Software Protection:
How to Crack Programs, and
Defend Against Cracking

Lecture 7: Tamperproofing Il
Moscow State University, Spring 2014

Christian Collberg
University of Arizona

WWW.CS.arizona.edu/~collberg
© April 23, 2014 Christian Collberg

www.cs.arizona.edu/~collberg

Overview

@ Distributed Software
Protection Scenarios

@ R-MATE Protection Ideas
@ Algorithms
@ The Tigress System

R-MATE
Scenarios

Scenario: Protecting networked computer
games

Alice

S N

JL

Scenario: Protecting networked computer
games

& Bob
& 3

oA S

JL g Y

Scenario: Protecting networked computer
games

Scenario: Protecting networked computer
games

Alice Bob
') D

Scenario: Protecting networked computer
games

Scenario: Protecting networked computer
games

Alice Bob
B F 5

Scenario: Protecting medical records

. Medi cal
Alice

L)

=t
@ Medical records must be protected from
improper access and
improper modification.

@ Records are stored on one secure site,

accessed from multiple (sometimes mobile)
devices.

ecords
dat abase

Scenario: Protecting medical records

. Medi cal :
Alice Modords Ek (brittney.pdf)

A dat abase Bob
@ Confi denti al
nedi cal dat & ~

2 .

@ Medical records must be protected from
improper access and
improper modification.

@ Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

Scenario: Protecting medical records

. Medi cal :
Alice Modords Ek (brittney.pdf)

dat abase Bob

@ Confi denti al @ l

nedi cal dat &

JL

@ Medical records must be protected from
improper access and
improper modification.

@ Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

Scenario: Protecting medical records

. Medi cal .
Alice e ds Ek (brittney.pdf)

dat abase Bob
@ Conf i denti al @ l
nedi cal dat a
2=—t —_—

o

JL

@ Medical records must be protected from
improper access and
improper modification.

@ Records are stored on one secure site,

accessed from multiple (sometimes mobile)
devices.

‘~HG

Scenario: Protecting medical records

. Medi cal .
Alice e ds Ek(brittney.pdf)

dat abase Bob
@ Conf i denti al @
nedi cal dat a
2=—t —_—

] |

CATCARD.
b
—

9]

if (role="doctor")
al low(read|write)

elsif (role="nurse")
al | ow(r ead)

elsif (role="janitor"

al | ow(not hi ng)

@ Medical records must be protected from

improper access and
improper modification.

@ Records are stored on one secure site,
accessed from multiple (sometimes mobile)

devices.

Scenario: Protecting medical records

. Medi cal .
Alice Moo ds Ek (brittney.pdf)

dat abase Bob C
@ Conf i dent i al @ l it (rol e="doctor")
nedi cal dat a al low(read|write)
2=—t —_—

= elsif (role="nurse"
— :\A:I allo(w(read))

elsif (role="janitor"
|l " e, read
[) all O\N(ﬁe{—&—ﬂg)

@ Medical records must be protected from
improper access and
improper modification.

@ Records are stored on one secure site,

accessed from multiple (sometimes mobile)
devices.

Scenario: Protecting medical records

Alice ?’i?éf?'s Ek (brittney.pdf)
A dat abase C
Confidenti al if (role="doctor")
nedi cal dat a| al low(read|write)
e N elsif (role="nurse")
al | ow(r ead)
elsif (role="janitor"
J L all ow(ﬂreaggﬂg)

@ Medical records must be protected from
improper access and
improper modification.

@ Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

Scenario: Wireless sensor networks

H I -
I nlm
Alice Bob
&

== .t
@ Sensor networks are common in military
scenarios.

Scenario: Wireless sensor networks

- H -
- - oo sro |
Alice Radi oactivity? Bob
A Cheni cal s? °
‘;) Troup movenents? @

S—A L
@ Sensor networks are common in military
scenarios.

Scenario: Wireless sensor networks

- H -
- - oo sro |
Alice Radi oactivity? Bob
A Cheni cal s? °
‘;) Troup movenents? @

JL N

@ Sensor networks are common in military
scenarios.

@ The enemy can intercept/analyze/modify
Sensors.

Scenario: Advanced Metering

Infrastructure
B H
Di stribution H

Electrical Gid Control Center

Smart Meter

@ Selective black-outs, consumers can adjust
usage based on current costs, small-scale
enerav production. . .. _

Scenario: Advanced Metering
Infrastructure

Di stribution

Electrical Gid Control Center H
"Fe mmgg]

RN - o«
N > >
\ : 5 .
< i ‘

Smart Meter

@ Selective black-outs, consumers can adjust
usage based on current costs, small-scale
enerav production. . .. _

Scenario: Advanced Metering

Infrastructure
Hectrical aid Distribution EEHEE %7 EEHEE
; ntrol Center Tﬁ%: / \
. 6%’0
N \ = Aj_é\ = EHHEE
< O/\ /
[Smart Meter ¥ H e
Fl

@ Selective black-outs, consumers can adjust
usage based on current costs, small-scale
enerav production. . .. _

Scenario: Advanced Metering

Infrastructure
A
T EHHBH v%%/ L
Electrical Gid &ﬁ:{gf’“&ﬁ?er . H
: &% /

ﬁ_\\ N\ A
p—> -~ ‘?.Qi_ Y%, fam
. N \ 6\0/\ /

Smart Meter %% m|
H

@ Selective black-outs, consumers can adjust
usage based on current costs, small-scale
enerav production. . .. _

Scenario: Advanced Metering
Infrastructure

Di stribution
Electrical Gid Control Center
/

@ Selective black-outs, consumers can adjust
usage based on current costs, small-scale
enerav production. . ..

The Remote Man-At-The-End Problem

Cllent

Trusted Server
Cllent

The Remote Man-At-The-End Problem

Cllent

Trusted Serve/ C“ent

<

\ Untrusted Client

The Remote Man-At-The-End Problem

Cllent

Trusted Server
Cllent

Untrusted Client

The Remote Man-At-The-End Problem

Cllent

Trusted Server
Cllent

Debugger Emulator
Tracer Disassembler
Untrusted Client Slicer Decompiler
Cllent
SW/ HW

The Remote Man-At-The-End Problem

Cllent

Trusted Server
Cllent

>

’” - Debugger Emulator
Tracer Disassembler
‘N Untrusted Client Slicer Decompiler
- Client
SW/HW

The Remote Man-At-The-End Problem

Cllent

Trusted Server
Cllent

>

’V - Debugger Emulator
Tracer Disassembler
- Untrusted Client | Sticer Decompiler
Variant
2 .
Client
SW/HW

The Remote Man-At-The-End Problem

Cllent

Trusted Server
Cllent

Debugger Emulator
Tracer Disassembler
- Untrusted Client | Stcer Decompiler
Variant
Client
SW/HW

3

The Remote Man-At-The-End Problem

Cllent
Debugger Emulator

Trusted Server
Cllent
Tracer Disassembler

Untrusted Client | Stcer Decompiler

Client
SW/HW ‘

Variant \

4

Debugger ~Emulator
Tracer Disassembler
Slicer Decompiler
/! ;
Self-protect \

against
tampering!

Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.

Debugger ~Emulator
R g Tracer Disassembler
= Slicer Decompiler
e e > / ~
Detect remote Self-protect \ I
tampering! against
tampering!

Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.

Definition (Remote MATE (R-MATE) Attacks)

R-MATE attacks occur in distributed systems where
untrusted clients are in frequent communication with
trusted servers over a network, and where a malicious
user can get an advantage by compromising an untrusted
device.

Protection Ideas

Algorithm Ideas

@ Split — move functionality from untrusted
to trusted site.

Algorithm Ideas

@ Split — move functionality from untrusted
to trusted site.

@ Measure — ask untrusted site “are you
running the right code?”

Algorithm Ideas

@ Split — move functionality from untrusted
to trusted site.

@ Measure — ask untrusted site “are you
running the right code?”

© Time — make untrusted site compute
challenge within given time.

Algorithm Ideas

@ Split — move functionality from untrusted
to trusted site.

@ Measure — ask untrusted site “are you
running the right code?”

© Time — make untrusted site compute
challenge within given time.

© Monitor — monitor messages to detect
signs of tampering.

Algorithm Ideas. ..

© Hardware — make untrusted site run
tamperproof hardware.

Algorithm Ideas. ..

© Hardware — make untrusted site run
tamperproof hardware.

Q@ Encrypt — make untrusted site compute in
encrypted domain.

Algorithm Ideas. ..

© Hardware — make untrusted site run
tamperproof hardware.

Q@ Encrypt — make untrusted site compute in
encrypted domain.

@ Update — make untrusted site
continuously update its code.

Algorithm Ideas. ..

© Hardware — make untrusted site run
tamperproof hardware.

Q@ Encrypt — make untrusted site compute in
encrypted domain.

@ Update — make untrusted site
continuously update its code.

Q Local —
obfuscate/tamperproof/watermark/. .. code.

Protocol Monitoring

Trusted site Untrusted site
¢§§\§§ Application
) Transport

Internet]

Link
Physical

Protocol Monitoring

Trusted site Untrusted site
cat &
= Application o.

Transport
21 /
@ Internet]
Link \ad
Physical Q»

@ Monitor messages to detect signs of
tampering

Protocol Monitoring

Trusted site Untrusted site

fg ,;E j% /Application Q\.
Transport

Internet]

J L Link «bv

Physical

@ Monitor messages to detect signs of
tampering

@ Not all tampering will violate protocols!

Protocol Monitoring

Trusted site Untrusted site
@ ®©
4
= / Application Q\.
T t [
\ ranspor | :\A:I
@@ Internet
Link VV
Physical «2»

@ Monitor messages to detect signs of
tampering
@ Not all tampering will violate protocols!

@ Need to monitor every level of the network
stack?

Code Splitting

Trusted site Untrusted site
&3, 0
N g

@ Move functionality from untrusted to trusted
site.

Code Splitting

Trusted site Untrusted site

2 G
JL RO

@ Move functionality from untrusted to trusted
site.

@ Increases network traffic, server load.

Code Splitting

Trusted site Untrusted site

JL @w

@ Move functionality from untrusted to trusted
site.

@ Increases network traffic, server load.

Code Splitting

Trusted site Untrusted site
.@
é
m B8
i@l)

@ Move functionality from untrusted to trusted
site.

@ Increases network traffic, server load.
@ Extreme: Run all code server-side.

Trusted Hardware

Trusted site Untrusted site

& Ch0> RO %
JL

@ Bob has a trusted hardware unit.

Trusted Hardware

Trusted site Untrusted site
&3, 0 RO
f18 is OK! hash (fy)
f() is OK! hash (f)

21
JL Trust Bob"s sitej L

@ Bob has a trusted hardware unit.

@ Bob proves that his site contains no
untrustworthy software.

@ Trusted hardware makes it harder for Bob to
cheat.

Encryption

Trusted site Untrusted site

o~
2 2

Y 6%7=2 T
*T=7
JL

@ Alice wants to outsource computation to
Bob

Encryption

Trusted site Untrusted site

6,7 =S B

i - 6x7="2 > 6x7=42!
* /=7 *x [=42
JL]

\

@ Alice wants to outsource computation to
Bob

@ Doesn’t want him to learn her inputs and
outputs!

Encryption

Trusted site Untrusted site
E%f;?% B (@
—A—5 E(6),E(7)| —-—-
6x7=7 < > E(6)+E(7)
JL D(E (42))=42! E(42) |

@ Alice wants to outsource computation to
Bob

@ Doesn’t want him to learn her inputs and
outputs!

@ Bob performs operations on encrypted
data.

Continuous Evolution

Trusted site Untrusted site
PO
¥
2L @ ——5

Continuous Evolution

Trusted site Untrusted site

JL &

Continuous Evolution

Trusted site Untrusted site

>
di@ih l R = =
JL] L:

@ The server continously updates the client
code

Continuous Evolution

Trusted site Untrusted site

A ——h

Q\
\ad
JL] L:

@ The server continously updates the client
code

@ Gives Bob a smaller window to hack!

Challenge Timing

Trusted site Untrusted site

. =i
2=t > Gomd
JL |

@ Alice asks Bob to compute a special
function

Challenge Timing

Trusted site Untrusted site
]
?é ;\ ER\ thallenge
W - >
JL
) |

@ Alice asks Bob to compute a special
function
@ Does it return the right result?

Challenge Timing

Trusted site Untrusted site

)
aa
K 3 4 - G
JL &=
J L

@ Alice asks Bob to compute a special
function

@ Does it return the right result?

@ Does Bob return the result fast enough?

Challenge Timing

Trusted site Untrusted site

1
By,
N - >
J L .ook too long-‘ -_response
) |

@ Alice asks Bob to compute a special
function

@ Does it return the right result?

@ Does Bob return the result fast enough?

@ Accurate timing on the general Internet is
hard... s

Local Defenses

Trusted site Untrusted site

JL

@ Local defenses don’t involve the trusted site

Local Defenses

Trusted site Untrusted site

JL

@ Local defenses don’t involve the trusted site
@ Hash the executable. ..

Local Defenses

Trusted site Untrusted site

JL

@ Local defenses don’t involve the trusted site
@ Hash the executable. ..
@ Hash the state...

Local Defenses

Trusted site Untrusted site

JL

@ Local defenses don’t involve the trusted site
@ Hash the executable. ..

@ Hash the state...

@ Obfuscate. ..

Local Defenses — Hardened Processors

[[[|
LT SN B I S B e S e i
| @ , -
B E[= CPU 3®R:[
O\)
— [9 |if (tanpering) P Iﬁ : _[
“W L 7 destroy private data |~ _
[2 shut down [
C - -
[é N
1— | I 1 1 1 1 1 | I 1 1
| I I A SR N I N

@ Hardware can be hardened against attack.

@ Consequences for cost, heat, clock-rate,
energy-use. ..

20

Slicing functions

Move all client code server-side

Trusted site Untrusted site

@ High compute load for the server and high
latency for the client.

22/1

Move some client code server-side

Trusted site Untrusted site

S —.

JL

@ Intermediate level solution:
@ some computation on the server, some on the
client.
@ balance computation, network traffic,
tamper-detection.

@ Use slicing algorithms.

23

1

int f(int x,int y){ @ a is animportant
int a = dxx + oy variable — hide it on the

int c; server!
RN @ Whenever the client
else needs a — get it from
© = 2xxtd; the server!
int sum = 0; @ Move code that depends

for (int i=a;i<10;1i++)
sum += 1i;

on a to the server —
better performance!

return xx* (sum+c) ;

int f(int x,int y){ @ Compute a forward slice
R from @ — move this

int c; code to the server!

if 5 .

- @ Keep unimportant

else variable ¢ on both the
C = 2xxtd; client and the server —

int sum = 0; better performance!

for (int i=a;i<10;1i++)
sum += 1i;

@ Don’t move large data
structures — better
return xx* (sum+c) ; performance!

@ Overhead depends in
how much of the
program is hidden on
the server. On a LAN: 3
to 58%.

int client (int x,int y) {

f1(x,y)7
int c;
if ('f2(y,x)){

(
c = 2*x+4 £f3(c);

—

int sum = 0; f4 (sum);
£5();

return xxf6();

int Ha = 5;
int Hc = 0;
int Hsum = 0;

void fl (int x,int vy) {
Ha=4+x+y; }
boolean f2 (int vy, int x) {
if (y < 5)¢{
Hc = Haxx + 4;
return true;
} else
return false;}
void f3(int c) {
Hc = ¢}
void f4 (int sum) {
Hsum = sum; }
void f5() {
for (int i=Ha;i<10;i++)
Hsum += 1i;}
int £6 () {
return Hsum+Hc; }

int client (int x,int y) {

f1(x,y)7
int c;
if ('f2(y,x)){

(
c = 2*x+4 £f3(c);

—

int sum = 0; f4 (sum);
£5();

return xxf6();

int Ha = 5;
int Hc = 0;
int Hsum = 0;

void fl (int x,int vy) {
Ha=4+x+y; }
boolean f2 (int vy, int x) {
if (y < 5)¢{
Hc = Haxx + 4;
return true;
} else
return false;}
void f3(int c) {
Hc = ¢}
void f4 (int sum) {
Hsum = sum; }
void f5() {
for (int i=Ha;i<10;i++)
Hsum += 1i;}
int £6 () {
return Hsum+Hc; }

Example

@ Function £ is the original one
@ You want to hide variable a
@ Compute a forward slice on a (pink).

@ You want to protect all the pink code = put
it on the server in functions Hf1...Hf6.

@ The client accesses the hidden functions by
making RPCs.

@ c is a partially hidden variable. It resides
both on the client and the server, but the
code that updates it is split between the two.

28/1

Performance

@ Runtime overhead from 3 to 58%.

29

1

Performance

@ Runtime overhead from 3 to 58%.

@ Depends on the amount of protection that is
added:
@ how much of the program is hidden on the
server?
© how much extra communication?

29/1

Performance

@ Runtime overhead from 3 to 58%.

@ Depends on the amount of protection that is
added:

@ how much of the program is hidden on the
server?
© how much extra communication?

@ Zhang and Gupta’s measurements were
done over a local area network!

29/1

Performance

Packet turnaround times:

target site # hops | ms
rorohiko.cs.arizona.edu 1 0.2
cse.asu.edu 10 5
www.stanford.edu 12| 25
WWW.usp.ac.f] 12 | 153
www.eltech.ru 23 | 201
www.tsinghua.edu.cn 19 | 209

30

1

rorohiko.cs.arizona.edu
cse.asu.edu
www.stanford.edu
www.usp.ac.fj
www.eltech.ru
www.tsinghua.edu.cn

Verification by
timing

Pioneer

@ In a very restricted environment you can
measure aspects of the untrusted client to
verify that it is running the correct software.

Server n() dient
)

32/1

Assumptions

@ The the client’s hardware configuration is
known;

@ The client-server latency is known;

@ The client can only communicate with the
server.

33/1

Applications

@ Check cell phone/PDA/smartcard for
viruses;

@ Check voting machine code;

@ Check for rootkits on machines on your
LAN.

34/1

Algorithm

@ Basic idea: ask client for a hash of its code.
o If

@ the hash is the wrong value, or
@ the computation took too long

the client has cheated!

@ The hash function is constructed such that
it can’t be computed quicker.

35/1

Server

1. #{ ¢<—currentTime ()
nonce<—random ()
send nonce

hash6 ()

send ()

@]
o
=
2

SHA-1 ()

m
0]
b
)
Q
c
=1
ju)
o
=

D

Server dient

1.t «—currentTime () »2.receive nonce

nonce<random () / ¢ < hashé(nonce, V)
send nonce—"" | send €

V:
hash6 ()

send ()

SHA-1 ()

m
0]
b
)
Q
c
=1
o
o
=

D

Server dient

1. 4 <—currentTime () 2.receive nonce
nonce<random () ¢ < hashé6(nonce, V)
send nonce | —send C

[
3. receive c€— | v:

. hash6 ()
bb «—currentTime ()

if b—t > At or
C is wrong then
FATL

send ()

SHA-1 ()

m
0]
b
)
Q
c
=1
o
o
=

D

Server

1.t ¢<—currentTime ()
nonce<—random ()
send nonce

3. receive C
bb «—currentTime ()
if b—t > At or
C is wrong then
FAIL

dient

2.receive nonce
¢ < hashé6(nonce, V)
send C

V:
hash6 ()

send ()

SHA-1 ()

4. h+ sHA-1(noncel||E)
send

m
0]
b
0]
Q
c
=
Q
o
—

D

Server dient

1. 4 <—currentTime () 2.receive nonce
nonce<random () ¢ < hashé6(nonce, V)
send nonce send C

) V:

3. receive C ' hash6 ()
bb <—currentTime ()
if t2—It1>At or

C is wrong then
FAIL
SHA-1 ()

5. receive h<\

if h is wrong then| ——— | 4. h+ sHA-1(noncel||E)
FAIL T —send h

m
0]
b
)
Q
c
=t
o
o
—

D

Server

1. #{ ¢<—currentTime ()
nonce<—random ()
send nonce

3. receive C
bb <—currentTime ()
if b—t > At or
C is wrong then
FAIL
5. receive h
if h is wrong then
FAIL

dient

2.receive nonce

V:

¢ < hashé6(nonce, V)
send C

hash6 ()

send ()

SHA-1 ()

i

- h< sHA-1(nonce||E)
send

6. r<+ execute E
send r

0]
b
0]
Q
c
=1
Q
o
—
D

Server

- ly «—currentTime ()
nonce<—random ()
send nonce

. receive C
bb <—currentTime ()
if b—t > At or
C is wrong then
FAIL

. receive h
if h is wrong then
FAIL

. receive r€«—— |

dient

2.receive nonce

V:

¢ < hashé6(nonce, V)
send C

hash6 ()

send ()

SHA-1 ()

i

- h< sHA-1(nonce||E)
send

6. r<+ execute E

—— send r

0]
b
0]
Q
c
=1
Q
o
—
D

Algorithm

@ The hash function must be time optimal, if
not

@ the client can use the time he saved to execute
his own instructions without the server noticing.

37/1

Algorithm

@ The hash function must be time optimal, if
not
@ the client can use the time he saved to execute
his own instructions without the server noticing.
@ Others have tried to extend the protocol to
general scenarios — highly controversial.

37/1

The Tigress
System

Tigress and the R-MATE Problem

Trusted Server o) L
| / Trusted
% Clients

STk

b

39

1

Tigress and the R-MATE Problem
Trusted Se

rver o) L
/ Trusted
Clients

Untrusted
Client

39/1

Tigress and the R-MATE Problem

Trusted Server N
/ Z Trusted
Clients

D

Untrusted
Client

1) Cryptographic keys
2) Login details

3) Sensitive algorithms
4) Security checks

39/

1

Tigress and the R-MATE Problem

Trusted Server) L.
/ Trusted
Clients

,,,,,,,,,,,,

Detect’

Untrusted
1) Sever connection Client

2) Phone home
Respond! 3) Legal remedies

39/1

Tigress and the R-MATE Problem

Trusted Server) L
/ Trusted
% Clients
L

\

>
1) Overwhelm the adversary’s analytical abilities
2) Facilitate the server’s tamper detection

Code
Variant

Untrusted
Client

39/1

Tigress and the R-MATE Problem

Trusted Server) L
/ Trusted
% Clients

T
TR

D

Trade-offs:

Diversity vs. security vs. performance
Code
Variant

Untrusted
Client

39/1

The Tigress System

Server Client

Code Blocks

@ A fully generalized code diversity system
for protecting against R-MATE attacks.

40/1

The Tigress System

Server Client

Code Blocks

@ A fully generalized code diversity system
for protecting against R-MATE attacks.

@ The trusted server continuously pushes
diverse code variants to the untrusted
clients. o)

The Tigress System

Server Client

Code Blocks

@ A fully generalized code diversity system
for protecting against R-MATE attacks.

@ The trusted server continuously pushes
diverse code variants to the untrusted
clients. o)

Attack Model

@ There is no unassailable root-of-trust:
@ the attacker can modify local code/hardware.

41

Attack Model

@ There is no unassailable root-of-trust:

@ the attacker can modify local code/hardware.

@ The attacker knows the system:

@ primitive code transformations,
@ strategies for combining transformations,
@ the source code of the entire system.

Similar to Kerckhoffs’s principles.

41

Attack Model

@ There is no unassailable root-of-trust:

@ the attacker can modify local code/hardware.

@ The attacker knows the system:

@ primitive code transformations,
@ strategies for combining transformations,
@ the source code of the entire system.

Similar to Kerckhoffs’s principles.

© The attacker doesn’t know the
randomization seed and can'’t predict the

@ order in which transformations are applied;
@ |ocation in the code where they are applied.

41

Primitives

Primitive Transformations

Server Client

Definition (Primitive)

A primitive is a code transformation that

@ adds confusion to the client code, taxing the
adversary’s analytical abilities (obfuscation);

© makes modifying client code more difficult
(tamperproofing);

© makes detecting tampering easier (tamper-detect).

~

Preserving Protocols

Protocol-Preserving

Server

interpret(...)
flatten(...)
opaque(...)
split(...)

Code
transformer

Blocks

Client

@ Protocol-preserving primitives generate

confusion and hardening.

44

1

Preserving Protocols

Protocol-Preserving Server Client
interpret(...)
flatten(...)
opaque(. . .) \ socke Block Bag
ol 1.0 - —
o N

Code
Non Protocol-Preserving transformer
var _encode(...)
nmerge(...)

RPC _encode(. ..)
rnd_args(...)

@ Protocol-preserving primitives generate

confusion and hardening.
@ Non-protocol-preserving primitives

generate incompatible block variants.

44

1

Preserving Protocols

Protocol-Preserving

interpret(...)
flatten(...)
opaque(...)
split(...)

Non Protocol-Preserving

var _encode(...)
nerge(...)

RPC _encode(. ..)
rnd_args(...)

Server

\ SEED
Code
transformer

<JSEED

Blocks

Client

@ Protocol-preserving primitives generate
confusion and hardening.

@ Non-protocol-preserving primitives
generate incompatible block variants.

@ Randomized primitives generate many
unique variants.

44

1

Protocol-Preserving Primitives — Flatten

o flatten(7,seed) removes nested control flow.

e
1

L

45

1

Protocol-Preserving Primitives — Flatten
o flatten(7,seed) removes nested control flow.

1 B
- = |

Randomize /
Basic Block

Ordering

45/1

Protocol-Preserving Primitives —
Interpret

@ interpret(7,seed) turns a function into a
specialized interpreter.

prog= {opl op4 op9, ...},
stack = [...];

— pc = ..
->|op4: { push(pop() +pop() } J
—{op9: {push(pop()*pop()} |

opl: {push(pop()+
e (pop()*pop()) }

—>0 0 @

46

1

Protocol-Preserving Primitives —
Interpret

@ interpret(7,seed) turns a function into a
specialized interpreter.

prog={opl, o
stack = [...]

pc = ...

p4,0p9,...};

U

—{op4” {push(pop() +po

L

p()} J
Randomize < >{op9: {push(pop() *pop()} |

opl: {push(pop()+

w{pop() *pop())}

Dispatch 4
Randomize/ﬁo oo

\ Randomize

46

1

Protocol-Preserving Primitives — Split

@ split(f,seed) converts a function f into two
functions called from f:

void f(int a){
int x;

[
}

void f(int a){
int x;

f1(&a, &) ;
f2(&a, &) ;
}

voi d f1(
int *a,
int *x){

L]
}

void f2(
int *a,
int *x){

1
}

Protocol-Preserving Primitives — Split

@ split(f,seed) converts a function f into two
functions called from f:

Randomize void f1(
Split Point it A

/ int *x){

void f(int a void f(int a){]
int x; int x; }
E> f1(&a, &) ;

:l f2(&a, &) ; voi d f2(

are
} } nt *3){

1

}

Protocol-Preserving Primitives — Opaque

@ opaque(f,seed) inserts non-functional code
protected by an opaque predicate.

48

1

Protocol-Preserving Primitives — Opaque

@ opaque(f,seed) inserts non-functional code
protected by an opaque predicate.

pP—>p.next;
aO—>0 . next 48/1

Protocol-Preserving Primitives — Opaque

@ opaque(f,seed) inserts non-functional code
protected by an opaque predicate.

Randomize F
Transformation ":

Type
yp p q
' v
/7 Randomize
Rand9m|ze Opaque
Insertion Predicate

Point

pP—>p.next; k////’///

aO—>0 . next 48/1

Non-Protocol-Preserving Primitives —
Merge
@ merge(fy, fr,seed) combines functions
fi(args,) and fr(args,) into
fi 2(args4||args,, sel).

void f1(
int x){ void f_1_2(
int x,
float vy,
:] in?awniych){
} i f (which==1)
_ Co —
voi d f1(
float y){ el se
[] }
}

Non-Protocol-Preserving Primitives —
rnd_args
@ rnd_args(f,seed) randomly reorders f’s

formal parameters and adds extra, bogus,
formals.

LI
ORC:

o —
[]
[J
—

-
[J
[}
[]

50/1

Non-Protocol-Preserving Primitives —
rnd_args

@ rnd_args(f,seed) randomly reorders f’s
formal parameters and adds extra, bogus,

formals.
Randomize
voi d f(voi d f(‘// Argument
E, g Order
S~

) oo B \

coe){ Insert
} 00 Bogus

Arguments

50/1

Non-Protocol-Preserving Primitives —
RPC encode

@ RPC encode(n,seed) assigns a new
random encoding of the n:th remote
procedure call RPC(n,args).

reo(a2, [0,) [reaes, [HEL.)

@ If the adversary ignores block updates, he
may execute an invalid block containing an
RPC with an obsolete encoding.

a Thic alarte tha ecarviar nf tha tasmnarinAa

51

Non-Protocol-Preserving Primitives —
RPC encode

@ RPC encode(n,seed) assigns a new
random encoding of the n:th remote
procedure call RPC(n,args).

reo(a2, [0,) [reaes, [HEL.)

reea2, [0, 1) [reags 1 L.

/ / Y}sert

Randomize Randomize BogUS
RPC Argument Amg. L

RPC encode...

rRec(42, [,] [ﬁ> recros, [1. . [

@ If the adversary ignores block updates, he
may execute an invalid block containing an
RPC with an obsolete encoding.

@ This alerts the server of the tampering.

52

1

Mechanisms —
Strategies

System Overview — Diversity Graph

Server Client
Diversity Graph
B Code
mairig transformer
Rlaog
Diversity < ~
) Overseer
‘/"F\ scheduler /
T T
S
t enpor ral div e s ly
P spatial div:
< semantic di versl ly

@ The diversity graph represents the complex
dependencies between blocks and
protocols.

System Overview — Diversity Graph

Server Client
Diversity Graph

o Code
2L transformer
main)
Diversity ™ ¢ > O
verseer
scheduler >

£oof)
oof) ool
St
\ tenporal diversity
<P
%

spatial diversity
semantic diversity

@ How does a transformation applied to one
block force updates to other blocks?
@ Initially, similar to a call graph.

Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}
int main() {
foo();

}

Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}
int main() {
foo();

}

_—

P
malno

foog

g%

Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}

int main() {

foo();
}
malno malnO
ﬂauen fooOO
fooO fooO

P
9o

Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}

int main() {

foo();
}
maing maing maing
flatten(£oof ;) encode var(g?)
foog AAAAANAANANS foog AAAAAANAAAAAAS foog
foohg) (E00ph, £oop off0o4[E00h .
P P P
9 ab 9o 91

Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}

int main() {

foo();
}
malno malno malno maing
flatten(fooo 0 encode_var(go rnd_args(fooo
fooO fooO fooO foog foof

AN !
foohg) (E00ph, [fo—ooif?iﬁ@ (00l offooh 1JEood ;) (Eool)

N/ NS N/

of o of af o

1

Strategies

Server Client

maind o
0P e\
ooy Diversi ity Overseer

(: scheduler:)

@ Temporal Diversity : program is
continuously renewed.

@ Spatial Diversity : defense-in-depth,
multiple layers of primitives.

@ Semantic Diversity : software aging,
variants are not interchangeable.

57/1

Scheduler Operation

void foo ()

int main() {foo(

RPC(2,9);}

Security
// client.c .
int __attribute((level(0))) g; Requirements
void foo() __attribute((level(9))); profile

|C|L

Primitives
interpret(...)
flatten(...)
opaque(...)
RPC_encode(. . .)
var _encode(. . .)
nerge(...)
split(...)
rnd_args(...)

Diversity Graph

p

mainh

Blocks

Server

Code
transformer

Client

Diversity

scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity

58

1

Scheduler Operation

// client.c

void foo ()

int __attribute ((level(0))) g;
void foo() __attribute((level(9)));
g++; RPC(2,9);}
int main() {foo(

|C|L

/ Performance profile

Primitives
interpret(.
flatten(. .
opaque(...)
RPC_encode(. . .

var _encode(. . .
nerge(...)
split(...)
rnd_args(...)

Diversity Graph

p

mainh

Blocks

Server

Code
transformer

Client

Diversity

scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity

58

1

Scheduler Operation

// client.c
int __attribute((level(0))) g;

i RPC(2,9);}
{foo();}

void foo ()
int main()

void foo() __attribute((level(9)));

|C|L

Requirements

/ Performance profile

Primitives Blocks
interpret(...)
flatten(...)
opaque(. ..)
RPC_encode(. . .)
var _encode(. . .)
nerge(...)
split(...)
rnd_args(...)

Diversity Graph
neind Current

— diversity

graph

| >

Server

Code
transformer

Client

Diversity

scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity

58

1

Scheduler Operation

// client.c

int main() {foo();}

int __attribute((level(0))) g;
void foo() __attribute((level(9)));
void foo () i RPC(2,9);}

Security
Requirements

profile

/ Performance profile

|C|L

Primitives Blocks
interpret(...)
flatten(...)
opaque(. ..)
RPC_encode(. . .)
var _encode(. . .)
nerge(...)
split(...)
rnd_args(...)

Diversity Graph
neind Current

— diversity

graph

| >

Server Client

Current working set

Code
transformer

Diversity
scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity

58

1

Scheduler Operation

Security
// client.c)
int __attribute ((level(0))) g; Requirements
void foo() __attribute((level(9))); .
preaintl on e e Performance profile
int main () 0()i) /

|C|L

Primitives Blocks

interpret(...)
flatten(...)
opaque(. ..)
RPC_encode(. . .)
var _encode(. . .)
nerge(...)
split(..
rnd_args(...

Diversity Graph
weird Current

— diversity
graph

| >

Server

Code
transformer

Diversity
scheduler

Strategies

Client
Current working set

Primitives’ effect
on diversity and
performance

tenporal diversity
spatial diversity
semantic diversity

58

1

Scheduler Operation

Security
// client.c R
int __attribute((level(0))) g; Requirements
void foo() __attribute((level(9))); .
void foo() (g++; RPC(2,9);} profile
int main() {foo();}

|C|L

/ Performance profile

Primitives

interpret(...)
flatten(...)
opaque(. ..)
RPC_encode(. . .)
var _encode(. ..)
nerge(...)
split(..
rnd_args(...

Server
Current working set

Blocks

Primitives’ effect
on diversity and
performance

Diversity Graph

P

mainh

Gdo) 7|

Cod
Current
r— diversity

graph

/|

Active Set

Client

Functions
on the
client's
call stack

l———————— 3| Diversity

scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity

58

1

Scheduler Operation

Security
// client.c)
int __attribute ((level(0))) g; Requirements
void foo() __attribute((level(9))); .
void foo () ; RPC(2,9);} profile
int main() o();}

|C|L

/ Performance profile

Primitives

interpret(...)
flatten(...)
opaque(. ..)

Blocks

RPC_encode(. . .)
var _encode(. . .)

nerge(...)
split(..
rnd_args(...

Diversity Graph

p

mainh

Current
— diversity
graph
>

Code
transformer

Server
Current working set

Primitives’ effect
on diversity and
performance

/|

Active Set

Client

Functions
on the
client's
call stack

Diversity

scheduler

Strategies

Replacement

tenporal diversity
spatial diversity
semantic diversity

rate

58

1

Scheduler Operation

Security
// client.c R
int __attribute ((level(0))) g; Requirements
void foo() __attribute((level(9))); il
ot main0 oay - Performance profile
int main() o();} /
|C| L
Server Client
Primitives Blocks .
interpret(...) Current working set
flatten(...) i
opatue() “~— New working set
Rpc,encugeg. . ;
var _encode(.
merge(.....) Primitives’ effect Functions
split(.. ’ > e
rnd_args(... on diversity and ;
client's
Diversity Graph performance
- Code call stack
mainf Current transformer
. . Active Set
<« diversity E—
A= =
| New Invalidated blocks
diversity Stategies
graph temporal diversity Replacement

spatial diversity

semantic diversity rate

58

1

Crime and Punishment

Server Client

getBlock(22)

@ Is the requested block part of the current
block working set?

Crime and Punishment

Server Client

getBlock(22)

RPC(2, 42)

@ Is the requested block part of the current

block working set?
Q Valid RPC number? Valid RPC argument

types?

Crime and Punishment

Server

Diversity Graph
maind

£00f)
p
a

getBlock(22)

Block
scheduler
if (!blockOK()) <
puni sh();

RPC(2, 42)

Active Set

»\ puni

A

f (lactiveSet OK())\

Block
request/
receive

Client

@ Is the requested block part of the current

block working set?

Q Valid RPC number? Valid RPC argument

types?

Crime and Punishment

Server = Client
- scheduler getBlock(22) Block
Diversity Graph if (1blockOK()) -« > request/
mainf puni sh(); receive
puni sh() {
7 e send kill block;
o insert delays(); it (1rpeaK()) RPQ(2, 42)
e send delay block; puni sh() ; = -
e send allocMem block;
e collect forensics; Active Set

(0

A

£0of)
}
E
: > ,
:

@ Is the requested block part of the current

block working set?
@ Valid RPC number? Valid RPC argument

types? s

Security
Evaluation

Crime and Punishment

Server Client

getBlock(22)

@ Is the requested block part of the current
block working set?

Crime and Punishment

Server Client

getBlock(22)

RPC(2, 42)

@ Is the requested block part of the current

block working set?
Q Valid RPC number? Valid RPC argument

types? .

Crime and Punishment

Server

Diversity Graph
maind

£00f)
p
a

getBlock(22)

Block
scheduler
if (!blockOK()) <
puni sh();

RPC(2, 42)

Active Set

»\ puni

A

f (lactiveSet OK())\

Block
request/
receive

Client

@ Is the requested block part of the current

block working set?

Q Valid RPC number? Valid RPC argument

types?

Crime and Punishment

Server = Client
- scheduler getBlock(22) Block
Diversity Graph if (1blockOK()) -« > request/
mainf puni sh(); receive
puni sh() {
7 e send kill block;
o insert delays(); it (1rpeaK()) RPQ(2, 42)
e send delay block; puni sh() ; = -
e send allocMem block;
e collect forensics; Active Set

(0

A

£0of)
}
E
: > ,
:

@ Is the requested block part of the current

block working set?
@ Valid RPC number? Valid RPC argument

types? .

Enumeration of the Attack Space

Tamper asset
without being
detected

Prevent server Reverse engineer

Prevent

server from making updates
from meaningful
replacing updates to .«
active—ftgr Extract
set that has ancestor new
RPCs/variables Ny_1 of vari-
o/ uses new block | |able/R
% Find |[Repor) ompareen-
valid N || cod-
active graphs|againsf|ings &
set all | call
con- other || SI9-
taining blocks)| nau-
blocks res
with from
RPC- WosyNi
s/vari-
ables
o

Enumeration of the Attack Space

Tamper asset
without being
detected

I I
{Find asset blocks} [Tamper } Avoid detection
o

with &/

Find Detect Analyze </ to Prevent server Prevent server | Reverse
blocks asset determine that | from replacing <7 || from making engineer
blocks they are orphan |(_with new blocks meaningful updates

blocks updates to &/

@ Root represents the asset in the client code
(security check, code that updates a global
variable, the integrity of a control-flow path,

global data, . ..).
@ Attack steps:
@ find the asset blocks
g tamper with these blocks

63/1

The Attack Space — Avoiding Detection

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks

updates to <7

@ Orphan blocks (no calls, RPCs):
modify at will!

64

1

The Attack Space — Avoiding Detection

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks

updates to <7

@ Orphan blocks (no calls, RPCs):
modify at will!

@ Trick the server that asset blocks are all
active: server can't update!

64

1

The Attack Space — Avoiding Detection

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks updates to <7

@ Orphan blocks (no calls, RPCs):
modify at will!

@ Trick the server that asset blocks are alll
active: server can't update!

@ Trick the server to only make trivial changes
to asset blocks: ignore updates!

64/1

The Attack Space — Avoiding Detection

Avoid
detec-
tion

Analyze o 1o Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks

updates to <7

@ Orphan blocks (no calls, RPCs):

modify at will!

Trick the server that asset blocks are all
active: server can't update!

Trick the server to only make trivial changes

to asset blocks: ignore updates!
O Raovarce anAdineaar/natrh new variante An 64

© O

The Attack Space — Countermeasures

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks

updates to <7

@ Slow down reverse engineering using
protocol-preserving primitives.

65

1

The Attack Space — Countermeasures

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful

blocks

updates to <7

@ Slow down reverse engineering using
protocol-preserving primitives.

@ Use opaque to connect orphan blocks to
the rest of the program.

65

1

The Attack Space — Countermeasures

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful

blocks

updates to <7

@ Slow down reverse engineering using
protocol-preserving primitives.

@ Use opaque to connect orphan blocks to
the rest of the program.

© Use opaque primitive to insert calls to
non-existing functions. If the adversary
ranorte an artive cet containina <iich 3

Security Evaluation — Empirical Test #1

Protocol-Preserving Server Client
Block B:
\ Blocks ==
Coce (_JC_J [—
Non Protocol-Preserving transformer, < > l:l l:l
barg o barj o
RAC el o) Ignore updates!

@ Attack: Ignore block updates!

66

1

Security Evaluation — Empirical Test #1

Protocol-Preserving Server Client
Block B:
\ Blocks ==
Code (_JC_J [—
Non Protocol-Preserving transformer baro.o) [pars o < > l:l l:l
arp ¢ T
RAC el o) Ignore updates!

@ Attack: Ignore block updates!

@ Simulated Test: Turn off client updates.

66

Security Evaluation — Empirical Test #1

Protocol-Preserving Server Client
Block B:
\ Blocks ———
Code C_JC _J [—
Non Protocol-Preserving transforme barg o) bar o < > l:l l:l
3r0,Q I,
RPC_encode(. . .) Ignore updates!

@ Attack: Ignore block updates!

@ Simulated Test: Turn off client updates.

@ Result: RPCs are frequent in our test
program, the server reliably detected the
malicious behavior shortly after the first
RPC_encode update. 66/ 1

Security Evaluation — Empirical Test #2

Protocol-Preserving Server Client

opaque(...) \ TS Block Bag
B F
Code if (P)

Non Protocol-Preserving transformer, < > bogus()

Request complete
program!

@ Attack: Build a snapshot of the entire
program, in order to analyze it off-line!

67

Security Evaluation — Empirical Test #2

Protocol-Preserving Server Client

opaque(...) \ Bocks Block Bag
if (PF)

Code
Non Protocol-Preserving transformer, < > bogus()

Request complete
program!

@ Attack: Build a snapshot of the entire
program, in order to analyze it off-line!

@ Simulated Test: Client disassembles its
blocks, requests referenced blocks.

Security Evaluation — Empirical Test #2

Protocol-Preserving Server

Client

Block Ba
opaque(...) \ Blocks g

B F
Code if (P)
Non Protocol-Preserving transformer, < > bogus()

Request complete
program!

@ Attack: Build a snapshot of the entire
program, in order to analyze it off-line!

@ Simulated Test: Client disassembles its
blocks, requests referenced blocks.

@ Result: The malicious client quickly
requested nonexistent blocks.

Security Evaluation — Empirical Test #3

m»rvp

maind

5 0,0
£oof
g
&£

Server

Client

All blocks are active!

@ Attack: Prevent the server from updating

blocks!

68

Security Evaluation — Empirical Test #3

Server Client

<P
D
P

All blocks are active!

@ Attack: Prevent the server from updating
blocks!

@ Simulated Test: Client reports the entire
contents of the block bag as the active set.

68

Security Evaluation — Empirical Test #3

Server Client

< > 1 [

All blocks are active!

@ Attack: Prevent the server from updating
blocks!

@ Simulated Test: Client reports the entire
contents of the block bag as the active set.

@ Result: Using the program call graph the
server reliably identified the malicious

Security Evaluation — Empirical Test #4

Bert| @8RS |

@ We’'re porting ChocolateDoom to Tigress.
@ Capture-the-Flag exercises!
@ To appear... o

1

Discussion

Summary

@ A system for detecting tampering of clients
running on untrusted nodes in a distributed
system.

Summary

@ A system for detecting tampering of clients
running on untrusted nodes in a distributed
system.

@ Assume the adversary has complete
knowledge of our system

@ no security-through-obscurity

Summary — Security

@ Protocol-preserving primitives:

@ Gives attacker limited time-window for
analysis/tampering.

Summary — Security

@ Protocol-preserving primitives:
@ Gives attacker limited time-window for
analysis/tampering.
@ Non-protocol-preserving primitives :

@ Harder to tamper without modifying expected
behavior = easier tamper-detection.

Summary — Security

@ Protocol-preserving primitives:
@ Gives attacker limited time-window for
analysis/tampering.
@ Non-protocol-preserving primitives :
@ Harder to tamper without modifying expected
behavior = easier tamper-detection.
@ Security:
@ Function of the frequency of code updates and

the complexity and variability generated by
primitives.

Summary — Performance

@ Highly tunable:
@ Control which parts of the program to
transform, which transformations to apply,
update frequency.

Summary — Performance

@ Highly tunable:
@ Control which parts of the program to
transform, which transformations to apply,
update frequency.

@ Performance overhead:
@ Infrastructure: 4% to 23%.
@ Update delay: 2 to 3 seconds
(protocol-preserving primitives), 7 to 24
seconds (non-protocol-preserving primitives).

Discussion

@ Optimize differently for different scenarios:
@ Client performance
@ Server performance
@ Network latency/bandwidth
@ Client energy use
@ Time-to-crack

Discussion

@ Optimize differently for different scenarios:
@ Client performance
@ Server performance
@ Network latency/bandwidth
@ Client energy use
@ Time-to-crack
@ What about different network topologies?
@ client-server
@ 1 server + n untrusted clients running same
code?
@ 1 server + nuntrusted clients running different
code?
@ 1 server + ntrusted clients + m untrusted
clients?

