
c© April 2, 2014 Christian Collberg

Software Protection:

How to Crack Programs, and

Defend Against Cracking

Lecture 6: Tamperproofing I

Moscow State University, Spring 2014

Christian Collberg
University of Arizona

www.cs.arizona.edu/˜collberg

www.cs.arizona.edu/~collberg


Today’s lecture

1 Tamperproofing
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Introduction



What is tamperproofing?

Ensure that a program executes as
intended, even in the presence of an
adversary who tries to disrupt, monitor,
or change the execution.

A tamperproofing algorithm
1 makes tampering difficult
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What is tamperproofing?

Ensure that a program executes as
intended, even in the presence of an
adversary who tries to disrupt, monitor,
or change the execution.

A tamperproofing algorithm
1 makes tampering difficult
2 detects when tampering has occured
3 responds to the attack

4 / 128



What are typical attacks and
defenses?

An attacker typically modifies the program with
the intent to force it to chose a different
execution path than the programmer intended:

1 remove code from and/or insert new code
into the executable file prior to execution;
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What are typical attacks and
defenses?

An attacker typically modifies the program with
the intent to force it to chose a different
execution path than the programmer intended:

1 remove code from and/or insert new code
into the executable file prior to execution;

2 remove code from and/or insert new code
into the running program;

3 affect the runtime behavior of the program
through external agents such as emulators,
debuggers, or a hostile operating system.
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Algorithms

1 introspection, i.e. tamperproofed programs
which monitor their own code to detect
modifications.
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Algorithms

1 introspection, i.e. tamperproofed programs
which monitor their own code to detect
modifications.

2 various kinds of response mechanisms.
3 oblivious hashing algorithms which

examine the state of the program for signs
of tampering.
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CS

Input args

Env. variables

Registers

Static data

Stack

Heap

CHECK(){

return (Inv1)&&
(Inv2)&&

(Inv3);
}

OS

Dynamic libs

P

Dynamic linker

FS

Dynamic
linker

RESPOND

CHECK

RESPOND

CHECK

RESPOND

CHECK

RESPOND

CHECK

RESPOND

CHECK

PS
Emulator

HW

OS

NW

Debugger

Boot

loader

P’s code

Dynamic Libs

RESPOND(){

if (!CHECK())

report();

restore();

abort();
}



How does the adversary attack P?

1 Modify files:
P’s executable file
dynamic linker
dynamic libraries
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How does the adversary attack P?

1 Modify files:
P’s executable file
dynamic linker
dynamic libraries

2 Modify the operating system

3 Run P under emulation
4 Modify P while running under debugging
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What do we want?

Ensure P is healthy and the environment isn’t
hostile:

1 Unadulterated hardware and
operating system
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What do we want?

Ensure P is healthy and the environment isn’t
hostile:

1 Unadulterated hardware and
operating system

2 Unmodified P’s code
3 Not running under emulation
4 Not being modified by a debugger

5 The right dynamic libraries have been
loaded
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Checking for tampering — code
checking

Check that P’s code hashes to a known
value:

✞ ☎
if (hash(P’s code) != 0xca7ca115)

return false;
✝ ✆
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How do we respond to tampering?

1 Terminate the program.
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How do we respond to tampering?

1 Terminate the program.
2 Restore the program to its correct state, by

patching the tampered code.
3 Deliberately return incorrect results, maybe

deteriorate slowly over time.
4 Degrade the performance of the program.
5 Report the attack for example by “phoning

home”.
6 Punish the attacker by destroying the

program or objects in its environment:
DisplayEater deletes your home directory.
Destroy the computer by repeatedly flashing
the bootloader flash memory.
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Checking the
Environment



Tampering with the environment

Hack libc!

Hack HW!Debug!

Hack OS!Emulate!
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Tampering with the environment

libc OK?

OS OK?

Debugged? HW OK?

Emulate! Hack OS!

Hack libc!

Hack HW!Debug!

Emulated?
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Checking the Environment

“Am I being run under emulation?’
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Checking the Environment

“Am I being run under emulation?’

“Are common attack tools installed?”

“Are common attack tools running?”

“Is a debugger attached to my process?”

“Is the operating system at the proper patch
level?”

“Are the right dynamic libraries being
loaded?”
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Does the User have a Debugger?

Check if a program named gdb exists:
✞ ☎

> find /usr -name gbd -print
✝ ✆

See if a program named gdb is running:
✞ ☎

> ps -ax | grep gdb

12233 ttys000 0:00.02 gdb /bin/ls
✝ ✆

See if gdb exists, under a different name.
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Am I Already Being Debugged?

On Linux, you can only debug/trace a
program once.
Start P under debugging, if you fail, P is
already being debugged!

✞ ☎

#include <sys/ptrace.h>

int main() {

if (ptrace(PTRACE_TRACEME))

printf("I’m being traced!\n");

}
✝ ✆

✞ ☎

> gcc -g -o traced traced.c

> traced

> gdb traced

(gdb) run

I’m being traced!
✝ ✆
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Am I Running Unusually Slow?

Certain operations, such as catching
exceptions, are slower when being run
under debugging.

✞ ☎
#include <stdio.h>

#include <stdint.h>

#include <signal.h>

#include <unistd.h>

#include <setjmp.h>

jmp_buf env;

void handler(int signal) {

longjmp(env,1);

}
✝ ✆
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✞ ☎
int main() {

signal(SIGFPE, handler);

uint32_t start,stop;

int x = 0;

if (setjmp(env) == 0) {

asm volatile (

"cpuid\n"

"rdtsc\n" : "=a" (start)

);

x = x/x;

} else {

asm volatile (

"cpuid\n"

"rdtsc\n" : "=a" (stop)

);

uint32_t elapsed = stop - start;

if (elapsed>40000) printf("Debugged!\n");

else printf("Not debugged!\n");

}

}
✝ ✆



Am I Running Unusually Slow?

Here’s the output when run normally:
✞ ☎
> gcc -o cycles cycles.c

> cycles

elapsed 31528: Not debugged!
✝ ✆

Here’s the output when under a debugger:
✞ ☎
> gcc -o cycles cycles.c

> gdb cycles

(gdb) handle SIGFPE noprint nostop

(gdb) run

elapsed 79272: Debugged!
✝ ✆
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Introspection



Checking by introspection

Augment the program with functions that
compute a hash over a code region to
compare to an expected value.

21 / 128



Checking by introspection

Augment the program with functions that
compute a hash over a code region to
compare to an expected value.
How can we be sure that the attacker won’t
tamper with the hash computation itself?

21 / 128



Checking by introspection

Augment the program with functions that
compute a hash over a code region to
compare to an expected value.
How can we be sure that the attacker won’t
tamper with the hash computation itself?

1 build up a network of checkers and responders,
so that checkers can check each other and
responders can repair code that has been
tampered with.

21 / 128



Checking by introspection

Augment the program with functions that
compute a hash over a code region to
compare to an expected value.
How can we be sure that the attacker won’t
tamper with the hash computation itself?

1 build up a network of checkers and responders,
so that checkers can check each other and
responders can repair code that has been
tampered with.

2 hide the hash values so they won’t give away
the location of the checkers.

21 / 128



Checking by introspection

Augment the program with functions that
compute a hash over a code region to
compare to an expected value.
How can we be sure that the attacker won’t
tamper with the hash computation itself?

1 build up a network of checkers and responders,
so that checkers can check each other and
responders can repair code that has been
tampered with.

2 hide the hash values so they won’t give away
the location of the checkers.

We’ll see a clever attack on all
introspection algorithms!
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Inserting Guards

✞ ☎

. . . . . . . . .
start = start address;

end = end address;

h = 0;

while (start < end) {

h = h ⊕ *start;

start++;

}

if (h != expected value)

abort();

goto *h;

. . . . . . . . .
✝ ✆
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Attack model — Find the guards

1 Search for patterns in the static code, for
example two code segment addresses
followed by a test:

✞ ☎

start = 0xbabebabe;

end = 0xca75ca75;

while (start < end) {
✝ ✆

2 Search for patterns in the execution, such
as data reads into the code.
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Attack model — Disable the guards

1 Replace the if-statement by if (0)...:
✞ ☎

if (0)

abort();
✝ ✆

2 Pre-compute the hash value and substitute
it into the response code:

✞ ☎

goto *expected value;
✝ ✆
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Chang & Atallah

Invented by two Purdue University
researchers, Mike Atallah and Hoi Chang:

Patented and with assistance from Purdue
a start-up, Arxan, was spun off.
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Chang & Atallah

Checkers compute a hash over a region
and compare to the expected value.
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Chang & Atallah

Checkers compute a hash over a region
and compare to the expected value.
Checkers check the code and
check each other as well !
Build up a network of code regions: blocks
of user code, checkers, and responders.
When a tampered function is found
repair it !
Skype uses a similar technique.
Multiple checkers can check the same
region.
Multiple responders can repair a tampered
region. 26 / 128



✞ ☎
int main (int argc, char *argv[]) {

int user_key = 0xca7ca115;

int media[] = {10,102};

play(user_key,media,2);

}

int getkey(int user_key) {

int player_key = 0xbabeca75;

return user_key ˆ player_key;

}

int decrypt(int user_key, int media) {

int key = getkey(user_key);

return media ˆ key;

}

float decode (int digital) {return (float)digital;}

void play(int user_key, int media[], int len) {

int i;

for(i=0;i<len;i++)

printf("%f\n",decode(decrypt(user_key,media[i])));

}
✝ ✆



✞ ☎
#define getkeyHASH 0xce1d400a

#define getkeySIZE 14

uint32 getkeyCOPY[] =

{0x83e58955,0x72b820ec,0xc7080486,...};

#define decryptHASH 0x3764e45c

#define decryptSIZE 16

uint32 decryptCOPY[] =

{0x83e58955,0xaeb820ec,0xc7080486,...};

#define playHASH 0x4f4205a5

#define playSIZE 29

uint32 playCOPY[] =

{0x83e58955,0xedb828ec,0xc7080486,...};
✝ ✆



✞ ☎

int main (int argc, char *argv[]) {

A();

}

int A() {

B();

}

int B() {

...

}
✝ ✆



✞ ☎

uint32 B_COPY[]={0x83e58955,0xaeb820ec,0xc7080486,...};

int main (int argc, char *argv[]) {

A();

}

int A() {

B_hash = hash(B);

if (B_hash != 0x4f4205a5)

memcpy(B,B_COPY);

B();

}

int B() {

...

}
✝ ✆



✞ ☎
uint32 A_COPY[] ={0x83e58955,0x72b820ec,0xc7080486,...};

uint32 B_COPY[]={0x83e58955,0xaeb820ec,0xc7080486,...};

int main (int argc, char *argv[]) {

A_hash = hash(A);

if (A_hash != 0x105AB23F)

memcpy(A,A_COPY);

A();

}

int A() {

B_hash = hash(B);

if (B_hash != 0x4f4205a5)

memcpy(B,B_COPY);

B();

}

int B() {

...

}
✝ ✆



✞ ☎
uint32 getkeyCOPY[] ={0x83e58955,0x72b820ec,0xc7080486,...};

uint32 decryptCOPY[]={0x83e58955,0xaeb820ec,0xc7080486,...};

uint32 playCOPY[] ={0x83e58955,0xedb828ec,0xc7080486,...};

uint32 decryptVal;

int main (int argc, char *argv[]) {

uint32 playVal = hash((waddr t)play,29);

int user_key = 0xca7ca115;

decryptVal = hash((waddr t)decrypt,16);

int media[] = {10,102};

if (playVal != 0x4f4205a5)

memcpy((waddr t)play,playCOPY,29*sizeof(uint32));

play(user_key,media,2);

}

int getkey(int user_key) {

decryptVal = hash((waddr t)decrypt,16);

int player_key = 0xbabeca75;

return user_key ˆ player_key;

}
✝ ✆



✞ ☎
int decrypt(int user_key, int media) {

uint32 getkeyVal = hash((waddr t)getkey,14);

if (getkeyVal != 0xce1d400a)

memcpy((waddr t)getkey,getkeyCOPY,14*sizeof(uint32));

int key = getkey(user_key);

return media ˆ key;

}

float decode (int digital) {

return (float)digital;

}

void play(int user_key, int media[], int len) {

if (decryptVal != 0x3764e45c)

memcpy((waddr t)decrypt,decryptCOPY,16*sizeof(uint32));

int i;

for(i=0;i<len;i++)

printf("%f\n",decode(decrypt(user_key,media[i])));

}
✝ ✆



Checker network

decrypt

play

getkey

decode

main

r1 c1

c0

c2r2

r3

c3

code — code blocks
ci — checkers
ri — repairers
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Checker Network

Here’s the corresponding code, as it is laid out
in memory:

getkey decrypt decode playmain

c2

r1

c3

c0
r3

r2

c1

blue represent checkers, pink repairers.
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Generating hash
functions



Generating hash functions

Prevent collusive attacks ⇒ generate a
large number of different-looking hash
functions.
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Generating hash functions

Prevent collusive attacks ⇒ generate a
large number of different-looking hash
functions.

Self-collusive attacks = the adversary
scans through the program for pieces of
similar-looking code.

No need to be “cryptographically secure”.

No need to generate a uniform distribution
of values.

Must be simple, fast, stealthy!
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hash1

✞ ☎
typedef unsigned int uint32;

typedef uint32* addr_t;

uint32 hash1 (addr_t addr,int words) {

uint32 h = *addr;

int i;

for(i=1; i<words; i++) {

addr++;

h ˆ= *addr;

}

return h;

}
✝ ✆

Inline the function for better stealth.

38 / 128



hash2

✞ ☎
uint32 hash2 (addr_t start,addr_t end) {

uint32 h = *start;

while(1) {

start++;

if (start>=end) return h;

h ˆ= *start;

}

}
✝ ✆

Will the compiler generate different code
than for hash1???
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hash3

✞ ☎
int32 hash3 (addr_t start,addr_t end,int step) {

uint32 h = *start;

while(1) {

start+=step;

if (start>=end) return h;

h ˆ= *start;

}

}
✝ ✆

Step through the code region in more or
less detail ⇒ balance performance and
accuracy.
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hash4
✞ ☎
uint32 hash4 (addr_t start,addr_t end,uint32 rnd) {

addr_t t = (addr_t)((uint32)start + (uint32)end + rnd);

uint32 h = 0;

do {

h += *((addr_t)(-(uint32)end-(uint32)rnd+(uint32)t));

t++;

} while (t < (addr_t)((uint32)end+

(uint32)end+(uint32)rnd));

return h;

}
✝ ✆

Scan backwards.

Obfuscate to prevent pattern-matching
attacks: add (and then subtract out) a
random value (rnd).
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hash5

✞ ☎
uint32 hash5 (addr_t start, addr_t end, uint32 C) {

uint32 h = 0;

while (start < end) {

h = C*(*start + h);

start++;

}

return h;

}
✝ ✆

42 / 128



Obfuscating hash5

Generate 2,916,864 variants, each less
than 50 bytes of x86!

Reorder basic blocks, invert conditional
branches. . .

Replace multiplication instructions by
combinations of shifts adds, and address
computations. . .

Permute instructions within blocks. . .

Permute register assignments. . .

Replace instructions with equivalents. . .
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The Skype
obfuscated

protocol



The Skype obfuscated protocol

Voice-over-IP service where users are
charged for computer-to-phone and
phone-to-computer calls.

The Skype client is heavily tamperproofed
and obfuscated.

2005: Skype was bought by eBay for $2.6
billion.

2006: Hacked by two researchers at the
EADS Corporate Research Center in
France.
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The Skype obfuscated protocol

The client binary contains:
1 hardcoded RSA keys
2 the IP address and port number of a known

server

Break the protection and build your own
VoIP network!
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Skype protection: Stage 1

6. ...

PC
3. erase
4. decrypt

3. erase
4. decrypt

PC

3. erase
4. decrypt

6. ...

dll table

5. load hidden
dll table

PC

key key

ERASED

key

ERASED

hidden dll table

dll table

1.initialize
2.load dll:s 

ENCRYPTED

5. load hidden
dll table

dll table

pink: cleartext code, loads dlls.
blue: erase pink code, decrypts green code.
green: loads hidden dlls (yellow).
Erasing and hiding dlls: hard to recreate
binary.
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Skype protection: Stage 2

Check for debuggers:
1 Signatures of known debuggers
2 Timing tests
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Skype protection: Stage 3

Checker network:

...
C36

C37

C2 C38

C1

C72

Hash function computes the address of the
next location to be executed!

Hash functions are obfuscated, but not
enough — attacked by pattern-matching.
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✞ ☎
uint32 hash7() {

addr_t addr;

addr = (addr_t)((uint32)addrˆ(uint32)addr);

addr = (addr_t)((uint32)addr + 0x688E5C);

uint32 hash = 0x320E83 ˆ 0x1C4C4;

int bound = hash + 0xFFCC5AFD;

do {

uint32 data = *((addr_t)((uint32)addr + 0x10));

goto b1; asm volatile(".byte 0x19");

b1: hash = hash ⊕ data;

addr -= 1; bound--;

} while (bound!=0);

goto b2;

asm volatile(".byte 0x73");

b2:

goto b3;

asm volatile(".word 0xC8528417,0xD8FBBD1,0xA36CFB2F");

asm volatile(".word 0xE8D6E4B7,0xC0B8797A");

asm volatile(".byte 0x61,0xBD");

b3:

hash-=0x4C49F346; return hash;

}
✝ ✆



Other obfuscations

All function calls are done indirectly.

Insert dummy code protected by opaque
predicates.

The code raises bogus exceptions, the
exception handler repairs register values,
returns back to the original location.
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Attacking the Skype Client

1 Goal: build your own Skype binary!
2 Goal: insert your own RSA keys!
3 First: remove the encryption and

tamperproofing
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Attacking the Skype Client

1 Find the keys stored in the binary and
decrypt the encrypted sections.

2 Read the hidden dll table and combine it
with the original one, making a complete
table.

3 Build a script which runs over the decrypted
binary and
finds beginning/end of every hash function.
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Finding the Hash Functions

1 Distinctive structure: initialize, loop, read
memory, compute hash.

2 Step 1: Use simple pattern matching to find
all functions.
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✞ ☎
uint32 hash7() {

addr_t addr;

addr = (addr_t)((uint32)addrˆ(uint32)addr);

addr = (addr_t)((uint32)addr + 0x688E5C);

uint32 hash = 0x320E83 ˆ 0x1C4C4;

int bound = hash + 0xFFCC5AFD;

do {

uint32 data = *((addr_t)((uint32)addr + 0x10));

goto b1; asm volatile(".byte 0x19");

b1: hash = hash ⊕ data;

addr -= 1; bound--;

} while (bound!=0);

goto b2;

asm volatile(".byte 0x73");

b2:

goto b3;

asm volatile(".word 0xC8528417,0xD8FBBD1,0xA36CFB2F");

asm volatile(".word 0xE8D6E4B7,0xC0B8797A");

asm volatile(".byte 0x61,0xBD");

b3:

hash-=0x4C49F346; return hash;

}
✝ ✆



Finding the Hash Values

1 Step 2: Run every hash function, collect
their output values.

2 Step 3: Replace the body of the function
with that value.
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Running the hash functions

Try 1: Set software breakpoints on every
function header!
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Running the hash functions

Try 1: Set software breakpoints on every
function header!

Nope: software breakpoints change the
executable!

Try 2: Set hardware breakpoints on every
function header!

Nope: only 4 hardware breakpoints, and
> 300 functions!
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Running the hash functions

Try 3: run Skype twice, in parallel, both
processes under debugging, but one using
hardware breakpoints, the other software
breakpoints.

See next slide.

Alternative attack: run each function in an
emulator
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Twin Processes Debugging

.

..

> ...

> gdb Ssoft

> run

> break c1

> break c2

Break on c20!

C1

C2

C36 C72

C37

C38

> gdb Shard
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Twin Processes Debugging

..

.

> run

Record hash value!!

> ...

> gdb Ssoft

> run

> break c1

> break c2

> hbreak start of c20

> hbreak end of c20

Break on c20!

Break on c20!

C1

C2

C36 C72

C37

C38

> gdb Shard
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1 Start one Skype process Ssoft , setting
software breakpoints at the beginning of
every hash function.

2 Start another Skype process Shard .
3 Run Ssoft until a breakpoint at the beginning

of a hash function is reached at some
address start.

4 Set a hardware breakpoint at start in the
Shard and at address end.

5 Run Shard until end is reached.
6 Record the result hash of the hash

computation.
7 Restart Ssoft starting at address end and

with the return value of the hash function
set to hash.



Hiding hash
values



Unstealthy constants

✞ ☎

h = hash(start,end);

if (h == 0xca7babe5) abort();
✝ ✆

Attack: scan the program for code that
appears to compare a computed hash
against a (weird) expected value.

Also, collusive attacks!
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Simple fix. . .

✞ ☎

h1 = hash(orig_start,orig_end);

h2 = hash(copy_start,copy_end);

if (h1 != h2) abort();
✝ ✆

Add a copy of every region you’re hashing
to the program.

In the worst case, your program has now
doubled in size!

f () = f () may not be all that common in real
code.
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Algorithm
✞ ☎

h = hash(start,end);

if (h) abort();
✝ ✆

Hide the constants by constructing a hash
function that (unless the code has been
hacked) always hashes to zero!
Code is more natural — no weird constants!
Invented by Bob Tarjan and others at
InterTrust:
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hash5

✞ ☎

uint32 hash5 (addr_t start, addr_t end, uint32 C) {

uint32 h = 0;

while (start < end) {

h = C*(*start + h);

start++;

}

return h;

}
✝ ✆

uses the hash5 hash function.

65 / 128



Algorithm
✞ ☎

start: 0xab01cd02

0x11001100

slot: 0x????????

0xca7ca7ca

end: 0xabcdefab

h = hash(start,end);

if (h) abort();
✝ ✆

hash5 is invertible.
Insert an empty slot (a 32-bit word) within
the region you’re protecting, and later give
this slot a value that makes the region hash
to zero.
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Algorithm
TAMPERPROOF(P,n):

1 Insert n checkers of the form

if (hash(start,end)) RESPOND

randomly throughout the program.
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Algorithm
TAMPERPROOF(P,n):

1 Insert n checkers of the form

if (hash(start,end)) RESPOND

randomly throughout the program.

2 Randomize the placement of basic blocks.

3 Insert at least n corrector slots c1, . . . ,cn.

4 Compute n overlapping regions I1, . . . , In, each Ii
associated with one corrector ci .

5 Associate each checker with a region Ii and set ci

such that Ii hashes to zero.

67 / 128



System design

describes a complete and practical system
for doing tamperproofing and fingerprinting.
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System design

describes a complete and practical system
for doing tamperproofing and fingerprinting.
When during the translation and installation
process do you insert fingerprints and
tamperproofing code?

1 At the source code level before compilation?
2 At the binary code level post link time?
3 During installation on the end user’s site?

The more work you do on the user’s site,
the more he can learn about your method of
protection!
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System design

spreads fingerprinting and tamperproofing
work out over compile time, post link, and
installation time.
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System design

spreads fingerprinting and tamperproofing
work out over compile time, post link, and
installation time.

At the source code level insert checkers of
the form if (hash(start,end))

RESPOND():
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if (hash(...))

if (hash(...))

A



System design

On the binary executable randomize the
basic blocks and checkers. This spreads
the checkers evenly over the program and
helps with preventing collusive attacks.
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System design

On the binary executable randomize the
basic blocks and checkers. This spreads
the checkers evenly over the program and
helps with preventing collusive attacks.

Insert empty 32-bit slots for correctors and
fingerprints.

Create overlapping intervals, assign each
checker to a region by filling in start and
end.
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A

if (hash(...))

B

if (hash(...))

C

A

corrector1

corrector2

if (hash(...))

B

C

if (hash(...))

fingerprint1

B

if (hash(...))

C

A

corrector1

corrector2

if (hash(...))

fingerprint1



System design

During installation ifill in the user’s
fingerprint values.
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System design

During installation ifill in the user’s
fingerprint values.

Compute and fill in corrector vales such that
each checker hashes to zero.
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if (hash(...))

C

A

corrector2

if (hash(...))

corrector1

0xbabeca75

B



A

if (hash(...))

B

if (hash(...))

C

A

corrector2

if (hash(...))

0xca75ca75

B

if (hash(...))

C

0x2fa7ca75

0xbabeca75

corrector1

0xbabeca75



int main (int argc, char *argv[]) {

int user_key = 0xca7ca115;

int digital_media[] = {10,102};

play(user_key,digital_media,2);

}

int getkey(int user_key) {

int player_key = 0xbabeca75;

return user_key ˆ player_key;

}

int decrypt(int user_key, int media) {

int key = getkey(user_key);

return media ˆ key;

}

float decode (int digital) {return (float)digital;}

void play(int user_key, int digital_media[], int len) {

int i;

for(i=0;i<len;i++)

printf("%f\n",decode(decrypt(user_key,digital_media

}



Algorithm — Example

#define interval1K 3

#define interval1START (waddr_t)main

#define interval1END (waddr_t)decode

#define interval1CORRECTOR "0x2e1e55ec"

#define interval2K 5

#define interval2START (waddr_t)RESPOND

#define interval2END (waddr_t)play

#define interval2CORRECTOR "0x2cdbf568"

#define interval3K 7

#define interval3START (waddr_t)getkey

#define interval3END (waddr_t)LAST_FUN

#define interval3CORRECTOR "0x28d32bb6"

76 / 128



Algorithm — Example

//---------------- Begin interval 1 ---------------

uint32 main (uint32 argc, char *argv[]) {

uint32 user_key = 0xca7ca115;

uint32 digital_media[] = {10,102};

play(user_key,digital_media,2);

}

//---------------- Begin interval 2 ---------------

void RESPOND(int i){

printf("\n*** interval%i hacked!\n",i);

abort();

}
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Algorithm — Example

//---------------- Begin interval 3 ---------------

uint32 getkey(uint32 user_key) {

uint32 player_key = 0xbabeca75;

if ( hash5(interval1START,interval1END,interval1K) ) {

RESPOND(1);

asm volatile (

" .align 4 \n\t"

" .long " interval1CORRECTOR " \n\t"

);

}

return user_key ˆ player_key;

}
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uint32 decrypt(uint32 user_key, uint32 media) {

uint32 key = getkey(user_key);

return media ˆ key;

}

//---------------- End interval 1 ---------------

float decode (uint32 digital) {

if ( hash5(interval2START,interval2END,interval2K) ) {

RESPOND(2);

asm volatile (

" .align 4 \n\t"

" .long " interval2CORRECTOR " \n\t"

);

}

return (float)digital;

}

//---------------- End interval 2 ---------------



void play(uint32 user_key, uint32 digital_media[], uint32

uint32 i;

for(i=0;i<len;i++)

printf("%f\n",decode(decrypt(user_key,digital_media

asm volatile (

" jmp L1 \n\t"

" .align 4 \n\t"

" .long " interval3CORRECTOR " \n\t"

"L1: \n\t"

);

if ( hash5(interval3START,interval3END,interval3K) )

RESPOND(3);

}

//---------------- End interval 3 ---------------

void LAST_FUN(){}



Algorithm

randomly places large numbers of
checkers all over the program, but makes
sure that every piece of code is covered by
multiple checkers.
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Algorithm

randomly places large numbers of
checkers all over the program, but makes
sure that every piece of code is covered by
multiple checkers.
Each interval has a checker that tests that
interval, and each interval Ii has a corrector
ci that you fill in to make sure that the
checker hash function hashes to zero.

I1

c1 c3c2

I2

I3
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Algorithm

Compute the correctors in the order
c1,c2,c3, . . . to avoid circular dependencies.

1 set c1 so that interval I1 hashes to zero,

getkey decrypt decode playmain RESPOND

I1

c1 c3c2

I2

I3
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Algorithm

Compute the correctors in the order
c1,c2,c3, . . . to avoid circular dependencies.

1 set c1 so that interval I1 hashes to zero,
2 I2 only has one fill it in so that I2 hashes to

zero, etc.
3 etc.

getkey decrypt decode playmain RESPOND

I1

c1 c3c2

I2

I3
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Algorithm

Here, the overlap factor is 2.

getkey decrypt decode playmain RESPOND

I1

c1 c3c2

I2

I3
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Algorithm

Here, the overlap factor is 2.
The authors suggest that an overlap factor
of 6 gives the right trade-off between
resilience and overhead.

getkey decrypt decode playmain RESPOND

I1

c1 c3c2

I2

I3
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Computing corrector slot values

✞ ☎

uint32 hash5 (addr_t start, addr_t end, uint32 C) {

uint32 h = 0;

while (start < end) {

h = C*(*start + h);

start++;

}

return h;

}
✝ ✆

Hash an incomplete range (the corrector
slot value is unknown) and then later solve
for the corrector slot.
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Computing corrector slot values

x = [x1,x2, . . . ,xn] is the list of n 32-bit
words.
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Computing corrector slot values

x = [x1,x2, . . . ,xn] is the list of n 32-bit
words.

x has one empty corrector slot slot.

The region hashes to h(x):

h(x) =
n

∑
i=1

Cn−i+1xi

C is a small, odd, constant multiplier.

All computations are done modulo 232.
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Computing corrector slot values

One of the values in the region, say xk , is
the empty corrector slot.
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Computing corrector slot values

One of the values in the region, say xk , is
the empty corrector slot.
Find a value for xk such that h(x) = 0!
Let z be the part of the hash-vlaue that
excludes xk :

z =
n

∑
i 6=k

Cn−i+1xi

We’re looking for a value for xk such that

Cn−k+1xk +z = 0 (mod 232)

This is a modular linear equation!
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Computing corrector slot values

Theorem (Modular linear equation)

The modular linear equation ax ≡ b (mod n) is
solvable if d |b, where d = gcd(a,n) = ax ′+ny ′

is given by Euclid’s extended algorithm. If d |b
there are d solutions:

x0 = x ′(b/d) mod n

xi = x0+ i(n/d) where i = 1,2, . . . ,d −1
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Computing corrector slot values

You get,

Cn−k+1xk = −z (mod 232)

d = gcd(Cn−k+1,232) = Cn−k+1x ′+232y ′

x0 = x ′(−z/d) mod 232

Since C is odd, d = 1, and you get the solution

x0 =−zx ′ (mod 232)

88 / 128



Example

Let x = [1,2,x3,4] be the region, and C = 3 the
multiplier:

z =
4

∑
i 6=3

Cn−i+1xi = 1 ·34+2 ·33+4 ·31 = 147

32x3 =
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d = gcd(32,232) = 1
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Example

Let x = [1,2,x3,4] be the region, and C = 3 the
multiplier:

z =
4

∑
i 6=3

Cn−i+1xi = 1 ·34+2 ·33+4 ·31 = 147

32x3 = −147 (mod 232)

d = gcd(32,232) = 1

= 32 ·954437177+232 · (−2)

x3 = 954437177 · (−147/1) mod 232

= 1431655749
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Example — Checking the Result

We get:

h(x) = (1 ·34+2 ·33+1431655749 ·32+

4 ·31) mod 232

=
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Example — Checking the Result

We get:

h(x) = (1 ·34+2 ·33+1431655749 ·32+

4 ·31) mod 232

= 0

as expected.
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Attacking self-hashing algorithms

How to attack introspection algorithms?
1 Analyze the code to locate the checkers, or
2 Analyze the code to locate the responders,

then
3 Remove or disable them without destroying the

rest of the program.

Attack can just as well be external to the
program!
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Memory System

Processors treat code and data differently.
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Memory System

Processors treat code and data differently.

TLBs (Translation Lookaside Buffers) and
caches are split in separate parts for code
and data.
In the hash-based algorithms code is
accessed

1 as code (when it’s being executed) and
2 as data (when it’s being hashed).

⇒ sometimes a function will be read into
the I-cache and sometimes into the
D-cache.
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Attack Idea

Attack: modify the OS such that
1 redirect reads of the code to the original,

unmodified program (hash values will be
computed as expected!)
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Attack Idea

Attack: modify the OS such that
1 redirect reads of the code to the original,

unmodified program (hash values will be
computed as expected!)

2 redirect execution of the code to the modified
program (the modified code will get executed!)
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Attack Algorithm

ATTACK(P,K ):

1 Copy program P to Porig.

2 Modify P as desired to a hacked version P ′.

3 Modify the operating system kernel K such that data
reads are directed to Porig, instruction reads to P ′.
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Typical Memory Management System

TLB miss

OffsetPage Frame

Physical Address

OffsetPage Index

Virtual Address

Page Tables TLB

TLB hit

On a TLB miss walk the page tables (slow),
and update the TLB with the new
virtual-to-physical address mapping.
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Memory Management - TLB Miss

TLB miss

OffsetPage Frame

Physical Address

OffsetPage Index

Virtual Address

Page Tables TLB

TLB hit
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Memory Management - TLB Miss

TLB miss

OffsetPage Frame

Physical Address

OffsetPage Index

Virtual Address

Page Tables TLB

TLB hit

TLB miss caused by data fetch ⇒
CPU throws Exception1.
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Memory Management - TLB Miss

TLB miss

OffsetPage Frame

Physical Address

OffsetPage Index

Virtual Address

Page Tables TLB

TLB hit

TLB miss caused by data fetch ⇒
CPU throws Exception1.

TLB miss caused by instructon fetch ⇒
CPU throws Exception2.
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Attack Details — Memory Layout

05 0203
Virtual Address

00

Page Tables

I−TLB
Instruction

fetch

Data
fetch

D−TLB

miss
TLB

1

2

3

4

5

6

Physical
frames

abort();

if (expired)
abort();

if (false)
2 → 3

2 → 4

1 Copy P to Porig and hack P.
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Attack Details — Memory Layout

05 0203
Virtual Address

00

Page Tables

I−TLB
Instruction

fetch

Data
fetch

D−TLB

miss
TLB

1

2

3

4

5

6

Physical
frames

abort();

if (expired)
abort();

if (false)
2 → 3

2 → 4

1 Copy P to Porig and hack P.
2 Rearrange the physical memory: frame i

comes from the hacked P and frame i +1 is
the original frame from Porig.
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Attack Details — Memory Layout

05 0203
Virtual Address

00

Page Tables

I−TLB
Instruction

fetch

Data
fetch

D−TLB

miss
TLB

1

2

3

4

5

6

Physical
frames

abort();

if (expired)
abort();

if (false)
2 → 3

2 → 4

The attacker has modified the program to
bypass a license-expired check.
The original program pages are in blue.
The modified program pages are in pink.
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Attack Details — Modify the Kernel

05 0203
Virtual Address

00

Page Tables

I−TLB
Instruction

fetch

Data
fetch

D−TLB

miss
TLB

1

2

3

4

5

6

Physical
frames

abort();

if (expired)
abort();

if (false)
2 → 3

2 → 4

3 If a page table lookup yields a v → p
virtual-to-physical address mapping, I-TLB
is updated with v → p and D-TLB with
v → p+1.
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Attack Details — Execution Behavior

05 0203
Virtual Address

00

Page Tables

I−TLB
Instruction

fetch

Data
fetch

D−TLB

miss
TLB

1

2

3

4

5

6

Physical
frames

abort();

if (expired)
abort();

if (false)
2 → 3

2 → 4

1 The program tries to read its own code in
order to execute it ⇒ the processor throws
an I-TLB-miss exception, the OS updates
the I-TLB to refer to the modified page.
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Attack Details — Execution Behavior

05 0203
Virtual Address

00

Page Tables

I−TLB
Instruction

fetch

Data
fetch

D−TLB

miss
TLB

1

2

3

4

5

6

Physical
frames

abort();

if (expired)
abort();

if (false)
2 → 3

2 → 4

2 The program tries to read its own code in
order hash the processor throws a
D-TLB-miss exception, and the OS
updates the D-TLB to refer to the original,
unmodified, page. 102 / 128



State inspection



What’s wrong with introspection
algorithms?

Introspection algorithms
1 read their own code segment (unusual)!
2 only check the validity of the code itself (not

runtime data, function return values, . . . ).
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What’s wrong with introspection
algorithms?

Introspection algorithms
1 read their own code segment (unusual)!
2 only check the validity of the code itself (not

runtime data, function return values, . . . ).

Oblivious algorithms
1 detect tampering from the side-effects the code

produces
2 check the correctess of data and control-flow

Oblivious ⇒ the adversary should be
unaware that his code is being checked.
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Oblivious hashing

More stealthy than introspection
techniques.

We don’t read our own code!

An advanced form of assertion checking:
✞ ☎

ASSERT x < 100;

ASSERT y != null;
✝ ✆

Works on Java as well as binary code.
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Oblivious hashing

IDEA: overlap basic blocks of x86
instructions.
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Oblivious hashing

IDEA: overlap basic blocks of x86
instructions.

When one block executes it also computes
a hash over the second block!

The hash is computed without reading the
code!

Invulnerable to memory splitting attacks!

106 / 128



✞ ☎

B0 :

shll 2,%eax

incl %eax

ret
✝ ✆

✞ ☎

B1 :

decl %eax

shrl 3,%eax

ret
✝ ✆

Merge the blocks by interleaving the
instructions, inserting jumps to maintain
semantics:

✞ ☎
B0 :

shll 2,%eax

jmp I1
B1 :

decl %eax

jmp I2
I1 :

incl %eax

jmp I3
I2 :

shrl 3,%eax

I3 :

ret
✝ ✆



The merged block has two entry points, B0

and B1. The two blocks should also
share instruction bytes.

Replace the jmp with xorl that takes a
4-byte literal argument:

✞ ☎
B0 :

shll 2,%eax

xorl %ecx,next 4 bytes // used to be jmp I1
B1 :

decl %eax

jmp I2
nop

incl %eax

...
✝ ✆

The xorl instruction has, embedded in its
immediate operand, the four bytes from
decl;jmp;nop!



B0

↓
shll $2,%eax incl %eax ret
︷ ︸︸ ︷ ︷︸︸︷ ︷︸︸︷

C1 E0 02 40 C3

0 1 2 3 4

B1

↓
decl %eax shrl $3,%eax ret

︷︸︸︷ ︷ ︸︸ ︷ ︷︸︸︷

48 C1 E8 03 C3

0 1 2 3 4



B0

↓
shll $2,%eax xorl $90E98148,%ecx incl %eax
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷

C1 E0 02 81 F1 48 81 E9 90 40 81 C1

0 1 2 3 4 5 6 7 8 9 10 11

︸︷︷︸ ︸ ︷︷ ︸

decl %eax subl $C1814090,%ecx

↑
B1

addl $9003E8C1,%ecx ret
︷ ︸︸ ︷ ︷︸︸︷

81 C1 C1 E8 03 90 C3

10 11 12 13 14 15 16

︸ ︷︷ ︸ ︸︷︷︸ ︸︷︷︸

shrl $3,%eax nop ret



Oblivious hashing

Executing one block means also computing
a hash over the other block into register
%ecx!

You can check the hash as usual.

Clever use of the x86’s architectural
(mis-)features!

Overhead: up to 3x slowdown.
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Response
Mechanisms



Response Mechanisms

end
failRESPOND()CHECK()program tamper

start
program

CHECK checks for tampering,
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Response Mechanisms

end
failRESPOND()CHECK()program tamper

start
program

CHECK checks for tampering,

Later RESPOND takes action,

Later still, the program actually fails
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Response Mechanisms

✞ ☎
boolean tampered = false;

int global = 10;

. . .

if (hash(. . .)!=0xb1acca75) tampered = true;

. . .

if (tampered) global = 0;

. . .

printf("%i",10/global);
✝ ✆

RESPOND corrupts program state so that
the actual failure follows much later
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Response Mechanisms
✞ ☎
#include <time.h>

int global = 10;

. . .

if (time(0) % 2 == 0)

printf("%i",10/global);

. . .

if (getpid() % 2 == 0)

x = 5/global;

. . .

x = 3/global;
✝ ✆

Introduce a number of failure sites and
probabilistically choose between them.
Every time the attacker runs the hacked
program it is likely to fail in one of the two
green spots. 115 / 128



Response Mechanisms

spatial separation: There should be as little
static and dynamic connection
between the RESPOND site and the
failure site as possible.
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Response Mechanisms

spatial separation: There should be as little
static and dynamic connection
between the RESPOND site and the
failure site as possible.

temporal separation: A significant length of time
should pass between the execution of
RESPOND and the eventual failure.

stealth: The test, response, and failure code
you insert in the program should be
stealthy

predictability: Once the tamper response has
been invoked, the program should
eventually fail. 116 / 128



Response Mechanisms

Think about legal implications of your
tamper response mechanism!

Don’t deliberately destroy data. . .

What if tamper-response was issued
erroneously? (“I forgot my password, and
after three tries the program destroyed my
home directory!”)

Watch out for unintended consequences.
(the program crashes with a file open. . . )
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Response Mechanisms

RESPOND to set a global pointer variable to
NULL, causing the program to crash when
the pointer is later dereferenced.
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Response Mechanisms

RESPOND to set a global pointer variable to
NULL, causing the program to crash when
the pointer is later dereferenced.

If the program doesn’t have enough pointer
variables creates new ones by adding a
layer of indirection to non-pointer variables.

Assumes that there are enough global
variables to choose from.

118 / 128



✞ ☎
int tampered=0;

int v;

void f() {

v = 10;

}

void g() {

f();

}

void h() {

}

int main() {

if (. . .)
tampered=1;

h();

g();

}
✝ ✆

✞ ☎
int tampered=0;

int v;

int *p v = &v;

void f() {

*p v = 10;

}

void g() {

f();

}

void h() {

}

int main() {

if (. . .)
tampered=1;

h();

g();

}
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✞ ☎
int tampered=0;

int v;

int *p_v = &v;

void f() {

*p_v = 10;

}

void g() {

f();

}

void h() {

if (tampered)

p v = NULL;

}

int main() {

if (. . .)
tampered=1;

h();

g();

}
✝ ✆



Example

1 Create a global pointer variable p v.
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Example

1 Create a global pointer variable p v.
2 To make the program crash you should set
p v to NULL. But where?

3 You want to avoid g and main since they
will be on the call stack when f throws the
pointer-reference-to-nil exception. (Check
the stacktrace.)
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Example

1 Create a global pointer variable p v.
2 To make the program crash you should set
p v to NULL. But where?

3 You want to avoid g and main since they
will be on the call stack when f throws the
pointer-reference-to-nil exception. (Check
the stacktrace.)

4 Insert the failure-inducing code in h which is
“many” calls away and not in the same
call-chain as f.

121 / 128



Discussion



Trustworthiness

Tamperproofing is about trustworthiness:
Can I trust my program when it’s running on an
untrusted site?
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Trustworthiness

Tamperproofing is about trustworthiness:
Can I trust my program when it’s running on an
untrusted site?

For us to trust P, the adversary
cannot add/remove/change P ’s code!
cannot modify P ’s environment!

Essential for DRM, network gaming,. . .
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Basic operations

Check P ’s environment:
Am I running under a debugger?
Am I running under emulation?
Has the OS been hacked?
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Basic operations

Check P ’s environment:
Am I running under a debugger?
Am I running under emulation?
Has the OS been hacked?

Check P ’s code:
Have the executable bits been changed?

Check P ’s dynamic data:
Is P in a legal executable state?
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In practice. . .

Use a combination of operations!
Check the environment
Check the code
Check the state
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In practice. . .

Use a combination of operations!
Check the environment
Check the code
Check the state

You must check the checking code!
Simple attack: remove the checkers!

The response must be stealthy!
Simple attack: trace back from failure!

The detection must be stealthy!
Simple attack: detect reads of executable
pages!
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Future Lectures

1 NO LECTURE April 9!

2 NO LECTURE April 16!

3 TWO MORE LECTURES!

4 One lecture on hardware protection.
5 One lecture on software

watermarking/birthmarking/similarity

(maybe).
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Website

1 Please check the website for
important announcements:

www.cs.arizona.edu/˜collberg/

Teaching/mgu/2014
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