′

T

Transformer I creates P ’s initial
configuration.

T is the runtime obfuscator, embedded in
P ′.
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Modeling dynamic obfuscation —

runtime

P ′

T

Transformer T continuously modifies P ′ at
runtime.
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Modeling dynamic obfuscation —

runtime

P ′

T
P ′

T
P ′

T
P ′

T T
P ′

Transformer T continuously modifies P ′ at
runtime.

We’d like an infinite, non-repeating series of
configurations.

In practice, the configurations repeat.
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Algorithm Ideas



Basic algorithm ideas

Build-and-execute: generate code for a
routine at runtime, and then jump to it.

Self-modification: modify the executable
code.

Encryption: The self-modification is
decrypting the encrypted code before
executing it.

Move code: Every time the code executes,
it is in different location.
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File-Level Encryption: Packers

> decrypt
Decryptor

Key

Encrypted
code

> find key

> find decryptor

Packers are simple tools that encrypt the
binary, and include a routine that will
decrypt at runtime.
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Function-Level Encryption

> decrypt

Keyfoo()

foo()

> find key

> find Dk

> find f
Dk

f = Ek (foo)

foo= Dk (f )

You can also decrypt a function just before
it gets called.
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Build-And-Execute

foo()

foo()
foo= f ()

f = build(foo) > find f

You can generalize “encryption” to any
embedded function that constructs the
“real” code at runtime.

13 / 66



Self-Modifying Code

> find fixup_foo

foo:

fixup_foo()
foo()

foo()

> find foo

Leave “holes” in foo, fix them just before
foo gets called.
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Move Code Around

foo()

foo();move();
foo();move();

foo

foo

foo > find foo

Continously move code around to make it
harder to find.
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Granularity

These operations can be applied at
different levels of granularity:

File-level
Function-level
Basic block-level
Instruction-level

16 / 66



Attack Goals

The attacker’s goal can be to:
recover the original code
modify the original code
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✞ ☎

int modexp(int y, int x[], int w, int n, int mode) {

int R, L, k = 0, s = 1, t;

char* p=&&begin;

while (p<(char*)&&end) *p++ ˆ= 99;

if (mode==1) return 0;

while (k < w) {

begin:

· · · · · · · · ·

· · · · · · · · ·

end:

k++;

}

p=&&begin; while (p<(char*)&&end) *p++ ˆ= 99;

return L;

}

int main() {

makeCodeWritable(· · ·);

modexp(0, NULL, 0, 0, 1);

· · ·

modexp(· · ·, · · ·, · · ·, · · ·, 0);

}
✝ ✆



Code Explanation

The blue code is xor:ed with a key (99).

When the code is to be executed it gets
“decrypted”, executed, and re-encrypted.

The green code would normally execute at
obfuscation time.

Every subsequent time the modexp routine
gets called the pink code first decrypts the
blue code, executes it, and then the yellow
code re-encrypts it.
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Practical issues

Pages have to be modifiable and
executable. (See next slide).

You have to flush the CPU’s data cache
before executing new code you have
generated. (Why?) X86 does this
automatically.
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✞ ☎

void makeCodeWritable(caddr_t first, caddr_t last) {

caddr_t firstpage =

first - ((int)first % getpagesize());

caddr_t lastpage =

last - ((int)last % getpagesize());

int pages=(lastpage-firstpage)/getpagesize()+1;

if (mprotect(

firstpage,

pages*getpagesize(),

PROT_READ|PROT_EXEC|PROT_WRITE

)==-1)

perror("mprotect");

}
✝ ✆



Decrypting by Emulation

“Encrypting” binaries is often re-invented!

Attack: run the program inside an emulator
that prints out every executed instruction.

The instruction trace can be analyzed
(re-rolling loops, removing
decrypt-and-jump artifacts, etc.) and the
original code recovered.
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Replacing
Instructions



Kanzaki’s Algorithm

Motivation: make it hard for the adversary
to snapshot the code.

Idea: replace real instructions by bogus
ones.

Right before execution, the bogus
instruction is replaced by the real one.

Just after execution, the real instruction is
replaced by the bogus one!
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✞ ☎

int player_main (int argc, char *argv[]) {

char orig = (*(caddr_t)&&target);

(*(caddr_t)&&target) = 0;

. . . . . . . . .

for(i=0;i<len;i++) {

(*(caddr_t)&&target) = orig;

. . . . . . . . .

target:

printf("%f\n",decoded);

(*(caddr_t)&&target) = 0;

}

}

int main (int argc, char *argv[]) {

makeCodeWritable(...);

player_main(argc,argv);

}
✝ ✆



Algorithm Details

Find three points A, B, C in the control flow
graph:

target:

ENTER

B

A

C

EXIT

move orig,target

move bogus,target
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Algorithm Details

Every path to B must flow through A and
every path from B must flow through C:

target:

ENTER

B

A

C

EXIT

move orig,target

move bogus,target
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Algorithm Details

At A : insert an instruction which overwrites
the target instruction with its original value:

target:

ENTER

B

A

C

EXIT

move orig,target

move bogus,target
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Algorithm Details

At C : insert an instruction which overwrites
the target with the bogus value:

target:

ENTER

B

A

C

EXIT

move orig,target

move bogus,target
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Attack: set pages unwritable!

The attacker calls mprotect to set the
code region to readable and executable, but
not writable. (See next slide).

When the program tries to write into the
code stream the operating system throws
an exception.

Under debugging, see where this happens!
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✞ ☎

(gdb) call (int)mprotect(0x2000,0x3000,5)

(gdb) cont

EXC_BAD_ACCESS, Could not access memory.

KERN_PROTECTION_FAILURE at address: 0x00002934

0x000028c0 in player_main

30 (*(caddr_t)&&target) = orig;

(gdb) x/i $pc

0x28c0 <player_main+220>: stb r0,0(r2)

(gdb) print (char)$r0

$7 = -64

(gdb) print/x (int)$r2

$10 = 0x2934
✝ ✆
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Code Merging



Madou’s Algorithm: Dynamic Code

Merging

Motivation: Keep the program in constant
flux!
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Madou’s Algorithm: Dynamic Code

Merging

Motivation: Keep the program in constant
flux!

Every time the adversary looks at the code,
it’s different!

Idea: Two or more functions share the
same location in memory!

Before f is called, patch memory to ensure
f is loaded.
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Example: Original Code

Obfuscate a program that contains two
functions f1 and f2:

f1
0 10
1 5
2 6
3 20
4 99

f2
0 10
1 9
2 3
3 20

To the left is byte index in the function, to
the right the code byte at the location.

Note: At index 0, both f1 and f2 have the
same code byte (10).
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Example: Obfuscation Time

During obfuscation replace f1 and f2 with
the template T and two edit scripts e1 and
e2:

T

0 10
1 ?
2 ?
3 20
4 99

e1 = [1→ 5,2→ 6]
e2 = [1→ 9,2→ 3]
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Example: Calling f1() at Run Time

Program calls f1() : patch T using e1.

Replace the code-byte at offset 1 with 5
and the code-byte at offset 2 with 6.

T

0 10
1 ?
2 ?
3 20
4 99

e1 = [1→ 5,2→ 6]
e2 = [1→ 9,2→ 3]

36 / 66



Example: Calling f1() at Run Time

If you call f1 again (without intervening calls
to f2), no need to patch!!!

T

0 10
1 ?
2 ?
3 20
4 99

e1 = [1→ 5,2→ 6]
e2 = [1→ 9,2→ 3]
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Example: Calling f2() at Run Time

If you call f1 again (without intervening calls
to f2), no need to patch!!!

Program calls f2() : patch T using e2.

T memory region will constantly change,
first containing an incomplete function and
then alternating between containing the
code-bytes for f1 and f2.
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Algorithm step 1: Clustering

Decide which functions should be in the
same cluster, i.e. reside in the same
template at runtime.
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Algorithm step 1: Clustering. . .

Avoid putting f1 and f2 in the same cluster if
they are called like this:

✞ ☎

while(1) {

f1();
f2();

}
✝ ✆
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Algorithm step 2: Make scripts and

patch routine

Create a template Tk containing the
intersection of the code-bytes of the
functions in ck .

For each function fi in ck create an edit
script ei such that applying ei to the
code-bytes of Tk creates the code-bytes of
fi .
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Dynamic Code Merging

Original code:
✞ ☎

int val = 0;

void f1(int* v) {*v=99;}

void f2(int* v) {*v=42;}

int main (int argc, char *argv[]) {

f1(&val);

f2(&val);

}
✝ ✆
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EDIT script1[200], script2[200];

char* template;

int template_len, script_len = 0;

typedef void(*FUN)(int*);

int val, state = 0;

void f1_stub() {

if (state != 1) {

patch(script1,script_len,template); state = 1;}

((FUN)template)(&val);

}

void f2_stub() {

if (state != 2) {

patch(script2,script_len,template); state = 2;}

((FUN)template)(&val);

}

int main (int argc, char *argv[]) {

f1_stub(); f2_stub();

}



Attacks

Note: the patch routine is in the clear!
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Attacks

Note: the patch routine is in the clear!

Note: the scripts are in the clear!
Static attack:

1 Analyze binary, find patch routine an scripts.
2 Running each call to patch(Tk ,ei ) to recover

the code!

Counterattack: Encrypt the scripts.

Counter-counterattack: Intercept the
decrypted scripts at runtime.
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Self-Modifying
State Machine



Aucsmith’s algorithm

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :

A function is split into cells.
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Aucsmith’s algorithm

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :

A function is split into cells.
The cells are divided into two regions in
memory, upper and lower.

46 / 66



One step

C0 :
C1 :
C2 :
C3 :
C4 :
C5 :

C0 :
C1 :
C2 :
C3 :
C4 :
C5 :

orig M0
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XOR!

⊕ =

⊕ =

⊕ =
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Why does this work?

A B
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A B

⇓ B← B⊕A

⇓ A← A⊕B
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Runtime
Encryption



Code as key material

Encrypt the code to keep as little code as
possible in the clear at any point in time
during execution.
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Code as key material

Encrypt the code to keep as little code as
possible in the clear at any point in time
during execution.
Extremes:

1 Decrypt the next instruction, execute it,
re-encrypt it, . . .⇒ only one instruction is ever
in the clear!

2 Decrypt the entire program once, prior to
execution, and leave it in cleartext. ⇒ easy for
the adversary to capture the code.
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Code as key material

The entire program is encrypted — except
for main.
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Code as key material

The entire program is encrypted — except
for main.

Before you jump to a function you decrypt it.

When the function returns you re-encrypt it.

On entry, a function first encrypts its caller.

Before returning, a function decrypts its
caller.

⇒ At most two functions are ever in the
clear!
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Code as key material

What do we use as key? The code itself!
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Code as key material

What do we use as key? The code itself!

What cipher do we use?
Something simple!

54 / 66



Simple case: tree-shaped call-graph:
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Simple case: tree-shaped call-graph:

main

play

decodedecrypt

getkey

Before/after procedure call : call guard
function to decrypt/re-encrypt the callee.

Entry/exit of the callee: encrypt/decrypt the
caller.

Key: Hash of the cleartext of the
caller/callee.



int player_main (int argc, char *argv[]) {

int user_key = 0xca7ca115;

int digital_media[] = {10,102};

guard(play,playSIZE,player_main,player_mainSIZE);

play(user_key,digital_media,2);

guard(play,playSIZE,player_main,player_mainSIZE);

}

int getkey(int user_key) {

guard(decrypt,decryptSIZE,getkey,getkeySIZE);

int player_key = 0xbabeca75;

int v = user_key ˆ player_key;

guard(decrypt,decryptSIZE,getkey,getkeySIZE);

return v;

}

int decrypt(int user_key, int media) {

guard(play,playSIZE,decrypt,decryptSIZE);

guard(getkey,getkeySIZE,decrypt,decryptSIZE);

int key = getkey(user_key);

guard(getkey,getkeySIZE,decrypt,decryptSIZE);

int v = media ˆ key;

guard(play,playSIZE,decrypt,decryptSIZE);

return v;

}



float decode (int digital) {

guard(play,playSIZE,decode,decodeSIZE);

float v = (float)digital;

guard(play,playSIZE,decode,decodeSIZE);

return v;

}

void play(int user_key, int digital_media[], int len) {

int i;

guard(player_main,player_mainSIZE,play,playSIZE);

for(i=0;i<len;i++) {

guard(decrypt,decryptSIZE,play,playSIZE);

int digital = decrypt(user_key,digital_media[i]);

guard(decrypt,decryptSIZE,play,playSIZE);

guard(decode,decodeSIZE,play,playSIZE);

printf("%f\n",decode(digital));

guard(decode,decodeSIZE,play,playSIZE);

}

guard(player_main,player_mainSIZE,play,playSIZE);

}



void crypto (waddr_t proc,uint32 key,int words) {

int i;

for(i=1; i<words; i++) {

*proc ˆ= key;

proc++;

}

}

void guard (waddr_t proc,int proc_words,

waddr_t key_proc,int key_words) {

uint32 key = hash1(key_proc,key_words);

crypto(proc,key,proc_words);

}



Discussion



Code Obfuscation — What’s it Good

For?

Diversification — make every program
unique to prevent malware attacks
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Code Obfuscation — What’s it Good

For?

Diversification — make every program
unique to prevent malware attacks

Prevent collusion — make every program
unique to prevent diffing attacks

Code Privacy — make programs hard to
understand to protect algorithms

Data Privacy — make programs hard to
understand to protect secret data (keys)

Integrity — make programs hard to
understand to make them hard to change
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Evaluate Me!



Mid-Course Evaluation!

1 Take a piece of paper that I pass around.

2 Write GOOD on one side of the paper.

3 Write BAD on the other side of the paper.

4 Write undergraduate/master/PhD.

5 Write your year/major.
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What should I write?

1 You can write in English or Russian.

2 You can be anonymous, of course!

3 You can be brutally honest!

4 Be as specific and constructive as you can!
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What should I comment on?

1 On either side of the paper, please
comment on:

Difficulty of the course.
English is easy/hard to follow?
Topics covered in the course.
Style of lectures.
In-class exercises.
Slides.

2 Anything else you would like to say!
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How else can I evaluate you?

1 You can also comment on me on
ratemyprofessors.com/

ShowRatings.jsp?tid=787531

2 Of course, you can always send me email
to tell me how you feel about the course!

3 Thank you — this will help me the next time
I teach this course!
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Next week’s lecture

1 Tamperproofing algorithms
2 Please check the website for

important announcements:

www.cs.arizona.edu/˜collberg/

Teaching/mgu/2014
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