Software Protection:
How to Crack Programs, and
Defend Against Cracking

Lecture 6: Tamperproofing |
Moscow State University, Spring 2014

Christian Collberg
University of Arizona

WWW.CS.arizona.edu/~collberg
© April 2, 2014 Christian Collberg

www.cs.arizona.edu/~collberg

Today’s lecture

@ Tamperproofing

Introduction

What is tamperproofing?

Ensure that a program executes as
intended, even in the presence of an
adversary who tries to disrupt, monitor,
or change the execution.

@ A tamperproofing algorithm
@ makes tampering difficult

4/128

What is tamperproofing?

Ensure that a program executes as
intended, even in the presence of an
adversary who tries to disrupt, monitor,
or change the execution.

@ A tamperproofing algorithm

@ makes tampering difficult
@ detects when tampering has occured

4/128

What is tamperproofing?

Ensure that a program executes as
intended, even in the presence of an
adversary who tries to disrupt, monitor,
or change the execution.

@ A tamperproofing algorithm

@ makes tampering difficult
@ detects when tampering has occured
© responds to the attack

4/128

What are typical attacks and
defenses?

An attacker typically modifies the program with
the intent to force it to chose a different
execution path than the programmer intended:

@ remove code from and/or insert new code
into the executable file prior to execution;

5/128

What are typical attacks and
defenses?

An attacker typically modifies the program with
the intent to force it to chose a different
execution path than the programmer intended:

@ remove code from and/or insert new code
into the executable file prior to execution;

© remove code from and/or insert new code
into the running program;

5/128

What are typical attacks and
defenses?

An attacker typically modifies the program with
the intent to force it to chose a different
execution path than the programmer intended:

@ remove code from and/or insert new code
into the executable file prior to execution;

@ remove code from and/or insert new code
into the running program;

© affect the runtime behavior of the program
through external agents such as emulators,
debuggers, or a hostile operating system.

5/128

Algorithms

@ introspection, i.e. tamperproofed programs
which monitor their own code to detect
modifications.

6/128

Algorithms

@ introspection, i.e. tamperproofed programs
which monitor their own code to detect
modifications.

@ various kinds of response mechanisms.

6/128

Algorithms

@ introspection, i.e. tamperproofed programs
which monitor their own code to detect
modifications.

@ various kinds of response mechanisms.

© oblivious hashing algorithms which
examine the state of the program for signs
of tampering.

6/128

Dynamic linker
Dynamic libs

0s

PS

{ \Debugger B

Input args
Registers
Stack

cs

(7 [oyrame s |

Env. variables
Static data

Heap

CHECK()

return (Inv1)&&
(Inv2)&&
(Inv3);

RESPOND(X

if (ICHECK())
report();
restore();
abort();

How does the adversary attack p?

@ Modify files:
@ P’s executable file
@ dynamic linker
@ dynamic libraries

8/128

How does the adversary attack p?

@ Modify files:
@ P’s executable file
@ dynamic linker
@ dynamic libraries

@ Modify the operating system

8/128

How does the adversary attack p?

@ Modify files:
@ P’s executable file
@ dynamic linker
@ dynamic libraries

@ Modify the operating system
© Run P under emulation

8/128

How does the adversary attack p?

@ Modify files:
@ P’s executable file
@ dynamic linker
@ dynamic libraries

@ Modify the operating system
@ Run p under emulation
@ Modify P while running under debugging

8/128

What do we want?

Ensure P is healthy and the environment isn’t
hostile:

@ Unadulterated hardware and
operating system

9/128

What do we want?

Ensure P is healthy and the environment isn’t
hostile:
@ Unadulterated hardware and
operating system
@ Unmodified P’s code

9/128

What do we want?

Ensure P is healthy and the environment isn’t
hostile:

@ Unadulterated hardware and
operating system

@ Unmodified P’s code

@ Not running under emulation

9/128

What do we want?

Ensure P is healthy and the environment isn’t
hostile:

@ Unadulterated hardware and
operating system

@ Unmodified P’s code

@ Not running under emulation

© Not being modified by a debugger

9/128

What do we want?

Ensure P is healthy and the environment isn’t
hostile:

@ Unadulterated hardware and
operating system

@ Unmodified P’s code

@ Not running under emulation

© Not being modified by a debugger

@ The right dynamic libraries have been
loaded

9/128

Checking for tampering — code
checking

@ Check that P’s code hashes to a known
value:

if (hash(P’s code) != Oxca7callh)
return false;

10/128

How do we respond to tampering?

@ Terminate the program.

11/128

How do we respond to tampering?

@ Terminate the program.
@ Restore the program to its correct state, by
patching the tampered code.

11/128

How do we respond to tampering?

@ Terminate the program.

@ Restore the program to its correct state, by
patching the tampered code.

© Deliberately return incorrect results, maybe
deteriorate slowly over time.

11/128

How do we respond to tampering?

@ Terminate the program.

@ Restore the program to its correct state, by
patching the tampered code.

© Deliberately return incorrect results, maybe
deteriorate slowly over time.

© Degrade the performance of the program.

11/128

How do we respond to tampering?

@ Terminate the program.

@ Restore the program to its correct state, by
patching the tampered code.

© Deliberately return incorrect results, maybe
deteriorate slowly over time.

© Degrade the performance of the program.

© Report the attack for example by “phoning
home”.

11/128

How do we respond to tampering?

@ Terminate the program.

@ Restore the program to its correct state, by
patching the tampered code.

© Deliberately return incorrect results, maybe
deteriorate slowly over time.

© Degrade the performance of the program.

© Report the attack for example by “phoning
home”.

@ Punish the attacker by destroying the
program or objects in its environment:

@ DisplayEater deletes your home directory.

@ Destroy the computer by repeatedly flashing
the bootloader flash memory.

11/128

Checking the
Environment

Tampering with the environment

Hack libc!

Emulate! Hack OS!

Debug! Hack HW!

13/128

Tampering with the environment

Hack libc!
libc OK?
Emulate! Hack OS!

Emulated? OSOK?

Debug! Hack HW!

Debugged? HW OK?

A

13/128

Checking the Environment

@ “Am | being run under emulation?’

14/128

Checking the Environment

@ “Am | being run under emulation?’
@ “Are common attack tools installed?”

14/128

Checking the Environment

@ “Am | being run under emulation?’
@ “Are common attack tools installed?”
@ “Are common attack tools running?”

14/128

®© 6 6 ¢

Checking the Environment

“Am | being run under emulation?’

“Are common attack tools installed?”
“Are common attack tools running?”

“Is a debugger attached to my process?”

14/128

®© 6 6 ¢ ¢

Checking the Environment

“Am | being run under emulation?’

“Are common attack tools installed?”
“Are common attack tools running?”

“Is a debugger attached to my process?”

“Is the operating system at the proper patch
level?”

14/128

®© 6 6 ¢ ¢

©

Checking the Environment

“Am | being run under emulation?’

“Are common attack tools installed?”
“Are common attack tools running?”

“Is a debugger attached to my process?”

“Is the operating system at the proper patch
level?”

“Are the right dynamic libraries being
loaded?”

14/128

Does the User have a Debugger?

@ Check if a program named gdb exists:

[> find /usr —-name gbd -print]

@ See if a program named gdb is running:

> ps —ax | grep gdb
12233 ttys000 0:00.02 gdb /bin/ls

@ See if gdb exists, under a different name.

15/128

Am | Already Being Debugged?

@ On Linux, you can only debug/trace a
program once.

@ Start P under debugging, if you fail, P is
already being debugged!

#include <sys/ptrace.h>
int main() {
if (ptrace (PTRACE_TRACEME))
printf ("I’'m being traced!\n");

> gcc —-g —-o traced traced.c
> traced

> gdb traced

(gdb) run

I’'m being traced!

16/128

Am | Running Unusually Slow?

@ Certain operations, such as catching
exceptions, are slower when being run
under debugging.

#include
#include
#include
#include
#include

<stdio.h>

<stdint.h>
<signal.h>
<unistd.h>
<setjmp.h>

Jmp_buf env;

void handler (int signal) {

longjmp (env, 1) ;

}

17/128

~
int main () {

signal (SIGFPE, handler);
uint32_t start, stop;

int x = 0;
if (setjmp(env) == 0) {
asm volatile (
"cpuid\n"
"rdtsc\n" : "=a" (start)
)i
X = x/x;
} else {
asm volatile (
"cpuid\n"
"rdtsc\n" : "=a" (stop)

)i

uint32_t elapsed = stop - start;

if (elapsed>40000) printf ("Debugged!\n");
else printf ("Not debugged!\n");

Am | Running Unusually Slow?

@ Here’s the output when run normally:

> gcc -o cycles cycles.c

> cycles
elapsed 31528: Not debugged!

@ Here’s the output when under a debugger:

> gcc -o cycles cycles.c

> gdb cycles

(gdb) handle SIGFPE noprint nostop
(gdb) run

elapsed 79272: Debugged!

19/128

Introspection

Checking by introspection
@ Augment the program with functions that

compute a hash over a code region to
compare to an expected value.

21/128

Checking by introspection

@ Augment the program with functions that
compute a hash over a code region to

compare to an expected value.

@ How can we be sure that the attacker won’t
tamper with the hash computation itself?

21/128

Checking by introspection

@ Augment the program with functions that
compute a hash over a code region to

compare to an expected value.
@ How can we be sure that the attacker won't
tamper with the hash computation itself?

@ build up a network of checkers and responders,
so that checkers can check each other and
responders can repair code that has been
tampered with.

21/128

Checking by introspection

@ Augment the program with functions that
compute a hash over a code region to

compare to an expected value.
@ How can we be sure that the attacker won't
tamper with the hash computation itself?

@ build up a network of checkers and responders,
so that checkers can check each other and
responders can repair code that has been
tampered with.

© hide the hash values so they won't give away
the location of the checkers.

21/128

Checking by introspection

@ Augment the program with functions that
compute a hash over a code region to

compare to an expected value.
@ How can we be sure that the attacker won't
tamper with the hash computation itself?

@ build up a network of checkers and responders,
so that checkers can check each other and
responders can repair code that has been
tampered with.

© hide the hash values so they won't give away
the location of the checkers.

@ We'll see a clever attack on all
introspection algorithms!

21/128

Inserting Guards

r

start = start_address;

end = end_address;

h = 0;

while (start < end) {
h = h @& xstart;
STEALL 2

}

if (h !'= expected-value)
abort () ;
goto x*h;

22/128

Attack model — Find the guards

@ Search for patterns in the static code, for
example two code segment addresses
followed by a test:

start = Oxbabebabe;
end = Oxca75ca’75;
while (start < end) {

@ Search for patterns in the execution, such
as data reads into the code.

23/128

Attack model — Disable the guards

@ Replace the if-statementby if (0) .. .:
if (0)
{ abort () ; }

@ Pre-compute the hash value and substitute
it into the response code:

Lgoto *expected-value; J

24/128

Chang & Atallah

@ Invented by two Purdue University
researchers, Mike Atallah and Hoi Chang:

BTy 4

&=
@ Patented and with assistance from Purdue
a start-up, Arxan, was spun off.

25/128

Chang & Atallah

@ Checkers compute a hash over a region
and compare to the expected value.

26/128

Chang & Atallah

@ Checkers compute a hash over a region
and compare to the expected value.

@ Checkers check the code and
check each other as well!

26/128

Chang & Atallah

@ Checkers compute a hash over a region
and compare to the expected value.

@ Checkers check the code and
check each other as well!

@ Build up a network of code regions: blocks
of user code, checkers, and responders.

26/128

Chang & Atallah

@ Checkers compute a hash over a region
and compare to the expected value.
@ Checkers check the code and
check each other as well!
@ Build up a network of code regions: blocks
of user code, checkers, and responders.
@ When a tampered function is found
repair it!

26/128

Chang & Atallah

@ Checkers compute a hash over a region
and compare to the expected value.

@ Checkers check the code and
check each other as well!

@ Build up a network of code regions: blocks
of user code, checkers, and responders.

@ When a tampered function is found
repair it!

@ Skype uses a similar technique.

@ Multiple checkers can check the same
region.

26/128

o

]

]

Chang & Atallah

Checkers compute a hash over a region
and compare to the expected value.
Checkers check the code and

check each other as well!

Build up a network of code regions: blocks
of user code, checkers, and responders.
When a tampered function is found

repair it!

Skype uses a similar technique.

Multiple checkers can check the same
region.

Multiple responders can repair a tampered
reaion. 26126

int main (int argc, char xargv[]) {
int user_key = Oxca7callb;
int medial] = {10,102};
play (user_key,media, 2);
}
int getkey (int user_key) {
int player_key = Oxbabeca75;
return user_key ~ player_key;
}
int decrypt (int user_key, int media) {
int key = getkey (user_key);
return media ~ key;
}
float decode (int digital) {return (float)digital;}
void play (int user_key, int media[], int len) {
int i;
for (i=0;i<len; i++)
printf ("$f\n",decode (decrypt (user_key,mediali])));

#define getkeyHASH Oxceld400a
#define getkeySIZE 14
uint32 getkeyCOPY[] =

{0x83e58955, 0x72b820ec, 0xc7080486, ...

#define decryptHASH 0x3764e45c
#define decryptSIZE 16
uint32 decryptCOPY[] =

{0x83e58955, 0xaeb820ec, 0xc7080486, ..

#define playHASH 0x4f4205a5
#define playSIZE 29
uint32 playCOPY[] =

{0x83e58955, Oxedb828ec, 0xc7080486, ...

.

-4

int main (int argc, char xargv[]) {

~

uint32 B_COPY[]={0x83e58955, 0xaeb820ec, 0xc7080486, ...};
int main (int argc, char xargv[]) {
A();
}
int A() |
B_hash = hash (B);
if (B_hash != 0x4f4205a5)
memcpy (B, B_COPY) ;
B(O);
}
int B() {
}

~
uint32 A_COPY[] ={0x83e58955,0x72b820ec, 0xc7080486,...1};
uint32 B_COPY[]={0x83e58955, 0xaeb820ec, 0xc7080486, ...};

int main (int argc, char xargv[]) {
A_hash = hash (2);
if (A_hash != 0x105AB23F)
memcpy (A, A_COPY) ;
A();
}

int A() |

B_hash = hash(B);

if (B_hash != 0x4f4205a5)
memcpy (B, B_COPY) ;
B(O);

uint32 getkeyCOPY[] ={0x83e58955,0x72b820ec, 0xc7080486, ...};
uint32 decryptCOPY[]={0x83e58955, 0xaeb820ec,0xc7080486, ...};
uint32 playCOPY[] ={0x83e58955, Oxedb828ec, 0xc7080486, ...1};
uint32 decryptVal;

int main (int argc, char xargv[]) {
uint32 playVal = hash((waddr-t)play,29);
int user_key = Oxca7call5;
decryptVal = hash ((waddr_t)decrypt,16);
int media([] = {10,102};
if (playVval != 0x4f4205a5)

memcpy ((waddr_t)play,playCOPY,29+sizeof (uint32));
play (user_key,media, 2);

int getkey (int user_key) {
decryptVal = hash ((waddr_t)decrypt,16);
int player_key = 0Oxbabeca’75;
return user_key ~ player_key;

(int decrypt (int user_key, int media) {

‘ uint32 getkeyVal = hash ((waddr_t)getkey,14);

‘ if (getkeyVal != 0Oxceld400a)

‘ memcpy ((waddr_t) getkey, getkeyCOPY, 14xsizeof (uint32)) ;
int key = getkey (user_key);

return media ~ key;

float decode (int digital) {
return (float)digital;

}

void play (int user_key, int media[], int len) {
if (decryptval != 0x3764e45c)

int i;
for (i=0; i<len; i++)
printf ("$f\n",decode (decrypt (user_key,mediali])));

‘ memcpy ((waddr_t) decrypt, decryptCOPY,16*sizeof (uint32)) ;

Checker network

main

o

[] Cra > Lo]
Cr> [] C2D

Ca o []

@ |code|— code blocks
@ c; — checkers
@ rj — repairers

34/128

Checker Network

Here’s the corresponding code, as it is laid out
in memory:

main getkey decrypt decode play
Cq C3 Co
3
G n r

blue represent checkers, pink repairers.

35/128

Generating hash
functions

Generating hash functions

@ Prevent collusive attacks = generate a
large number of different-looking hash
functions.

37/128

Generating hash functions

@ Prevent collusive attacks = generate a
large number of different-looking hash
functions.

@ Self-collusive attacks = the adversary
scans through the program for pieces of
similar-looking code.

37/128

Generating hash functions

@ Prevent collusive attacks = generate a
large number of different-looking hash
functions.

@ Self-collusive attacks = the adversary
scans through the program for pieces of
similar-looking code.

@ No need to be “cryptographically secure”.

37/128

Generating hash functions

@ Prevent collusive attacks = generate a
large number of different-looking hash
functions.

@ Self-collusive attacks = the adversary
scans through the program for pieces of
similar-looking code.

@ No need to be “cryptographically secure”.

@ No need to generate a uniform distribution
of values.

37/128

Generating hash functions

@ Prevent collusive attacks = generate a
large number of different-looking hash
functions.

@ Self-collusive attacks = the adversary
scans through the program for pieces of
similar-looking code.

@ No need to be “cryptographically secure”.

@ No need to generate a uniform distribution
of values.

@ Must be simple, fast, stealthy!

37/128

hash1

typedef unsigned int uint32;
typedef uint32x addr_t;

uint32 hashl (addr_t addr,int words) {
uint32 h = xaddr;
int i;
for (i=1; i<words; i++) {
addr++;
h "= xaddr;
}

return h;

@ Inline the function for better stealth.

38/128

hash?2

(uint32 hash2 (addr_t start,addr_t end)
uint32 h = xstart;
while (1) {
start++;
if (start>=end) return h;
h "= xstart;

{

@ Will the compiler generate different code

than for hash1???

39/128

hash3

(int32 hash3 (addr_t start,addr_t end,int step) {
uint32 h = xstart;
while (1) {
start+=step;
if (start>=end) return h;
h "= xstart;

@ Step through the code region in more or
less detail = balance performance and
accuracy.

40/128

hash4

(uint32 hash4 (addr_t start,addr_t end,uint32 rnd) {
addr_t t (addr_t) ((uint32)start + (uint32)end + rnd);
uint32 h 0;
do {
h += % ((addr_t) (- (uint32)end- (uint32) rnd+ (uint32)t));
t++;
} while (t < (addr_t) ((uint32)end+
(uint32)end+ (uint32) rnd)) ;

return h;

}

@ Scan backwards.

@ Obfuscate to prevent pattern-matching
attacks: add (and then subtract out) a
random value (rnd).

41/128

hashb

uint32 hashb
uint32 h =

(addr_t start,
0;

addr_t end,

while (start < end) {
h = Cx (xstart + h);
start++;

}

return h;

uint32 C)

{

42/128

Obfuscating hash5

@ Generate 2,916,864 variants, each less
than 50 bytes of x86!

@ Reorder basic blocks, invert conditional
branches...

@ Replace multiplication instructions by
combinations of shifts adds, and address
computations. ..

@ Permute instructions within blocks. . .
@ Permute register assignments. ..
@ Replace instructions with equivalents. ..

43/128

The Skyp

obfuscat?d
protoco

The Skype obfuscated protocol

@ Voice-over-IP service where users are
charged for computer-to-phone and
phone-to-computer calls.

@ The Skype client is heavily tamperproofed
and obfuscated.

@ 2005: Skype was bought by eBay for $2.6
billion.

@ 2006: Hacked by two researchers at the
EADS Corporate Research Center in
France.

45/128

The Skype obfuscated protocol

@ The client binary contains:

@ hardcoded RSA keys
©@ the IP address and port number of a known
server

@ Break the protection and build your own
VoIP network!

46/128

Skype protection: Stage 1

L.initialize g
2.0ad dil:s Rasep
PC—|
4. decrypt 4. decrypt
PC—| P

key : key

- P
dil table dil table
hidden dil table <

@ pink: cleartext code, loads dlls.

@ blue: erase pink code, decrypts green code.

@ green: loads hidden dlis (yellow).

@ Erasing and hiding dlls: hard to recreate
binary.

47/128

Skype protection: Stage 2

@ Check for debuggers:

@ Signatures of known debuggers
© Timing tests

48/128

Skype protection: Stage 3

@ Checker network:
D

@ Hash function computes the address of the
next location to be executed!

@ Hash functions are obfuscated, but not
enough — attacked by pattern-matching.

49/128

uint32 hash7()
addr_t addr;

{

addr = (addr_t) ((uint32)addr” (uint32)addr) ;
addr = (addr_t) ((uint32)addr + 0x688ES5C);

uint32 hash
int bound =
do {

= 0x320E83 ~ 0x1C4C4;
hash + OxFFCCS5AFD;

uint32 data = *((addr_t) ((uint32)addr + 0x10));

goto bl; asm volatile(".byte 0x19");
bl: hash = hash @ data;
addr -= 1; bound--;
} while (bound!=0);
goto b2;
asm volatile (".byte 0x73");
b2:
goto Db3;
asm volatile (".word 0xC8528417,0xD8FBBD1, 0xA36CFB2F") ;
asm volatile (".word O0xE8D6E4B7,0xCOB8797A");
asm volatile (".byte 0x61,0xBD");
b3:

hash-=0x4C49F346; return hash;

Other obfuscations

@ All function calls are done indirectly.

@ Insert dummy code protected by opaque
predicates.

@ The code raises bogus exceptions, the
exception handler repairs register values,
returns back to the original location.

51/128

Attacking the Skype Client

@ Goal: build your own Skype binary!
@ Goal: insert your own RSA keys!

@ First: remove the encryption and
tamperproofing

52/128

Attacking the Skype Client

@ Find the keys stored in the binary and
decrypt the encrypted sections.

@ Read the hidden dll table and combine it

with the original one, making a complete
table.

@ Build a script which runs over the decrypted
binary and

finds beginning/end of every hash function.

53/128

Finding the Hash Functions

@ Distinctive structure: initialize, loop, read
memory, compute hash.

@ Step 1: Use simple pattern matching to find
all functions.

54/128

uint32 hash7()
addr_t addr;

{

addr = (addr_t) ((uint32)addr” (uint32)addr) ;
addr = (addr_t) ((uint32)addr + 0x688ES5C);

uint32 hash
int bound =
do {

= 0x320E83 ~ 0x1C4C4;
hash + OxFFCCS5AFD;

uint32 data = *((addr_t) ((uint32)addr + 0x10));

goto bl; asm volatile(".byte 0x19");
bl: hash = hash @ data;
addr -= 1; bound--;
} while (bound!=0);
goto b2;
asm volatile (".byte 0x73");
b2:
goto Db3;
asm volatile (".word 0xC8528417,0xD8FBBD1, 0xA36CFB2F") ;
asm volatile (".word O0xE8D6E4B7,0xCOB8797A");
asm volatile (".byte 0x61,0xBD");
b3:

hash-=0x4C49F346; return hash;

Finding the Hash Values

@ Step 2: Run every hash function, collect
their output values.

Q@ Step 3: Replace the body of the function
with that value.

56/128

Running the hash functions

@ Try 1: Set software breakpoints on every
function header!

57/128

Running the hash functions

@ Try 1: Set software breakpoints on every
function header!

@ Nope: software breakpoints change the
executable!

57/128

Running the hash functions

@ Try 1: Set software breakpoints on every
function header!

@ Nope: software breakpoints change the
executable!

@ Try 2: Set hardware breakpoints on every
function header!

57/128

Running the hash functions

@ Try 1: Set software breakpoints on every
function header!

@ Nope: software breakpoints change the
executable!

@ Try 2: Set hardware breakpoints on every
function header!

@ Nope: only 4 hardware breakpoints, and
> 300 functions!

57/128

Running the hash functions

@ Try 3: run Skype twice, in parallel, both
processes under debugging, but one using
hardware breakpoints, the other software
breakpoints.

@ See next slide.

@ Alternative attack: run each function in an
emulator

58/128

Twin Processes Debugging

> gdb Seor > gdb Sparg

> break c;
> break ¢

> ran

Break on Cop!

59/128

Twin Processes Debugging

> gdb Ssort

> break c;
> break ¢o

> ran

Break on Cop!

> gdb Shard

> hbreak start of cog
> hbreak end of ¢y
> run

Break on cyq!

Record hash value!!

59/128

@ Start one Skype process Sq,y, setting
software breakpoints at the beginning of
every hash function.

@ Start one Skype process Sq,y, setting
software breakpoints at the beginning of
every hash function.

@ Start another Skype process Sj4-

@ Start one Skype process Sq,y, setting
software breakpoints at the beginning of
every hash function.

@ Start another Skype process Sj4-

© Run S, until a breakpoint at the beginning
of a hash function is reached at some
address start.

@ Start one Skype process Sq,y, setting
software breakpoints at the beginning of
every hash function.

@ Start another Skype process Sj4-

© Run S, until a breakpoint at the beginning
of a hash function is reached at some
address start.

@ Set a hardware breakpoint at start in the
Sharg and at address end.

@ Start one Skype process Sq,y, setting
software breakpoints at the beginning of
every hash function.

@ Start another Skype process Sj4-

© Run S, until a breakpoint at the beginning
of a hash function is reached at some
address start.

@ Set a hardware breakpoint at start in the
Sharg and at address end.

@ Run Sy, until endis reached.

@ Start one Skype process Sq,y, setting
software breakpoints at the beginning of
every hash function.

@ Start another Skype process Sj4-

© Run S, until a breakpoint at the beginning
of a hash function is reached at some
address start.

@ Set a hardware breakpoint at start in the
Sharg and at address end.

@ Run Sy, until endis reached.

© Record the result hash of the hash
computation.

@ Start one Skype process Sq,y, setting
software breakpoints at the beginning of
every hash function.

@ Start another Skype process Sj4-

© Run S, until a breakpoint at the beginning
of a hash function is reached at some
address start.

@ Set a hardware breakpoint at start in the
Sharg and at address end.

@ Run Sy, until endis reached.

© Record the result hash of the hash
computation.

@ Restart S, starting at address end and
with the return value of the hash function
set to hash.

Hiding hash
values

Unstealthy constants

h = hash(start,end);
if (h == Oxca7babe5) abort();

@ Attack: scan the program for code that
appears to compare a computed hash
against a (weird) expected value.

@ Also, collusive attacks!

62/128

Simple fix. ..

hl = hash(orig_start,orig_end);
h2 = hash (copy_start, copy_end);
if (hl != h2) abort();

@ Add a copy of every region you’re hashing
to the program.

@ In the worst case, your program has now
doubled in size!

@ f() = f() may not be all that common in real
code.

63/128

Algorithm

h = hash(start,end);
if (h) abort();

@ Hide the constants by constructing a hash
function that (unless the code has been
hacked) always hashes to zero!

@ Code is more natural — no weird constants!

@ Invented by Bob Tarjan and others at
InterTrust:

| 64/128

hashb

uint32 hash5 (addr_t start,
uint32 h = 0;
while (start < end) {
h = Cx(xstart + h);
start++;

addr_t end,

}

return h;

uint32 C)

@ uses the hash5 hash function.

65/128

Algorithm

start:

slot:

end:

-

Oxab01cd02
0x11001100
Oxca7ca7ca
Oxabcdefab

h = hash(start,end);
if (h) abort();

@ hashb5 is invertible.

@ Insert an empty slot (a 32-bit word) within
the region you'’re protecting, and later give
this slot a value that makes the region hash

to zero.

66/128

Algorithm
TAMPERPROOF(P, n):

@ Insert n checkers of the form
if (hash(start,end)) RESPOND

randomly throughout the program.

67/128

Algorithm
TAMPERPROOF(P, n):

@ Insert n checkers of the form
if (hash(start,end)) RESPOND

randomly throughout the program.

@ Randomize the placement of basic blocks.

67/128

Algorithm
TAMPERPROOF(P, n):

@ Insert n checkers of the form
if (hash(start,end)) RESPOND

randomly throughout the program.
@ Randomize the placement of basic blocks.

© Insert at least n corrector slots ¢, ..., Cp.

67/128

Algorithm
TAMPERPROOF(P, n):
@ Insert n checkers of the form

if (hash(start,end)) RESPOND

randomly throughout the program.
@ Randomize the placement of basic blocks.
© Insert at least n corrector slots ¢, ..., Cp.

Q Compute n overlapping regions /y,..., I, each J;
associated with one corrector c;.

67/128

Algorithm
TAMPERPROOF(P, n):

@ Insert n checkers of the form
if (hash(start,end)) RESPOND

randomly throughout the program.
@ Randomize the placement of basic blocks.
© Insert at least n corrector slots ¢, ..., Cp.

Q Compute n overlapping regions /y,..., I, each J;
associated with one corrector c;.

@ Associate each checker with a region /; and set ¢;
such that /; hashes to zero.

[

67/128

System design

@ describes a complete and practical system
for doing tamperproofing and fingerprinting.

68/128

System design

@ describes a complete and practical system
for doing tamperproofing and fingerprinting.
@ When during the translation and installation
process do you insert fingerprints and
tamperproofing code?
@ At the source code level before compilation?

68/128

System design

@ describes a complete and practical system
for doing tamperproofing and fingerprinting.
@ When during the translation and installation
process do you insert fingerprints and
tamperproofing code?
@ At the source code level before compilation?
@ At the binary code level post link time?

68/128

System design

@ describes a complete and practical system
for doing tamperproofing and fingerprinting.
@ When during the translation and installation
process do you insert fingerprints and
tamperproofing code?
@ At the source code level before compilation?
@ At the binary code level post link time?
© During installation on the end user’s site?

68/128

System design

@ describes a complete and practical system
for doing tamperproofing and fingerprinting.
@ When during the translation and installation
process do you insert fingerprints and
tamperproofing code?
@ At the source code level before compilation?
©@ At the binary code level post link time?
© During installation on the end user’s site?
@ The more work you do on the user’s site,
the more he can learn about your method of
protection!

68/128

System design

@ spreads fingerprinting and tamperproofing
work out over compile time, post link, and
installation time.

69/128

System design

@ spreads fingerprinting and tamperproofing
work out over compile time, post link, and
installation time.

@ At the source code level insert checkers of
the form if (hash(start,end))
RESPOND () :

69/128

r

if
(
hash
(
)

if
(
hash
(
)

-

System design

@ On the binary executable randomize the
basic blocks and checkers. This spreads
the checkers evenly over the program and
helps with preventing collusive attacks.

71/128

System design

@ On the binary executable randomize the
basic blocks and checkers. This spreads
the checkers evenly over the program and
helps with preventing collusive attacks.

@ Insert empty 32-bit slots for correctors and
fingerprints.

71/128

System design

@ On the binary executable randomize the
basic blocks and checkers. This spreads
the checkers evenly over the program and
helps with preventing collusive attacks.

@ Insert empty 32-bit slots for correctors and
fingerprints.

@ Create overlapping intervals, assign each

checker to a region by filling in start and
end.

71/128

[c]

if (hash(...))

if (hash(...))

IH

A

if (hash(...))

fingerprintl

if (hash(...))

i

A

if (hash(...))

fingerprintl

if (hash(...))

i

ol

if (hash(...))
A

fingerprintl.__/>

if (hash(...))
S —

System design

@ During installation ifill in the user’s
fingerprint values.

73/128

System design

@ During installation ifill in the user’s
fingerprint values.

@ Compute and fill in corrector vales such that
each checker hashes to zero.

73/128

I

[o]

if (hash(...))
A
if (hash(...))
N —

-

if (hash(...)
A

if (hash(...))
N —

=

-

if (hash(...))
A

Oxbabeca?s

if (hash(...))
P —

int main (int argc, char xargv([]) {
int user_key = Oxca7callb;
int digital media[] = {10,102};
play (user_key,digital_media, 2);
}
int getkey (int user_key) {
int player_key = 0Oxbabeca75;
return user_key ~ player_key;
}
int decrypt (int user_key, int media) {
int key = getkey (user_key);
return media " key;
}
float decode (int digital) {return (float)digital;}
void play (int user_key, int digital_medial[], int len) {
int i;
for (i=0;i<len; i++)
printf ("$f\n", decode (decrypt (user_key,digital_medi

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

Algorithm — Example

intervallK 3
intervallSTART (waddr_t)main
intervallEND (waddr_t) decode

intervallCORRECTOR "Ox2ele55ec"

interval2K 5
interval2START (waddr_t) RESPOND
interval2END (waddr_t)play

interval2CORRECTOR "0x2cdbf568"

interval3K 7
interval3START (waddr_t)getkey
interval3END (waddr_t) LAST_FUN

interval3CORRECTOR "0x28d32bb6"

76/128

Algorithm — Example

/) Begin interval 1 —————————-

uint32 main (uint32 argc, char xargv[]) {
uint32 user_key = 0Oxca7callb;
uint32 digital_medial] = {10,102};
play (user_key,digital_media, 2);

[/ Begin interval 2 —-——————————

void RESPOND (int i) {
printf ("\n+** interval%i hacked!\n",1i);
abort () ;

77/128

Algorithm — Example

uint32 getkey (uint32 user_key) {
uint32 player_key = Oxbabeca’5;

if (hash5(intervallSTART, intervallEND, intervallK)) {
RESPOND (1) ;
asm volatile (
0 .align 4 \n\t"
U .long " intervallCORRECTOR " \n\t"
)
}

return user_key = player_key;

78/128

uint32 decrypt (uint32 user_key, uint32 media) {
uint32 key = getkey (user_key);
return media " key;

float decode (uint32 digital) {

if (hashS (interval2START, intervalZEd, interval2i))

}
return (float)digital;

void play(uint32 user_key, uint32 digital_media[], uint3
uint32 i;
for (i=0; i<len;i++)
printf ("$£f\n", decode (decrypt (user_key,digital_medi

void LAST_FUN() {}

Algorithm

@ randomly places large numbers of
checkers all over the program, but makes
sure that every piece of code is covered by
multiple checkers.

81/128

Algorithm

@ randomly places large numbers of
checkers all over the program, but makes
sure that every piece of code is covered by
multiple checkers.

@ Each interval has a checker that tests that
interval, and each interval /; has a corrector
¢; that you fill in to make sure that the
checker hash function hashes to zero.

Cy C2 C3

b |

@ Compute the correctors in the order
¢y, Co,C3, ... o avoid circular dependencies.

Algorithm

@ set ¢ so that interval /1 hashes to zero,

Gy

b

I3

RESPOND

getkey

decrypt

decode

82/128

@ Compute the correctors in the order
¢y, Co,C3, ... o avoid circular dependencies.

Algorithm

@ set ¢ so that interval /1 hashes to zero,

© /> only has one fill it in so that k hashes to
ZEero, etc.

Gy

b

I3

RESPOND

getkey

decrypt

decode

82/128

Algorithm

@ Compute the correctors in the order
¢y, Co,C3, ... o avoid circular dependencies.
@ set ¢ so that interval /1 hashes to zero,
© /> only has one fill it in so that k hashes to
Zero, etc.

Q etc.

C1 C2 C3

b \

131 }

main RESPOND getkey decrypt decode play

82/128

Algorithm

@ Here, the overlap factoris 2.

C1 Co C3

I |

main RESPOND getkey decrypt decode play

83/128

Algorithm

@ Here, the overlap factoris 2.

@ The authors suggest that an overlap factor
of 6 gives the right trade-off between
resilience and overhead.

Cq Co C3

main RESPOND getkey decrypt decode play

83/128

Computing corrector slot values

uint32 hash5 (addr_t start, addr_t end, uint32 C)
uint32 h = 0;
while (start < end) {
h = Cx(xstart + h);
start++;

}

return h;

@ Hash an incomplete range (the corrector
slot value is unknown) and then later solve
for the corrector slot.

84/128

Computing corrector slot values

® X =[Xq,Xo,...,Xpn] is the list of n 32-bit
words.

85/128

Computing corrector slot values

® X =[Xq,Xo,...,Xpn] is the list of n 32-bit
words.
@ x has one empty corrector slot slot.

85/128

Computing corrector slot values

® X =[Xq,Xo,...,Xpn] is the list of n 32-bit
words.
@ x has one empty corrector slot slot.

@ The region hashes to h(x):

n .
h(X) _ Z Cn—I—HXi
i=1

85/128

Computing corrector slot values

® X =[Xq,Xo,...,Xpn] is the list of n 32-bit
words.
@ x has one empty corrector slot slot.

@ The region hashes to h(x):

n .
h(x)=Y C""*1x
i=1

@ Cis a small, odd, constant multiplier.

85/128

Computing corrector slot values

® X =[Xq,Xo,...,Xpn] is the list of n 32-bit
words.
@ x has one empty corrector slot slot.

@ The region hashes to h(x):
n .
h(x)=Y c"*1x
i=1

@ Cis a small, odd, constant multiplier.
@ All computations are done modulo 232,

85/128

Computing corrector slot values

@ One of the values in the region, say x, is
the empty corrector slot.

86/128

Computing corrector slot values

@ One of the values in the region, say x, is
the empty corrector slot.
@ Find a value for x, such that h(x) = 0!

86/128

Computing corrector slot values

@ One of the values in the region, say x, is

the empty corrector slot.
@ Find a value for x, such that h(x) = 0!
@ Let z be the part of the hash-vlaue that

excludes xj:

n
7 — Z Cn—i—i—‘lXi
i+k

86/128

Computing corrector slot values

@ One of the values in the region, say xy, is

the empty corrector slot.
@ Find a value for x, such that h(x) = 0!
@ Let z be the part of the hash-vlaue that

excludes xj:

n .
z=Y Cc" 'ty
i+k

@ We’'re looking for a value for x; such that

C"™*x+2z=0 (mod 2%)

86/128

Computing corrector slot values

@ One of the values in the region, say xy, is

the empty corrector slot.
@ Find a value for x, such that h(x) = 0!
@ Let z be the part of the hash-vlaue that

excludes xj:

n .
z=Y Cc" 'ty
i+k
@ We’'re looking for a value for x; such that
C"™*x+2z=0 (mod 2%)

@ This is a modular linear equation!

86/128

Computing corrector slot values

Theorem (Modular linear equation)

The modular linear equation ax = b (mod n) is
solvable if d|b, where d = gcd(a,n) = ax’+ ny’
is given by Euclid’s extended algorithm. If d|b
there are d solutions:

Xxo = X'(b/d)mod n
xi = Xo+i(n/d) where i=1,2,...

Computing corrector slot values

You get,

C"K1x, = —z (mod 2%2)
d = gcd(cnfk+17232) _ Cnfk+1xl_|_232y/
X9 = x'(—z/d) mod 2%

Since Cis odd, d = 1, and you get the solution

Xg=—2zx'" (mod 2%)

88/128

Example

Let x =[1,2, x3,4] be the region, and C =3 the
multiplier:

4 .
z = Y C"'Mlx=1.3"+2.33+4.3" =147

i#£3
32X3 =

89/128

Example

Let x =[1,2, x3,4] be the region, and C =3 the
multiplier:

4 .
z = Y C"'Mlx=1.3"+2.33+4.3" =147
i£3
3%2x3 = —147 (mod 2%2)
d =

89/128

Example

Let x =[1,2, x3,4] be the region, and C =3 the
multiplier:

4 .
z = Y C"'Mlx=1.3"+2.33+4.3" =147
i£3
3%2x3 = —147 (mod 2%2)
d = gcd(32,2%2) =1

89/128

Example

Let x =[1,2, x3,4] be the region, and C =3 the
multiplier:

z = icn—f+1x,:1-34+2-33+4-31:147
i#3
3%2x3 = —147 (mod 2%2)
d = ged(32,2%2) =1
— 32.954437177+2%.(-2)

89/128

Example

Let x =[1,2, x3,4] be the region, and C =3 the
multiplier:

z = icn—f+1x,:1-34+2-33+4-31:147
i#3
3%2x3 = —147 (mod 2%2)
d = ged(32,2%2) =1
— 32.954437177+2%.(-2)
954437177 -(—147/1) mod 232

&
I

89/128

Example

Let x =[1,2, x3,4] be the region, and C =3 the
multiplier:

z = icn—f+1x,:1-34+2-33+4-31:147
i#3
3%2x3 = —147 (mod 2%2)
d = ged(32,2%2) =1
— 32.954437177+2%.(-2)
X3 = 954437177-(—147/1) mod 232
— 1431655749

89/128

Example — Checking the Result

We get:

h(x) = (1-3*+2.3%41431655749-3° +
4-3") mod 2%2

90/128

Example — Checking the Result

We get:

h(x) = (1-3*+2.3%41431655749-3° +
4-3") mod 2%2
=0

as expected.

90/128

Attacking
self-hashing
algorithms

Attacking self-hashing algorithms

@ How to attack introspection algorithms?
@ Analyze the code to locate the checkers, or

92/128

Attacking self-hashing algorithms

@ How to attack introspection algorithms?

@ Analyze the code to locate the checkers, or
@ Analyze the code to locate the responders,
then

92/128

Attacking self-hashing algorithms

@ How to attack introspection algorithms?
@ Analyze the code to locate the checkers, or
@ Analyze the code to locate the responders,
then
© Remove or disable them without destroying the
rest of the program.

92/128

Attacking self-hashing algorithms

@ How to attack introspection algorithms?

@ Analyze the code to locate the checkers, or

@ Analyze the code to locate the responders,
then

© Remove or disable them without destroying the
rest of the program.

@ Attack can just as well be external to the
program!

92/128

Memory System

@ Processors treat code and data differently.

93/128

Memory System

@ Processors treat code and data differently.

@ TLBs (Translation Lookaside Buffers) and
caches are split in separate parts for code
and data.

93/128

Memory System

@ Processors treat code and data differently.

@ TLBs (Translation Lookaside Buffers) and
caches are split in separate parts for code
and data.

@ In the hash-based algorithms code is
accessed
@ as code (when it’s being executed) and

= sometimes a function will be read into
the I-cache and sometimes into the
D-cache.

93/128

Memory System

@ Processors treat code and data differently.

@ TLBs (Translation Lookaside Buffers) and
caches are split in separate parts for code
and data.

@ In the hash-based algorithms code is
accessed
@ as code (when it’s being executed) and
@ as data (when it's being hashed).

= sometimes a function will be read into
the I-cache and sometimes into the
D-cache.

93/128

Attack Idea

@ Attack: modify the OS such that

@ redirect reads of the code to the original,
unmodified program (hash values will be
computed as expected!)

94/128

Attack Idea

@ Attack: modify the OS such that

@ redirect reads of the code to the original,
unmodified program (hash values will be
computed as expected!)

© redirect execution of the code to the modified
program (the modified code will get executed!)

94/128

Attack Algorithm

ATTACK(P, K):
@ Copy program P to Porig-
@ Modify P as desired to a hacked version P

© Modify the operating system kernel K such that data
reads are directed to Pyyig, instruction reads to P. O

95/128

Typical Memory Management System

Virtual Address
Page Index ‘ Offset ‘

TLB miss TLB hit

Page Tables TLB

—

="

‘ Page Frame ‘ Offset ‘
Physical Address

@ On a TLB miss walk the page tables (slow),
and update the TLB with the new
virtual-to-physical address mapping.

96/128

Memory Management - TLB Miss

Virtual Address

Page Index ‘ Offset ‘
TLB misy \TLB hit
Page Tables TLB
gf;—)
‘ Page Frame ‘ Offset ‘
Physical Address

97/128

Memory Management - TLB Miss

Virtual Address
Page Index ‘ Offset ‘

TLB misy \TLB hit

Page Tables TLB

[=>

‘ Page Frame ‘ Offset ‘

Physical Address

@ TLB miss caused by data fetch =
CPU throws Exception1.

97/128

Memory Management - TLB Miss

Virtual Address
Page Index ‘ Offset ‘

TLB misy \TLB hit

Page Tables TLB

[=>

‘ Page Frame ‘ Offset ‘

Physical Address

@ TLB miss caused by data fetch =
CPU throws Exception1.

@ TLB miss caused by instructon fetch =
CPU throws Exception2.

97/128

Attack Details — Memory Layout

Virtual Address Physical
05 [02 [00 | frames
1
TLB I-TLB
miss .
Instfrutcuon 2
etc 23
Page Tables \ 5 1 (alse)
/ abort();
if (expired)
D-TLB / 41" Zbort(:
\ 254 5
Data
fetch 6

@ Copy P to P,ig and hack P.

98/128

Attack Details — Memory Layout

Virtual Address Physical
05 [02 [00 | frames
1
TLB I-TLB
miss .
Instruction 2
etc 23
Page Tables \ 5 1 (alse)
/ abort();
if (expired)
D-TLB / 41" Zbort(:
\ 254 5
Data
fetch 6

@ Copy P to P,ig and hack P.

@ Rearrange the physical memory: frame i
comes from the hacked P and frame i+ 1 is
the original frame from Py

98/128

Attack Details — Memory Layout

Virtual Address Physical
05 [02 [00 | frames
1
TLB I-TLB
miss)
Instruction 2

etc 2—3
Page Tables
P ~
D-TLB
\ 2 54 / 5

Data
fetch 6

if (false)
abort();

if (expired)
abort();

w

IN

@ The attacker has modified the program to
bypass a license-expired check.

@ The original program pages are in blue.

@ The modified program pages are in pink.

99/128

Attack Details — Modify the Kernel

Virtual Address Physical
0305 02 |00] frames
1
rTT"LSE I-TLB
Instructti]on 2
etcl 2—-3
Page Tables \ 5| Galse)
/ abort();
if (expired)
D-TLB / 41" abort():
\ 24 5
Data
fetch 6

© If a page table lookup yields a v — p
virtual-to-physical address mapping, |-TLB
is updated with v — p and D-TLB with
v —p+1.

100/128

Attack Details — Execution Behavior

Virtual Address

TLB
miss Instruction
fetch

Page Tables
/
\

Data
fetch

@ The program tries to read its own code in
order to execute it = the processor throws
an |-TLB-miss exception, the OS updates
the I-TLB to refer to the modified page.

Physical
frames
1
I-TLB
2—3 2
if (false)
\ 3 abort();
if (expired)
D-TLB 4" “abort();

24

/7

5

6

101/128

Attack Details — Execution Behavior

Virtual Address Physical
05 [02 00 | frames
1
%ILSE I-TLB
Instfructri10n 2
etc 2—-3
Page Tables \ i (faise)
/ 3 abort();
a if (expired)
abort();

D-TLB /
\ 254 5
Data
fetch 6

@ The program tries to read its own code in
order hash the processor throws a
D-TLB-miss exception, and the OS
updates the D-TLB to refer to the original,
unmodified nage

102/128

State inspection

What's wrong with introspection
algorithms?

@ Introspection algorithms

@ read their own code segment (unusual)!
© only check the validity of the code itself (not
runtime data, function return values, ...).

104/128

What's wrong with introspection
algorithms?

@ Introspection algorithms
@ read their own code segment (unusual)!
© only check the validity of the code itself (not
runtime data, function return values, ...).
@ Oblivious algorithms
@ detect tampering from the side-effects the code

produces
© check the correctess of data and control-flow

Oblivious = the adversary should be
unaware that his code is being checked.

104/128

Oblivious hashing

@ More stealthy than introspection
techniques.

@ We don’t read our own code!
@ An advanced form of assertion checking:

ASSERT x < 100; }

ASSERT y != null;

@ Works on Java as well as binary code.

105/128

Oblivious hashing

@ IDEA: overlap basic blocks of x86
instructions.

106/128

Oblivious hashing

@ IDEA: overlap basic blocks of x86
instructions.

@ When one block executes it also computes
a hash over the second block!

106/128

Oblivious hashing

@ IDEA: overlap basic blocks of x86
instructions.

@ When one block executes it also computes
a hash over the second block!

@ The hash is computed without reading the
code!

106/128

Oblivious hashing

@ IDEA: overlap basic blocks of x86
instructions.

@ When one block executes it also computes
a hash over the second block!

@ The hash is computed without reading the
code!

@ Invulnerable to memory splitting attacks!

106/128

(BO: HB1:
shll 2, %$eax H decl %eax
incl %eax ‘ shrl 3, %eax
t ret ‘ ret

Merge the blocks by interleaving the
instructions, inserting jumps to maintain
semantics:

(5o)
shll 2, $eax

jmp h
B :

decl %eax
jmp kp

incl %eax
jmp k5

shrl 3, %eax

ret

@ The merged block has two entry points, B,
and Bjy. The two blocks should also
share instruction bytes.

@ Replace the jmp with xor1 that takes a
4-byte literal argument:

(o)
shll 2, %eax

xorl %ecx,next 4 bytes // used to be jmp k
B; :

decl %eax

jmp ko
nop

incl %eax

@ The xorl instruction has, embedded in its
immediate operand, the four bytes from
decl; jmp; nop!

By

A
shll $2,%eax incl %eax ret
—_— = =
Cl EO 02 40 Cc3
0 1 2 3 4
B,
1
decl %eax shrl $3,%eax ret
~—~ —_—
48 Cl E8 03 Cc3

0 1 2 3

By
1

shll $2, $eax

xorl $90E98148, $ecx

incl %eax

Cl
0

EO
1

02
2

=~
81 Fl 48 81 E9 90 40 81 C1l
3 4 5 6 7 8 9 10 11
~—~
decl %eax subl $C1814090, $ecx
+
B;
addl $9003E8C1, $ecx ret
=~
81 C1l Ccl E8 03 90 C3
10 11 12 13 14 15 16
| — ~—~ ~—~
shrl $3, %eax nop ret

Oblivious hashing

@ Executing one block means also computing
a hash over the other block into register
Secx!

@ You can check the hash as usual.

@ Clever use of the x86’s architectural
(mis-)features!

@ Overhead: up to 3x slowdown.

111/128

Response
Mechanisms

Response Mechanisms

| | | | | |
[I I I I =

program tamper CHECK() RESPOND() fail program
start end

@ CHECK checks for tampering,

113/128

Response Mechanisms

| | | | | |
[I I I I =

program tamper CHECK() RESPOND() fail program
start end

@ CHECK checks for tampering,
@ Later RESPOND takes action,

113/128

Response Mechanisms

| | | | | |
[I I I I =

program tamper CHECK() RESPOND() fail program
start end

@ CHECK checks for tampering,
@ Later RESPOND takes action,
@ Later still, the program actually fails

113/128

Response Mechanisms

boolean tampered = false;
int global = 10;

if (hash(...) !=0xblacca75) tampered = true;
if (tampered) global = 0;

\
\
\
|
printf ("$i",10/global) ; \
J

@ RESPOND corrupts program state so that
the actual failure follows much later

114/128

Response Mechanisms

#include <time.h>
int global = 10;

| 1f (time(0) % 2 == 0)
| printf ("$i",10/global) ;

if (getpid() % 2 == 0)
x = 5/global;

\

\
\ \
| |
| |
‘ x = 3/global; ‘
L _

@ Introduce a number of failure sites and
probabilistically choose between them.

@ Every time the attacker runs the hacked
program it is likely to fail in one of the two
green spots. (5128

Response Mechanisms

spatial separation: There should be as little
static and dynamic connection
between the RESPOND site and the
failure site as possible.

116/128

Response Mechanisms

spatial separation: There should be as little
static and dynamic connection
between the RESPOND site and the
failure site as possible.

temporal separation: A significant length of time
should pass between the execution of
RESPOND and the eventual failure.

116/128

Response Mechanisms

spatial separation: There should be as little
static and dynamic connection
between the RESPOND site and the
failure site as possible.

temporal separation: A significant length of time
should pass between the execution of
RESPOND and the eventual failure.

stealth: The test, response, and failure code

you insert in the program should be
stealthy

116/128

Response Mechanisms

spatial separation: There should be as little
static and dynamic connection
between the RESPOND site and the
failure site as possible.

temporal separation: A significant length of time
should pass between the execution of
RESPOND and the eventual failure.

stealth: The test, response, and failure code

you insert in the program should be
stealthy

predictability: Once the tamper response has
been invoked, the program should
eventuallv fail. t6/128

Response Mechanisms

@ Think about legal implications of your
tamper response mechanism!

@ Don’t deliberately destroy data. ..

@ What if tamper-response was issued
erroneously? (“l forgot my password, and
after three tries the program destroyed my
home directory!”)

@ Watch out for unintended consequences.
(the program crashes with a file open...)

117/128

Response Mechanisms

@ RESPOND to set a global pointer variable to
NULL, causing the program to crash when
the pointer is later dereferenced.

118/128

Response Mechanisms

@ RESPOND to set a global pointer variable to
NULL, causing the program to crash when
the pointer is later dereferenced.

@ If the program doesn’t have enough pointer
variables creates new ones by adding a
layer of indirection to non-pointer variables.

118/128

Response Mechanisms

@ RESPOND to set a global pointer variable to
NULL, causing the program to crash when
the pointer is later dereferenced.

@ If the program doesn’t have enough pointer
variables creates new ones by adding a
layer of indirection to non-pointer variables.

@ Assumes that there are enough global
variables to choose from.

118/128

int tampered=0;
int v;

void f() {
v = 10;

}

void g () {
£0);

}

void h() {

}

int main() {
if (...
tampered=1;
h();
g();

-
int tampered=0;
int v;

int *p-v = &v;

void f () {
*p-v = 10;

}

void g() {
£0);

}

void h() {

}

int main() {

if (...)
tampered=1;
h();
g();

int tampered=0;
int v;
int *p_v = &v;

void f () {

*p_v = 10;
}
void g () {
£0);

}

void h() {
if (tampered)
p-v = NULL;
}

int main () {
if (...)
tampered=1;
h();
g();

Example

@ Create a global pointer variable p_v.

121/128

Example

@ Create a global pointer variable p_v.

@ To make the program crash you should set
p-v to NULL. But where?

121/128

Example

@ Create a global pointer variable p_v.
@ To make the program crash you should set
p-v to NULL. But where?

@ You want to avoid g and main since they
will be on the call stack when £ throws the
pointer-reference-to-nil exception. (Check
the stacktrace.)

121/128

Example

@ Create a global pointer variable p_v.

@ To make the program crash you should set
p-v to NULL. But where?

@ You want to avoid g and main since they
will be on the call stack when £ throws the
pointer-reference-to-nil exception. (Check
the stacktrace.)

© Insert the failure-inducing code in h which is
“many” calls away and not in the same
call-chain as f.

121/128

Discussion

Trustworthiness

@ Tamperproofing is about trustworthiness:

@ Can | trust my program when it's running on an
untrusted site?

123/128

Trustworthiness

@ Tamperproofing is about trustworthiness:

@ Can | trust my program when it's running on an
untrusted site?

@ For us to trust P, the adversary

@ cannot add/remove/change P’s code!
@ cannot modify P’s environment!

123/128

Trustworthiness

@ Tamperproofing is about trustworthiness:

@ Can | trust my program when it's running on an
untrusted site?

@ For us to trust P, the adversary

@ cannot add/remove/change P’s code!
@ cannot modify P’s environment!

@ Essential for DRM, network gaming,. ..

123/128

Basic operations

@ Check P’s environment:

@ Am | running under a debugger?
@ Am | running under emulation?
@ Has the OS been hacked?

124/128

Basic operations

@ Check P’s environment:

@ Am | running under a debugger?
@ Am | running under emulation?
@ Has the OS been hacked?

@ Check P’s code:
@ Have the executable bits been changed?

124/128

Basic operations

@ Check P’s environment:

@ Am | running under a debugger?
@ Am | running under emulation?
@ Has the OS been hacked?

@ Check P’s code:

@ Have the executable bits been changed?
@ Check P’s dynamic data:

@ Is P in a legal executable state?

124/128

In practice. ..

@ Use a combination of operations!

@ Check the environment
@ Check the code
@ Check the state

125/128

In practice. ..

@ Use a combination of operations!

@ Check the environment
@ Check the code
@ Check the state

@ You must check the checking code!
@ Simple attack: remove the checkers!

125/128

In practice. ..

@ Use a combination of operations!

@ Check the environment
@ Check the code
@ Check the state

@ You must check the checking code!
@ Simple attack: remove the checkers!
@ The response must be stealthy!
@ Simple attack: trace back from failure!

125/128

In practice. ..

@ Use a combination of operations!

@ Check the environment
@ Check the code
@ Check the state

@ You must check the checking code!
@ Simple attack: remove the checkers!
@ The response must be stealthy!
@ Simple attack: trace back from failure!
@ The detection must be stealthy!

@ Simple attack: detect reads of executable
pages!

125/128

Future Lectures

@ NO LECTURE April 9!

@ NO LECTURE April 16!

@ TWO MORE LECTURES!

@ One lecture on hardware protection.

@ One lecture on software
watermarking/birthmarking/similarity
(maybe).

126/128

Website

@ Please check the website for
Important announcements:

WWW.CS.arizona.edu/~collberg/

Teaching/mgu/2014

127/128

www.cs.arizona.edu/~collberg/
Teaching/mgu/2014

	Definitions

