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Scenario: Protecting medical records
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if (role="doctor")
al low(read|write)

elsif (role="nurse")
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elsif (role="janitor"
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improper access and
improper modification.

@ Records are stored on one secure site,
accessed from multiple (sometimes mobile)
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@ Sensor networks are common in military
scenarios.

@ The enemy can intercept/analyze/modify
Sensors.
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Debugger ~Emulator
Tracer Disassembler
Slicer Decompiler
/! ;
Self-protect \

against
tampering!

Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.
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Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.

Definition (Remote MATE (R-MATE) Attacks)

R-MATE attacks occur in distributed systems where
untrusted clients are in frequent communication with
trusted servers over a network, and where a malicious
user can get an advantage by compromising an untrusted
device.
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@ Split — move functionality from untrusted
to trusted site.

@ Measure — ask untrusted site “are you
running the right code?”

© Time — make untrusted site compute
challenge within given time.

© Monitor — monitor messages to detect
signs of tampering.
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Algorithm Ideas. ..

© Hardware — make untrusted site run
tamperproof hardware.

Q@ Encrypt — make untrusted site compute in
encrypted domain.

@ Update — make untrusted site
continuously update its code.

Q Local —
obfuscate/tamperproof/watermark/. .. code.
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Protocol Monitoring
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@ Monitor messages to detect signs of
tampering
@ Not all tampering will violate protocols!

@ Need to monitor every level of the network
stack?
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Code Splitting
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@ Move functionality from untrusted to trusted
site.

@ Increases network traffic, server load.
@ Extreme: Run all code server-side.
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Trusted Hardware

Trusted site Untrusted site
&3, 0 RO
f18 is OK! hash (fy)
f() is OK! hash (f)

21
JL Trust Bob"s sitej L

@ Bob has a trusted hardware unit.

@ Bob proves that his site contains no
untrustworthy software.

@ Trusted hardware makes it harder for Bob to
cheat.
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Encryption

Trusted site Untrusted site
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@ Alice wants to outsource computation to
Bob

@ Doesn’t want him to learn her inputs and
outputs!

@ Bob performs operations on encrypted
data.
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@ The server continously updates the client
code

@ Gives Bob a smaller window to hack!
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Challenge Timing
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@ Alice asks Bob to compute a special
function

@ Does it return the right result?

@ Does Bob return the result fast enough?

@ Accurate timing on the general Internet is
hard... s
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@ Local defenses don’t involve the trusted site
@ Hash the executable. ..

@ Hash the state...

@ Obfuscate. ..



Local Defenses — Hardened Processors
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@ Hardware can be hardened against attack.

@ Consequences for cost, heat, clock-rate,
energy-use. ..

20
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Move all client code server-side

Trusted site Untrusted site

@ High compute load for the server and high
latency for the client.
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Move some client code server-side

Trusted site Untrusted site

S —.
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@ Intermediate level solution:
@ some computation on the server, some on the
client.
@ balance computation, network traffic,
tamper-detection.

@ Use slicing algorithms.

23
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int f(int x,int y){ @ a is animportant
int a = dxx + oy variable — hide it on the

int c; server!
RN @ Whenever the client
else needs a — get it from
© = 2xxtd; the server!
int sum = 0; @ Move code that depends

for (int i=a;i<10;1i++)
sum += 1i;

on a to the server —
better performance!

return xx* (sum+c) ;



int f(int x,int y){ @ Compute a forward slice
R from @ — move this

int c; code to the server!

if 5 .

- @ Keep unimportant

else variable ¢ on both the
C = 2xxtd; client and the server —

int sum = 0; better performance!

for (int i=a;i<10;1i++)
sum += 1i;

@ Don’t move large data
structures — better
return xx* (sum+c) ; performance!

@ Overhead depends in
how much of the
program is hidden on
the server. On a LAN: 3
to 58%.



int client (int x,int y) {

f1(x,y)7
int c;
if ('f2(y,x)){

(
c = 2*x+4 £f3(c);

—

int sum = 0; f4 (sum);
£5();

return xxf6();

int Ha = 5;
int Hc = 0;
int Hsum = 0;

void fl (int x,int vy) {
Ha=4+x+y; }
boolean f2 (int vy, int x) {
if (y < 5)¢{
Hc = Haxx + 4;
return true;
} else
return false;}
void f3(int c) {
Hc = ¢}
void f4 (int sum) {
Hsum = sum; }
void f5() {
for (int i=Ha;i<10;i++)
Hsum += 1i;}
int £6 () {
return Hsum+Hc; }
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(
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int sum = 0; f4 (sum);
£5();

return xxf6();

int Ha = 5;
int Hc = 0;
int Hsum = 0;

void fl (int x,int vy) {
Ha=4+x+y; }
boolean f2 (int vy, int x) {
if (y < 5)¢{
Hc = Haxx + 4;
return true;
} else
return false;}
void f3(int c) {
Hc = ¢}
void f4 (int sum) {
Hsum = sum; }
void f5() {
for (int i=Ha;i<10;i++)
Hsum += 1i;}
int £6 () {
return Hsum+Hc; }



Example

@ Function £ is the original one
@ You want to hide variable a
@ Compute a forward slice on a (pink).

@ You want to protect all the pink code = put
it on the server in functions Hf1...Hf6.

@ The client accesses the hidden functions by
making RPCs.

@ c is a partially hidden variable. It resides
both on the client and the server, but the
code that updates it is split between the two.
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Performance

@ Runtime overhead from 3 to 58%.
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@ Depends on the amount of protection that is
added:
@ how much of the program is hidden on the
server?
© how much extra communication?
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Performance

@ Runtime overhead from 3 to 58%.

@ Depends on the amount of protection that is
added:

@ how much of the program is hidden on the
server?
© how much extra communication?

@ Zhang and Gupta’s measurements were
done over a local area network!
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Performance

Packet turnaround times:

target site # hops | ms
rorohiko.cs.arizona.edu 1 0.2
cse.asu.edu 10 5
www.stanford.edu 12| 25
WWW.usp.ac.f] 12 | 153
www.eltech.ru 23 | 201
www.tsinghua.edu.cn 19 | 209

30
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Verification by
timing



Pioneer

@ In a very restricted environment you can
measure aspects of the untrusted client to
verify that it is running the correct software.

Server n( ) dient
)
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Assumptions

@ The the client’s hardware configuration is
known;

@ The client-server latency is known;

@ The client can only communicate with the
server.
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Applications

@ Check cell phone/PDA/smartcard for
viruses;

@ Check voting machine code;

@ Check for rootkits on machines on your
LAN.
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Algorithm

@ Basic idea: ask client for a hash of its code.
o If

@ the hash is the wrong value, or
@ the computation took too long

the client has cheated!

@ The hash function is constructed such that
it can’t be computed quicker.
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Server

1.t ¢<—currentTime ()
nonce<—random ()
send nonce

3. receive C
bb «—currentTime ()
if b—t > At or
C is wrong then
FAIL

dient

2.receive nonce
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Server

1. #{ ¢<—currentTime ()
nonce<—random ()
send nonce

3. receive C
bb <—currentTime ()
if b—t > At or
C is wrong then
FAIL
5. receive h
if h is wrong then
FAIL

dient

2.receive nonce

V:

¢ < hashé6(nonce, V)
send C

hash6 ()

send ()

SHA-1 ()
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send
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Server

- ly «—currentTime ()
nonce<—random ()
send nonce

. receive C
bb <—currentTime ()
if b—t > At or
C is wrong then
FAIL

. receive h
if h is wrong then
FAIL

. receive r€«—— |

dient

2.receive nonce

V:

¢ < hashé6(nonce, V)
send C

hash6 ()

send ()

SHA-1 ()

i

- h< sHA-1(nonce||E)
send

6. r<+ execute E

—— send r
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Algorithm

@ The hash function must be time optimal, if
not

@ the client can use the time he saved to execute
his own instructions without the server noticing.
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Algorithm

@ The hash function must be time optimal, if
not
@ the client can use the time he saved to execute
his own instructions without the server noticing.
@ Others have tried to extend the protocol to
general scenarios — highly controversial.

37/1
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Tigress and the R-MATE Problem

Trusted Server N
/ Z Trusted
Clients

D

Untrusted
Client

1) Cryptographic keys
2) Login details

3) Sensitive algorithms
4) Security checks

39/
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Tigress and the R-MATE Problem

Trusted Server ) L.
/ Trusted
Clients

,,,,,,,,,,,,

Detect’

Untrusted
1) Sever connection Client

2) Phone home
Respond! 3) Legal remedies
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Tigress and the R-MATE Problem

Trusted Server ) L
/ Trusted
% Clients
L

\

>
1) Overwhelm the adversary’s analytical abilities
2) Facilitate the server’s tamper detection

Code
Variant

Untrusted
Client
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Tigress and the R-MATE Problem

Trusted Server ) L
/ Trusted
% Clients

T
TR

D

Trade-offs:

Diversity vs. security vs. performance
Code
Variant

Untrusted
Client
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The Tigress System

Server Client

Code Blocks

@ A fully generalized code diversity system
for protecting against R-MATE attacks.
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The Tigress System

Server Client

Code Blocks

@ A fully generalized code diversity system
for protecting against R-MATE attacks.

@ The trusted server continuously pushes
diverse code variants to the untrusted
clients. o)



Attack Model

@ There is no unassailable root-of-trust:
@ the attacker can modify local code/hardware.
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Attack Model

@ There is no unassailable root-of-trust:

@ the attacker can modify local code/hardware.

@ The attacker knows the system:

@ primitive code transformations,
@ strategies for combining transformations,
@ the source code of the entire system.

Similar to Kerckhoffs’s principles.

© The attacker doesn’t know the
randomization seed and can'’t predict the

@ order in which transformations are applied;
@ |ocation in the code where they are applied.
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Primitive Transformations

Server Client

Definition (Primitive)

A primitive is a code transformation that

@ adds confusion to the client code, taxing the
adversary’s analytical abilities (obfuscation);

© makes modifying client code more difficult
(tamperproofing);

© makes detecting tampering easier (tamper-detect).

~




Preserving Protocols

Protocol-Preserving

Server

interpret(...)
flatten(...)
opaque(...)
split(...)

Code
transformer

Blocks

Client

@ Protocol-preserving primitives generate

confusion and hardening.
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Preserving Protocols

Protocol-Preserving Server Client
interpret(...)
flatten(...)
opaque(. . .) \ socke Block Bag
ol 1.0 - —
o N

Code
Non Protocol-Preserving transformer
var _encode(...)
nmerge(...)

RPC _encode(. ..)
rnd_args(...)

@ Protocol-preserving primitives generate

confusion and hardening.
@ Non-protocol-preserving primitives

generate incompatible block variants.
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Preserving Protocols

Protocol-Preserving

interpret(...)
flatten(...)
opaque(...)
split(...)

Non Protocol-Preserving

var _encode(...)
nerge(...)

RPC _encode(. ..)
rnd_args(...)

Server

\ SEED
Code
transformer

<JSEED

Blocks

Client

@ Protocol-preserving primitives generate
confusion and hardening.

@ Non-protocol-preserving primitives
generate incompatible block variants.

@ Randomized primitives generate many
unique variants.

44
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Protocol-Preserving Primitives — Flatten

o flatten(7,seed) removes nested control flow.

e
1

L

45
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Protocol-Preserving Primitives — Flatten
o flatten(7,seed) removes nested control flow.

1 B
- = |

Randomize /
Basic Block

Ordering

45/1



Protocol-Preserving Primitives —
Interpret

@ interpret(7,seed) turns a function into a
specialized interpreter.

prog= {opl op4 op9, ...},
stack = [...];

— pc = ..
->|op4: { push(pop() +pop() } J
—{op9: {push(pop()*pop()} |

opl: {push(pop()+
e (pop()*pop()) }

—>0 0 @
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Protocol-Preserving Primitives —
Interpret

@ interpret(7,seed) turns a function into a
specialized interpreter.

prog={opl, o
stack = [...]

pc = ...

p4,0p9,...};

U

—{op4” {push(pop() +po

L

p()} J
Randomize < >{op9: {push(pop() *pop()} |

opl: {push(pop()+

w{pop() *pop())}

Dispatch 4
Randomize/ﬁo oo

\ Randomize

46
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Protocol-Preserving Primitives — Split

@ split(f,seed) converts a function f into two
functions called from f:

void f(int a){
int x;

[
}

void f(int a){
int x;

f1(&a, &) ;
f2(&a, &) ;
}

voi d f1(
int *a,
int *x){

L]
}

void f2(
int *a,
int *x){

1
}




Protocol-Preserving Primitives — Split

@ split(f,seed) converts a function f into two
functions called from f:

Randomize void f1(
Split Point it A

/ int *x){

void f(int a void f(int a){ ]
int x; int x; }
E> f1(&a, &) ;

:l f2(&a, &) ; voi d f2(

are
} } nt *3){

1

}




Protocol-Preserving Primitives — Opaque

@ opaque(f,seed) inserts non-functional code
protected by an opaque predicate.

48
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Protocol-Preserving Primitives — Opaque

@ opaque(f,seed) inserts non-functional code
protected by an opaque predicate.

pP—>p.next;
aO—>0 . next 48/1



Protocol-Preserving Primitives — Opaque

@ opaque(f,seed) inserts non-functional code
protected by an opaque predicate.

Randomize F
Transformation ":

Type
yp p q
' v
/7 Randomize
Rand9m|ze Opaque
Insertion Predicate

Point

pP—>p.next; k////’///

aO—>0 . next 48/1



Non-Protocol-Preserving Primitives —
Merge
@ merge(fy, fr,seed) combines functions
fi(args,) and fr(args,) into
fi 2(args4||args,, sel).

void f1(
int x){ void f_1_2(
int x,
float vy,
:] in?awniych){
} i f (which==1)
_ Co —
voi d f1(
float y){ el se
[ ] }
}



Non-Protocol-Preserving Primitives —
rnd_args
@ rnd_args(f,seed) randomly reorders f’s

formal parameters and adds extra, bogus,
formals.

LI
ORC:

o —
[ ]
[ J
—

-
[ J
[}
[ ]

50/1



Non-Protocol-Preserving Primitives —
rnd_args

@ rnd_args(f,seed) randomly reorders f’s
formal parameters and adds extra, bogus,

formals.
Randomize
voi d f( voi d f(‘// Argument
E, g Order
S~

) oo B \

coe ){ Insert
} 00 Bogus

Arguments

50/1



Non-Protocol-Preserving Primitives —
RPC encode

@ RPC encode(n,seed) assigns a new
random encoding of the n:th remote
procedure call RPC(n,args).

reo(a2, [0, ) [ reaes, [ HEL. )

@ If the adversary ignores block updates, he
may execute an invalid block containing an
RPC with an obsolete encoding.

a Thic alarte tha ecarviar nf tha tasmnarinAa
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Non-Protocol-Preserving Primitives —
RPC encode

@ RPC encode(n,seed) assigns a new
random encoding of the n:th remote
procedure call RPC(n,args).

reo(a2, [0, ) [ reaes, [ HEL. )

reea2, [0, 1) [ reags 1 L.

/ / Y}sert

Randomize Randomize BogUS
RPC Argument Amg. L



RPC encode...

rRec(42, [, ] [ﬁ> recros, [ 1. . [

@ If the adversary ignores block updates, he
may execute an invalid block containing an
RPC with an obsolete encoding.

@ This alerts the server of the tampering.

52
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Mechanisms —
Strategies



System Overview — Diversity Graph

Server Client
Diversity Graph
B Code
mairig transformer
Rlaog
Diversity < ~
) Overseer
‘/"F\ scheduler /
T T
S
t enpor ral div e s ly
P spatial div:
< semantic di versl ly

@ The diversity graph represents the complex
dependencies between blocks and
protocols.



System Overview — Diversity Graph

Server Client
Diversity Graph

o Code
2L transformer
main)
Diversity ™ ¢ > O
verseer
scheduler >

£oof)
oof) ool
St
\ tenporal diversity
<P
%

spatial diversity
semantic diversity

@ How does a transformation applied to one
block force updates to other blocks?
@ Initially, similar to a call graph.



Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}
int main() {
foo();

}




Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}
int main() {
foo();

}

_—

P
malno

foog
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Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}

int main() {

foo();
}
malno malnO
ﬂauen fooOO
fooO fooO

P
9o



Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}

int main() {

foo();
}
maing maing maing
flatten(£oof ;) encode var(g?)
foog AAAAANAANANS foog AAAAAANAAAAAAS foog
foohg) (E00ph, £oop off0o4[E00h .
P P P
9 ab 9o 91



Diversity Graph — Forward Update Cycle

int g;
void foo () {
gt+;

}

int main() {

foo();
}
malno malno malno maing
flatten( fooo 0 encode_var( go rnd_args( fooo
fooO fooO fooO foog foof

AN !
foohg) (E00ph, [fo—ooif?iﬁ@ (00l offooh 1JEood ;) (Eool )

N/ NS N/

of o of af o
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Strategies

Server Client

maind o
0P e\
ooy Diversi ity Overseer

( : scheduler: )

@ Temporal Diversity : program is
continuously renewed.

@ Spatial Diversity : defense-in-depth,
multiple layers of primitives.

@ Semantic Diversity : software aging,
variants are not interchangeable.

57/1



Scheduler Operation

void foo ()

int main() {foo(

RPC(2,9);}

Security
// client.c .
int __attribute((level(0))) g; Requirements
void foo() __attribute((level(9))); profile

|C|L

Primitives
interpret(...)
flatten(...)
opaque(...)
RPC_encode(. . .)
var _encode(. . .)
nerge(...)
split(...)
rnd_args(...)

Diversity Graph

p

mainh

Blocks

Server

Code
transformer

Client

Diversity

scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity
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Scheduler Operation

// client.c

void foo ()

int __attribute ((level(0))) g;
void foo() __attribute((level(9)));
g++; RPC(2,9);}
int main() {foo(

|C|L

/ Performance profile

Primitives
interpret(.
flatten(. .
opaque(...)
RPC_encode(. . .

var _encode(. . .
nerge(...)
split(...)
rnd_args(...)

Diversity Graph

p

mainh

Blocks

Server

Code
transformer

Client

Diversity

scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity
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Scheduler Operation

// client.c
int __attribute((level(0))) g;

i RPC(2,9);}
{foo();}

void foo ()
int main()

void foo() __attribute((level(9)));

|C|L

Requirements

/ Performance profile

Primitives Blocks
interpret(...)
flatten(...)
opaque(. ..)
RPC_encode(. . .)
var _encode(. . .)
nerge(...)
split(...)
rnd_args(...)

Diversity Graph
neind Current

— diversity

graph

| >

Server

Code
transformer

Client

Diversity

scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity

58
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Scheduler Operation

// client.c

int main() {foo();}

int __attribute((level(0))) g;
void foo() __attribute((level(9)));
void foo () i RPC(2,9);}

Security
Requirements

profile

/ Performance profile

|C|L

Primitives Blocks
interpret(...)
flatten(...)
opaque(. ..)
RPC_encode(. . .)
var _encode(. . .)
nerge(...)
split(...)
rnd_args(...)

Diversity Graph
neind Current

— diversity

graph

| >

Server Client

Current working set

Code
transformer

Diversity
scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity

58
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Scheduler Operation

Security
// client.c )
int __attribute ((level(0))) g; Requirements
void foo() __attribute((level(9))); .
preaintl on e e Performance profile
int main () 0()i) /

|C|L

Primitives Blocks

interpret(...)
flatten(...)
opaque(. ..)
RPC_encode(. . .)
var _encode(. . .)
nerge(...)
split(..
rnd_args(...

Diversity Graph
weird Current

— diversity
graph

| >

Server

Code
transformer

Diversity
scheduler

Strategies

Client
Current working set

Primitives’ effect
on diversity and
performance

tenporal diversity
spatial diversity
semantic diversity

58
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Scheduler Operation

Security
// client.c R
int __attribute((level(0))) g; Requirements
void foo() __attribute((level(9))); .
void foo() (g++; RPC(2,9);} profile
int main() {foo();}

|C|L

/ Performance profile

Primitives

interpret(...)
flatten(...)
opaque(. ..)
RPC_encode(. . .)
var _encode(. ..)
nerge(...)
split(..
rnd_args(...

Server
Current working set

Blocks

Primitives’ effect
on diversity and
performance

Diversity Graph

P

mainh

Gdo) 7|

Cod
Current
r— diversity

graph

/|

Active Set

Client

Functions
on the
client's
call stack

l———————— 3| Diversity

scheduler

Strategies
tenporal diversity
spatial diversity
semantic diversity

58
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Scheduler Operation

Security
// client.c )
int __attribute ((level(0))) g; Requirements
void foo() __attribute((level(9))); .
void foo () ; RPC(2,9);} profile
int main() o();}

|C|L

/ Performance profile

Primitives

interpret(...)
flatten(...)
opaque(. ..)

Blocks

RPC_encode(. . .)
var _encode(. . .)

nerge(...)
split(..
rnd_args(...

Diversity Graph

p

mainh

Current
— diversity
graph
>

Code
transformer

Server
Current working set

Primitives’ effect
on diversity and
performance

/|

Active Set

Client

Functions
on the
client's
call stack

Diversity

scheduler

Strategies

Replacement

tenporal diversity
spatial diversity
semantic diversity

rate

58
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Scheduler Operation

Security
// client.c R
int __attribute ((level(0))) g; Requirements
void foo() __attribute((level(9))); il
ot main0 oay - Performance profile
int main() o();} /
|C| L
Server Client
Primitives Blocks .
interpret(...) Current working set
flatten(...) i
opatue( ) “~— New working set
Rpc,encugeg. . ;
var _encode(. .. . . .
merge(.....) Primitives’ effect Functions
split(.. ’ > e
rnd_args(... on diversity and ;
client's
Diversity Graph performance
- Code call stack
mainf Current transformer
. . Active Set
<« diversity E—
A= =
| New Invalidated blocks
diversity Stategies
graph temporal diversity Replacement

spatial diversity

semantic diversity rate

58
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Crime and Punishment

Server Client

getBlock(22)

@ Is the requested block part of the current
block working set?



Crime and Punishment

Server Client

getBlock(22)

RPC( 2, 42)

@ Is the requested block part of the current

block working set?
Q Valid RPC number? Valid RPC argument

types?



Crime and Punishment

Server

Diversity Graph
maind

£00f)
p
a

getBlock(22)

Block
scheduler
if (!blockOK()) <
puni sh();

RPC( 2, 42)

Active Set

»\ puni

A

f (lactiveSet OK())\

Block
request/
receive

Client

@ Is the requested block part of the current

block working set?

Q Valid RPC number? Valid RPC argument

types?




Crime and Punishment

Server = Client
- scheduler getBlock(22) Block
Diversity Graph if (1blockOK()) -« > request/
mainf puni sh(); receive
puni sh() {
7 e send kill block;
o insert delays(); it (1rpeaK()) RPQ( 2, 42)
e send delay block; puni sh() ; = -
e send allocMem block;
e collect forensics; Active Set

(0

A

£0of)
}
E
: > ,
:

@ Is the requested block part of the current

block working set?
@ Valid RPC number? Valid RPC argument

types? s
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Crime and Punishment

Server Client

getBlock(22)

@ Is the requested block part of the current
block working set?



Crime and Punishment

Server Client

getBlock(22)

RPC( 2, 42)

@ Is the requested block part of the current

block working set?
Q Valid RPC number? Valid RPC argument

types? .



Crime and Punishment

Server

Diversity Graph
maind

£00f)
p
a

getBlock(22)

Block
scheduler
if (!blockOK()) <
puni sh();

RPC( 2, 42)

Active Set

»\ puni

A

f (lactiveSet OK())\

Block
request/
receive

Client

@ Is the requested block part of the current

block working set?

Q Valid RPC number? Valid RPC argument

types?




Crime and Punishment

Server = Client
- scheduler getBlock(22) Block
Diversity Graph if (1blockOK()) -« > request/
mainf puni sh(); receive
puni sh() {
7 e send kill block;
o insert delays(); it (1rpeaK()) RPQ( 2, 42)
e send delay block; puni sh() ; = -
e send allocMem block;
e collect forensics; Active Set

(0

A

£0of)
}
E
: > ,
:

@ Is the requested block part of the current

block working set?
@ Valid RPC number? Valid RPC argument

types? .



Enumeration of the Attack Space

Tamper asset
without being
detected

Prevent server Reverse engineer

Prevent

server from making updates
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replacing updates to .«
active—ftgr Extract
set that has ancestor new
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o/ uses new block | |able/R
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Enumeration of the Attack Space

Tamper asset
without being
detected

I I
{Find asset blocks} [ Tamper } Avoid detection
o

with &/

Find Detect Analyze </ to Prevent server Prevent server | Reverse
blocks asset determine that | from replacing <7 || from making engineer
blocks they are orphan |(_with new blocks meaningful updates

blocks updates to &/

@ Root represents the asset in the client code
(security check, code that updates a global
variable, the integrity of a control-flow path,

global data, . ..).
@ Attack steps:
@ find the asset blocks
g tamper with these blocks

63/1



The Attack Space — Avoiding Detection

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks

updates to <7

@ Orphan blocks (no calls, RPCs):
modify at will!
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The Attack Space — Avoiding Detection

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks

updates to <7

@ Orphan blocks (no calls, RPCs):
modify at will!

@ Trick the server that asset blocks are all
active: server can't update!
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The Attack Space — Avoiding Detection

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks updates to <7

@ Orphan blocks (no calls, RPCs):
modify at will!

@ Trick the server that asset blocks are alll
active: server can't update!

@ Trick the server to only make trivial changes
to asset blocks: ignore updates!

64/1



The Attack Space — Avoiding Detection

Avoid
detec-
tion

Analyze o 1o Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks

updates to <7

@ Orphan blocks (no calls, RPCs):

modify at will!

Trick the server that asset blocks are all
active: server can't update!

Trick the server to only make trivial changes

to asset blocks: ignore updates!
O Raovarce anAdineaar/natrh new variante An 64
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The Attack Space — Countermeasures

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful
blocks

updates to <7

@ Slow down reverse engineering using
protocol-preserving primitives.
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The Attack Space — Countermeasures

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful

blocks

updates to <7

@ Slow down reverse engineering using
protocol-preserving primitives.

@ Use opaque to connect orphan blocks to
the rest of the program.
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The Attack Space — Countermeasures

Avoid
detec-
tion

Analyze &/ to Prevent server Prevent server |[Reverse engineer
determine that || from replacing <7 || from making updates
they are orphan |_with new blocks meaningful

blocks

updates to <7

@ Slow down reverse engineering using
protocol-preserving primitives.

@ Use opaque to connect orphan blocks to
the rest of the program.

© Use opaque primitive to insert calls to
non-existing functions. If the adversary
ranorte an artive cet containina <iich 3



Security Evaluation — Empirical Test #1

Protocol-Preserving Server Client
Block B:
\ Blocks ==
Coce (_JC_J [ —
Non Protocol-Preserving transformer, < > l:l l:l
barg o barj o
RAC el o) Ignore updates!

@ Attack: Ignore block updates!
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Security Evaluation — Empirical Test #1

Protocol-Preserving Server Client
Block B:
\ Blocks ==
Code (_JC_J [ —
Non Protocol-Preserving transformer baro.o) [pars o < > l:l l:l
arp ¢ T
RAC el o) Ignore updates!

@ Attack: Ignore block updates!

@ Simulated Test: Turn off client updates.
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Security Evaluation — Empirical Test #1

Protocol-Preserving Server Client
Block B:
\ Blocks ———
Code C_JC _J [ —
Non Protocol-Preserving transforme barg o) bar o < > l:l l:l
3r0,Q I,
RPC_encode(. . .) Ignore updates!

@ Attack: Ignore block updates!

@ Simulated Test: Turn off client updates.

@ Result: RPCs are frequent in our test
program, the server reliably detected the
malicious behavior shortly after the first
RPC_encode update. 66/ 1



Security Evaluation — Empirical Test #2

Protocol-Preserving Server Client

opaque(...) \ TS Block Bag
B F
Code if (P )

Non Protocol-Preserving transformer, < > bogus()

Request complete
program!

@ Attack: Build a snapshot of the entire
program, in order to analyze it off-line!

67



Security Evaluation — Empirical Test #2

Protocol-Preserving Server Client

opaque(...) \ Bocks Block Bag
if (PF)

Code
Non Protocol-Preserving transformer, < > bogus()

Request complete
program!

@ Attack: Build a snapshot of the entire
program, in order to analyze it off-line!

@ Simulated Test: Client disassembles its
blocks, requests referenced blocks.



Security Evaluation — Empirical Test #2

Protocol-Preserving Server

Client

Block Ba
opaque(...) \ Blocks g

B F
Code if (P )
Non Protocol-Preserving transformer, < > bogus()

Request complete
program!

@ Attack: Build a snapshot of the entire
program, in order to analyze it off-line!

@ Simulated Test: Client disassembles its
blocks, requests referenced blocks.

@ Result: The malicious client quickly
requested nonexistent blocks.



Security Evaluation — Empirical Test #3

m»rvp

maind

5 0,0
£oof
g
&£

Server

Client

All blocks are active!

@ Attack: Prevent the server from updating

blocks!
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Security Evaluation — Empirical Test #3

Server Client

<P
D
P

All blocks are active!

@ Attack: Prevent the server from updating
blocks!

@ Simulated Test: Client reports the entire
contents of the block bag as the active set.

68



Security Evaluation — Empirical Test #3

Server Client

< > 1 [

All blocks are active!

@ Attack: Prevent the server from updating
blocks!

@ Simulated Test: Client reports the entire
contents of the block bag as the active set.

@ Result: Using the program call graph the
server reliably identified the malicious



Security Evaluation — Empirical Test #4

Bert| @8RS |

@ We’'re porting ChocolateDoom to Tigress.
@ Capture-the-Flag exercises!
@ To appear... o

1



Discussion



Summary

@ A system for detecting tampering of clients
running on untrusted nodes in a distributed
system.



Summary

@ A system for detecting tampering of clients
running on untrusted nodes in a distributed
system.

@ Assume the adversary has complete
knowledge of our system

@ no security-through-obscurity



Summary — Security

@ Protocol-preserving primitives:

@ Gives attacker limited time-window for
analysis/tampering.
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@ Harder to tamper without modifying expected
behavior = easier tamper-detection.



Summary — Security

@ Protocol-preserving primitives:
@ Gives attacker limited time-window for
analysis/tampering.
@ Non-protocol-preserving primitives :
@ Harder to tamper without modifying expected
behavior = easier tamper-detection.
@ Security:
@ Function of the frequency of code updates and

the complexity and variability generated by
primitives.



Summary — Performance

@ Highly tunable:
@ Control which parts of the program to
transform, which transformations to apply,
update frequency.



Summary — Performance

@ Highly tunable:
@ Control which parts of the program to
transform, which transformations to apply,
update frequency.

@ Performance overhead:
@ Infrastructure: 4% to 23%.
@ Update delay: 2 to 3 seconds
(protocol-preserving primitives), 7 to 24
seconds (non-protocol-preserving primitives).
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@ Optimize differently for different scenarios:
@ Client performance
@ Server performance
@ Network latency/bandwidth
@ Client energy use
@ Time-to-crack



Discussion

@ Optimize differently for different scenarios:
@ Client performance
@ Server performance
@ Network latency/bandwidth
@ Client energy use
@ Time-to-crack
@ What about different network topologies?
@ client-server
@ 1 server + n untrusted clients running same
code?
@ 1 server + nuntrusted clients running different
code?
@ 1 server + ntrusted clients + m untrusted
clients?



