
c© April 23, 2014 Christian Collberg

Software Protection:

How to Crack Programs, and

Defend Against Cracking

Lecture 7: Tamperproofing II

Moscow State University, Spring 2014

Christian Collberg
University of Arizona

www.cs.arizona.edu/˜collberg

www.cs.arizona.edu/~collberg

Overview

1 Distributed Software

Protection Scenarios
2 R-MATE Protection Ideas
3 Algorithms
4 The Tigress System

2 / 1

R-MATE
Scenarios

Scenario: Protecting networked computer

games

Alice

P

4 / 1

Scenario: Protecting networked computer

games

BobAlice

P

4 / 1

Scenario: Protecting networked computer

games

Alice Bob

P

P

4 / 1

Scenario: Protecting networked computer

games

Cached data

BobAlice

P

P

4 / 1

Scenario: Protecting networked computer

games

Cached data

BobAlice

P

P

4 / 1

Scenario: Protecting networked computer

games

Cached data

Alice Bob

P

P

4 / 1

Scenario: Protecting medical records

Medical
records
database

Alice

Medical records must be protected from
improper access and
improper modification.
Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

5 / 1

Scenario: Protecting medical records

Medical
records
database

Confidential
medical data

Ek(brittney.pdf)

Bob
Alice

Medical records must be protected from
improper access and
improper modification.
Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

5 / 1

Scenario: Protecting medical records

records
database

Medical

medical data
Confidential

Ek(brittney.pdf)

Bob
Alice

Medical records must be protected from
improper access and
improper modification.
Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

5 / 1

Scenario: Protecting medical records

records
Medical

database

medical data
Confidential

Alice Ek(brittney.pdf)

Bob

Medical records must be protected from
improper access and
improper modification.
Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

5 / 1

Scenario: Protecting medical records

allow(nothing)

elsif (role="janitor")

allow(read|write)

allow(read)
elsif (role="nurse")

if (role="doctor")

Medical
records
database

medical data
Confidential

Ek(brittney.pdf)

Bob C
Alice

Medical records must be protected from
improper access and
improper modification.
Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

5 / 1

Scenario: Protecting medical records

Medical
records
database

allow(nothing)

if (role="doctor")

elsif (role="nurse")
allow(read)

allow(read|write)

read
elsif (role="janitor")

medical data
Confidential

Alice
C

Ek(brittney.pdf)

Bob

Medical records must be protected from
improper access and
improper modification.
Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

5 / 1

Scenario: Protecting medical records

allow(read|write)

read
elsif (role="janitor")

Medical
records
database

allow(nothing)

if (role="doctor")

elsif (role="nurse")
allow(read)

medical data
Confidential

CBob
Alice Ek(brittney.pdf)

Medical records must be protected from
improper access and
improper modification.
Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

5 / 1

Scenario: Wireless sensor networks

Alice
Bob

Sensor networks are common in military
scenarios.

6 / 1

Scenario: Wireless sensor networks

Wifi

CPU
Code

Sensor

Radioactivity?
Chemicals?
Troup movements?

Alice
Bob

Sensor networks are common in military
scenarios.

6 / 1

Scenario: Wireless sensor networks

Radioactivity?
Chemicals?
Troup movements?

Sensor

Wifi

CPU
Code

bad

bad

Alice
Bob

Sensor networks are common in military
scenarios.

The enemy can intercept/analyze/modify
sensors.

6 / 1

Scenario: Advanced Metering

Infrastructure

Smart Meter

Distribution
Control CenterElectrical Grid

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 7 / 1

Scenario: Advanced Metering

Infrastructure

Smart Meter

Electrical Grid
Distribution
Control Center

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 7 / 1

Scenario: Advanced Metering

Infrastructure

HACKED!

Electrical Grid

Smart Meter

Distribution
Control Center

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 7 / 1

Scenario: Advanced Metering

Infrastructure

Distribution
Control CenterElectrical Grid

HACKED!
Smart Meter

HACKED!

HACKED!

HACKED!

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 7 / 1

Scenario: Advanced Metering

Infrastructure

Disc
on

ne
ct

Electrical Grid

Smart Meter

HACKED!

Disconnect

Disconnect

Disc
onnect

Disconnect

Distribution
Control Center

HACKED!

HACKED!

HACKED!

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 7 / 1

The Remote Man-At-The-End Problem

Trusted Server

Client

Client

8 / 1

The Remote Man-At-The-End Problem

Client

Client

Untrusted Client

Trusted Server

8 / 1

The Remote Man-At-The-End Problem

Untrusted Client

Client

Client
Trusted Server

Client
SW/HW

8 / 1

The Remote Man-At-The-End Problem

Client

Client

Untrusted Client

Trusted Server

Emulator
Disassembler
Decompiler

Debugger
Tracer
Slicer

Client
SW/HW

8 / 1

The Remote Man-At-The-End Problem

1
Variant

Disassembler
Decompiler

Debugger
Tracer
SlicerUntrusted Client

Client

Client

Emulator

Trusted Server

SW/HW
Client

8 / 1

The Remote Man-At-The-End Problem

1
VariantVariant

2

SlicerUntrusted Client

Client

Client

Emulator
Disassembler
Decompiler

Debugger
Tracer

Trusted Server

SW/HW
Client

8 / 1

The Remote Man-At-The-End Problem

1
VariantVariant

2 3
Variant

Untrusted Client

Client

Client

Emulator
Disassembler
Decompiler

Debugger
Tracer
Slicer

Trusted Server

SW/HW
Client

8 / 1

The Remote Man-At-The-End Problem

1
Variant

2
VariantVariant

3
Variant

4

Untrusted Client

Client

Client

Emulator
Disassembler
Decompiler

Debugger
Tracer
Slicer

Trusted Server

SW/HW
Client

8 / 1

Disassembler
Decompiler

Debugger
Tracer
Slicer

Self−protect
against
tampering!

Emulator

Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.

Disassembler
Decompiler

Debugger
Tracer
Slicer

Self−protect
against
tampering!

tampering!
Detect remote

Emulator

Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.

Definition (Remote MATE (R-MATE) Attacks)

R-MATE attacks occur in distributed systems where
untrusted clients are in frequent communication with
trusted servers over a network, and where a malicious
user can get an advantage by compromising an untrusted
device.

Protection Ideas

Algorithm Ideas

1 Split — move functionality from untrusted
to trusted site.

11 / 1

Algorithm Ideas

1 Split — move functionality from untrusted
to trusted site.

2 Measure — ask untrusted site “are you
running the right code?”

11 / 1

Algorithm Ideas

1 Split — move functionality from untrusted
to trusted site.

2 Measure — ask untrusted site “are you
running the right code?”

3 Time — make untrusted site compute
challenge within given time.

11 / 1

Algorithm Ideas

1 Split — move functionality from untrusted
to trusted site.

2 Measure — ask untrusted site “are you
running the right code?”

3 Time — make untrusted site compute
challenge within given time.

4 Monitor — monitor messages to detect
signs of tampering.

11 / 1

Algorithm Ideas. . .

5 Hardware — make untrusted site run
tamperproof hardware.

12 / 1

Algorithm Ideas. . .

5 Hardware — make untrusted site run
tamperproof hardware.

6 Encrypt — make untrusted site compute in
encrypted domain.

12 / 1

Algorithm Ideas. . .

5 Hardware — make untrusted site run
tamperproof hardware.

6 Encrypt — make untrusted site compute in
encrypted domain.

7 Update — make untrusted site
continuously update its code.

12 / 1

Algorithm Ideas. . .

5 Hardware — make untrusted site run
tamperproof hardware.

6 Encrypt — make untrusted site compute in
encrypted domain.

7 Update — make untrusted site
continuously update its code.

8 Local —
obfuscate/tamperproof/watermark/. . . code.

12 / 1

Protocol Monitoring

Trusted site Untrusted site

Application

Transport

Physical

Internet

Link

f1()

13 / 1

Protocol Monitoring

Untrusted siteTrusted site

Application

Transport

Physical

Internet

Link

f1()OK?

H
A

C
K

E
D

!

Monitor messages to detect signs of
tampering

13 / 1

Protocol Monitoring

Untrusted siteTrusted site

Application

Transport

Physical

Internet

Link

f1()OK?

H
A

C
K

E
D

!

Monitor messages to detect signs of
tampering

Not all tampering will violate protocols!

13 / 1

Protocol Monitoring

Untrusted siteTrusted site

Application

Transport

Physical

Internet

Link

f1()OK?

H
A

C
K

E
D

!

Monitor messages to detect signs of
tampering

Not all tampering will violate protocols!

Need to monitor every level of the network
stack?

13 / 1

Code Splitting

Trusted site Untrusted site

f1() X

f2()

Move functionality from untrusted to trusted
site.

14 / 1

Code Splitting

Trusted site Untrusted site

f1()

f2()

X

Move functionality from untrusted to trusted
site.

Increases network traffic, server load.

14 / 1

Code Splitting

Trusted site Untrusted site

f1()X

f2()

Move functionality from untrusted to trusted
site.

Increases network traffic, server load.

14 / 1

Code Splitting

Trusted site Untrusted site

X

f2()

f1()

Move functionality from untrusted to trusted
site.

Increases network traffic, server load.

Extreme: Run all code server-side.
14 / 1

Trusted Hardware

Untrusted siteTrusted site

f1() f2()

Bob has a trusted hardware unit.

15 / 1

Trusted Hardware

Untrusted siteTrusted site

Trust Bob’s site!

f2() is OK!
f1() is OK! hash(f1)

hash(f2)

f1() f2()

Bob has a trusted hardware unit.

Bob proves that his site contains no
untrustworthy software.

Trusted hardware makes it harder for Bob to
cheat.

15 / 1

Encryption

Trusted site Untrusted site

6*7=?

Alice wants to outsource computation to
Bob

16 / 1

Encryption

Untrusted siteTrusted site

6*7=42!
6,7

42
6*7=?

Alice wants to outsource computation to
Bob
Doesn’t want him to learn her inputs and
outputs!

16 / 1

Encryption

Trusted site Untrusted site

E(42)

6*7=?
E(6),E(7)

E(6)*E(7)

D(E(42))=42!

Alice wants to outsource computation to
Bob
Doesn’t want him to learn her inputs and
outputs!
Bob performs operations on encrypted
data.
Performance.

16 / 1

Continuous Evolution

Trusted site Untrusted site

f1()

17 / 1

Continuous Evolution

Trusted site Untrusted site

f1()

H
A

C
K

E
D

!

17 / 1

Continuous Evolution

Untrusted siteTrusted site

f1()

f ′1()f ′1()
H

A
C

K
E
D

!

The server continously updates the client
code

17 / 1

Continuous Evolution

Untrusted siteTrusted site

f1()

f ′1()f ′1()
H

A
C

K
E
D

!

The server continously updates the client
code

Gives Bob a smaller window to hack!

17 / 1

Challenge Timing

Untrusted siteTrusted site

compute

challenge

Alice asks Bob to compute a special
function

18 / 1

Challenge Timing

Trusted site Untrusted site

response

challenge
response OK?

compute

Alice asks Bob to compute a special
function
Does it return the right result?

18 / 1

Challenge Timing

Trusted site Untrusted site

response

challenge

took too long?

response OK?

compute

Alice asks Bob to compute a special
function
Does it return the right result?
Does Bob return the result fast enough?

18 / 1

Challenge Timing

Trusted site Untrusted site

response

challenge

took too long?

response OK?

compute

Alice asks Bob to compute a special
function
Does it return the right result?
Does Bob return the result fast enough?
Accurate timing on the general Internet is
hard. . . 18 / 1

Local Defenses

Trusted site Untrusted site

f1()

Local defenses don’t involve the trusted site

19 / 1

Local Defenses

Trusted site Untrusted site

f1()

Local defenses don’t involve the trusted site

Hash the executable. . .

19 / 1

Local Defenses

Trusted site Untrusted site

f1()

Local defenses don’t involve the trusted site

Hash the executable. . .

Hash the state. . .

19 / 1

Local Defenses

Trusted site Untrusted site

f1()

Local defenses don’t involve the trusted site

Hash the executable. . .

Hash the state. . .

Obfuscate. . .
19 / 1

Local Defenses — Hardened Processors

temperature radiation

power clock

A
R

M

penetration

CPU

if (tampering)

shut down
destroy private data

Bob

Hardware can be hardened against attack.

Consequences for cost, heat, clock-rate,
energy-use. . .

20 / 1

Slicing functions

Move all client code server-side

Trusted site Untrusted site

f1()X

f2()

High compute load for the server and high
latency for the client.

22 / 1

Move some client code server-side

Trusted site Untrusted site

f1()X

f2()

Intermediate level solution:
some computation on the server, some on the
client.
balance computation, network traffic,
tamper-detection.

Use slicing algorithms.
23 / 1

int f(int x,int y){

int a = 4*x + y;

int c;

if (y < 5)

c = a*x+4;

else

c = 2*x+4;

int sum = 0;

for(int i=a;i<10;i++)

sum += i;

return x*(sum+c);

}

a is an important
variable — hide it on the
server!

Whenever the client
needs a — get it from
the server!

Move code that depends
on a to the server —
better performance!

int f(int x,int y){

int a = 4*x + y;

int c;

if (y < 5)

c = a*x+4;

else

c = 2*x+4;

int sum = 0;

for(int i=a;i<10;i++)

sum += i;

return x*(sum+c);

}

Compute a forward slice
from a — move this
code to the server!

Keep unimportant
variable c on both the
client and the server —
better performance!

Don’t move large data
structures — better
performance!

Overhead depends in
how much of the
program is hidden on
the server. On a LAN: 3
to 58%.

int client(int x,int y){

f1(x,y);

int c;

if (!f2(y,x)){

c = 2*x+4; f3(c);

}

int sum = 0; f4(sum);

f5();

return x*f6();

}

int Ha = 5;

int Hc = 0;

int Hsum = 0;

void f1(int x,int y){

Ha=4*x+y;}

boolean f2(int y,int x){

if (y < 5){

Hc = Ha*x + 4;

return true;

} else

return false;}

void f3(int c){

Hc = c;}

void f4(int sum){

Hsum = sum;}

void f5(){

for(int i=Ha;i<10;i++)

Hsum += i;}

int f6(){

return Hsum+Hc;}

int client(int x,int y){

f1(x,y);

int c;

if (!f2(y,x)){

c = 2*x+4; f3(c);

}

int sum = 0; f4(sum);

f5();

return x*f6();

}

int Ha = 5;

int Hc = 0;

int Hsum = 0;

void f1(int x,int y){

Ha=4*x+y;}

boolean f2(int y,int x){

if (y < 5){

Hc = Ha*x + 4;

return true;

} else

return false;}

void f3(int c){

Hc = c;}

void f4(int sum){

Hsum = sum;}

void f5(){

for(int i=Ha;i<10;i++)

Hsum += i;}

int f6(){

return Hsum+Hc;}

Example

Function f is the original one

You want to hide variable a

Compute a forward slice on a (pink).

You want to protect all the pink code⇒ put
it on the server in functions Hf1. . .Hf6.

The client accesses the hidden functions by
making RPCs.

c is a partially hidden variable. It resides
both on the client and the server, but the
code that updates it is split between the two.

28 / 1

Performance

Runtime overhead from 3 to 58%.

29 / 1

Performance

Runtime overhead from 3 to 58%.
Depends on the amount of protection that is
added:

1 how much of the program is hidden on the
server?

2 how much extra communication?

29 / 1

Performance

Runtime overhead from 3 to 58%.
Depends on the amount of protection that is
added:

1 how much of the program is hidden on the
server?

2 how much extra communication?

Zhang and Gupta’s measurements were
done over a local area network!

29 / 1

Performance

Packet turnaround times:

target site # hops ms

rorohiko.cs.arizona.edu 1 0.2
cse.asu.edu 10 5
www.stanford.edu 12 25
www.usp.ac.fj 12 153
www.eltech.ru 23 201
www.tsinghua.edu.cn 19 209

30 / 1

rorohiko.cs.arizona.edu
cse.asu.edu
www.stanford.edu
www.usp.ac.fj
www.eltech.ru
www.tsinghua.edu.cn

Verification by
timing

Pioneer

In a very restricted environment you can
measure aspects of the untrusted client to
verify that it is running the correct software.

ClientServer
m()

C

C

32 / 1

Assumptions

1 The the client’s hardware configuration is
known;

2 The client-server latency is known;

3 The client can only communicate with the
server.

33 / 1

Applications

1 Check cell phone/PDA/smartcard for
viruses;

2 Check voting machine code;

3 Check for rootkits on machines on your
LAN.

34 / 1

Algorithm

Basic idea: ask client for a hash of its code.
If

1 the hash is the wrong value, or
2 the computation took too long

the client has cheated!

The hash function is constructed such that
it can’t be computed quicker.

35 / 1

Server Client

V:

executableE:

1.

send nonce

nonce←random()

t1←currentTime()

hash6()

send()

SHA-1()

Server Client

V:

executableE:

2.1.

send nonce

nonce←random()

t1←currentTime() receive nonce

c← hash6(nonce,V)
send c

hash6()

send()

SHA-1()

Server Client

V:

executableE:

2.1.

send nonce

3.

if t2− t1 >∆t or

receive c

nonce←random()

t2←currentTime()

t1←currentTime()

FAIL
c is wrong then

receive nonce

c← hash6(nonce,V)
send c

hash6()

send()

SHA-1()

Server Client

V:

send h
h← SHA-1(nonce||E)

executableE:

2.1.

send nonce

3.

if t2− t1 >∆t or

receive c

nonce←random()

t2←currentTime()

t1←currentTime()

FAIL
c is wrong then

receive nonce

c← hash6(nonce,V)
send c

hash6()

send()

SHA-1()

4.

Server Client

V:

send h
h← SHA-1(nonce||E)

executableE:

2.1.

send nonce

3.

if t2− t1 >∆t or

5.

FAIL

receive c

receive h
if h is wrong then

nonce←random()

t2←currentTime()

t1←currentTime()

FAIL
c is wrong then

receive nonce

c← hash6(nonce,V)
send c

hash6()

send()

SHA-1()

4.

Server Client

6.

send r

4.

send h
h← SHA-1(nonce||E)

executableE:

2.1.

send nonce

3.

if t2− t1 >∆t or

5.

FAIL

receive c

receive h
if h is wrong then

nonce←random()

t2←currentTime()

t1←currentTime()

FAIL
c is wrong then

receive nonce

c← hash6(nonce,V)
send c

hash6()

send()

SHA-1()

V:

r ← execute E

Server Client

6.

send r

4.

send h
h← SHA-1(nonce||E)

executableE:

2.1.

send nonce

3.

if t2− t1 >∆t or

5.

FAIL

receive c

receive h
if h is wrong then

receive r7.

nonce←random()

t2←currentTime()

t1←currentTime()

FAIL
c is wrong then

receive nonce

c← hash6(nonce,V)
send c

hash6()

send()

SHA-1()

V:

r ← execute E

Algorithm

The hash function must be time optimal, if
not

the client can use the time he saved to execute
his own instructions without the server noticing.

37 / 1

Algorithm

The hash function must be time optimal, if
not

the client can use the time he saved to execute
his own instructions without the server noticing.

Others have tried to extend the protocol to
general scenarios — highly controversial .

37 / 1

The Tigress
System

Tigress and the R-MATE Problem

RPC(...)Trusted Server
Trusted
Clients

39 / 1

Tigress and the R-MATE Problem

RPC(...)

RPC(...)

Trusted
Clients

Untrusted
Client

Trusted Server

39 / 1

Tigress and the R-MATE Problem

RPC(...)

Clients

Untrusted
Client

1) Cryptographic keys
2) Login details
3) Sensitive algorithms
4) Security checks

Trusted Server
Trusted

Asset

Tamper!

39 / 1

Tigress and the R-MATE Problem

RPC(...) Trusted
Clients

Untrusted
Client1) Sever connection

2) Phone home
3) Legal remedies

Trusted Server

Respond!

Detect!

39 / 1

Tigress and the R-MATE Problem

1 2 3

RPC(...)

Variant
Code

Untrusted

Trusted
Trusted Server

Client

Clients

2) Facilitate the server’s tamper detection
1) Overwhelm the adversary’s analytical abilities

39 / 1

Tigress and the R-MATE Problem

1 2 3

RPC(...)

Variant
Code

Untrusted

Trusted
Trusted Server

Client

Clients

Diversity vs. security vs. performance
Trade−offs:

39 / 1

The Tigress System

Code

Code Blocks Code Blocks

Client

server.c

Server

Renewer

Strategies

Transformations

A fully generalized code diversity system
for protecting against R-MATE attacks.

40 / 1

The Tigress System

Code

Code Blocks Code Blocks

Client

server.c

Server

Renewer

Strategies

Transformations

A fully generalized code diversity system
for protecting against R-MATE attacks.
The trusted server continuously pushes
diverse code variants to the untrusted
clients.

40 / 1

The Tigress System

Code

Code Blocks Code Blocks

Client

server.c

Server

Renewer

Strategies

Transformations

A fully generalized code diversity system
for protecting against R-MATE attacks.
The trusted server continuously pushes
diverse code variants to the untrusted
clients.
Works on distributed C applications.

40 / 1

Attack Model

1 There is no unassailable root-of-trust :
the attacker can modify local code/hardware.

41 / 1

Attack Model

1 There is no unassailable root-of-trust :
the attacker can modify local code/hardware.

2 The attacker knows the system:
primitive code transformations,
strategies for combining transformations,
the source code of the entire system.

Similar to Kerckhoffs’s principles.

41 / 1

Attack Model

1 There is no unassailable root-of-trust :
the attacker can modify local code/hardware.

2 The attacker knows the system:
primitive code transformations,
strategies for combining transformations,
the source code of the entire system.

Similar to Kerckhoffs’s principles.

3 The attacker doesn’t know the
randomization seed and can’t predict the

order in which transformations are applied;
location in the code where they are applied.

41 / 1

Primitives

Primitive Transformations

request/
interpret(...) Block

Client

scheduler

Server
Blocks

flatten(...)
opaque(...)

var_encode(...)
merge(...)

Primitives

RPC_encode(...)

split(...)
rnd_args(...)

Code

Block

receive

transformer

Definition (Primitive)

A primitive is a code transformation that

1 adds confusion to the client code, taxing the
adversary’s analytical abilities (obfuscation);

2 makes modifying client code more difficult
(tamperproofing);

3 makes detecting tampering easier (tamper-detect).

43 / 1

Preserving Protocols

Protocol−Preserving

interpret(...)

Code
transformer

flatten(...)
opaque(...)
split(...)

Blocks

ClientServer

Block Bag

bar1,0

foo0,0

bar0,0

foo0,1

Protocol-preserving primitives generate
confusion and hardening.

44 / 1

Preserving Protocols

merge(...)

rnd_args(...)
RPC_encode(...)

Non Protocol−Preserving

Block Bag

Code

Server

transformer

Client

flatten(...)
opaque(...) Blocks

interpret(...)

split(...)

Protocol−Preserving

var_encode(...)
bar1,0bar0,0

foo0,0 foo0,1

Protocol-preserving primitives generate
confusion and hardening.
Non-protocol-preserving primitives
generate incompatible block variants.

44 / 1

Preserving Protocols

Protocol−Preserving

var_encode(...)
merge(...)

rnd_args(...)

Non Protocol−Preserving

RPC_encode(...)

Code
transformer

flatten(...)
opaque(...)

interpret(...)

split(...)
Blocks

ClientServer

Block BagSEED

SEED

foo0,0

bar1,0bar0,0

foo0,1

Protocol-preserving primitives generate
confusion and hardening.
Non-protocol-preserving primitives
generate incompatible block variants.
Randomized primitives generate many
unique variants. 44 / 1

Protocol-Preserving Primitives — Flatten

flatten(f ,seed) removes nested control flow.

45 / 1

Protocol-Preserving Primitives — Flatten

flatten(f ,seed) removes nested control flow.

Basic Block
Ordering

Randomize

45 / 1

Protocol-Preserving Primitives —

Interpret

interpret(f ,seed) turns a function into a
specialized interpreter.

op4: {push(pop()+pop()}

op9: {push(pop()*pop()}

op1: {push(pop()+
(pop()*pop())}

pc = ...
stack = [...];
prog={op1,op4,op9,...};

46 / 1

Protocol-Preserving Primitives —

Interpret

interpret(f ,seed) turns a function into a
specialized interpreter.

Dispatch

Randomize
Opcodes

Randomize
Superoperators

Randomize

op4: {push(pop()+pop()}

op9: {push(pop()*pop()}

op1: {push(pop()+
(pop()*pop())}

stack = [...];
prog={op1,op4,op9,...};

pc = ...

46 / 1

Protocol-Preserving Primitives — Split

split(f ,seed) converts a function f into two
functions called from f :

int x;
void f(int a){

}

int x;
void f(int a){

}

f2(&a,&x);

f1(&a,&x);

}

int *a,
int *x){

void f2(

}

int *a,
int *x){

void f1(

47 / 1

Protocol-Preserving Primitives — Split

split(f ,seed) converts a function f into two
functions called from f :

Randomize
Split Point

int x;
void f(int a){

}

int x;
void f(int a){

}

f2(&a,&x);

f1(&a,&x);

void f1(

}

int *a,
int *x){

void f2(

}

int *a,
int *x){

47 / 1

Protocol-Preserving Primitives — Opaque

opaque(f ,seed) inserts non-functional code
protected by an opaque predicate.

BOGUS

T

T

(p 6= NULL)T
F

(p 6= q)T
F

48 / 1

Protocol-Preserving Primitives — Opaque

opaque(f ,seed) inserts non-functional code
protected by an opaque predicate.

BOGUS

T

T

(p 6= NULL)T
F

p q

p->p.next;

q->q.next;

(p 6= q)T
F

48 / 1

Protocol-Preserving Primitives — Opaque

opaque(f ,seed) inserts non-functional code
protected by an opaque predicate.

Randomize
Transformation
Type

Randomize
Insertion
Point

Opaque
Predicate

Randomize
BOGUS

T

(p 6= q)T
F

T

(p 6= NULL)T
F

p q

p->p.next;

q->q.next; 48 / 1

Non-Protocol-Preserving Primitives —

Merge

merge(f1, f2,seed) combines functions
f1(args1) and f2(args2) into
f1,2(args1||args2,sel).

void f_1_2(
int x,
float y,
int which){

}

if (which==1)

else

void f1(
int x){

}

void f1(
float y){

}

49 / 1

Non-Protocol-Preserving Primitives —

rnd args

rnd args(f ,seed) randomly reorders f ’s
formal parameters and adds extra, bogus,
formals.

}

,

){
){

}

void f(

,
,

void f(

50 / 1

Non-Protocol-Preserving Primitives —

rnd args

rnd args(f ,seed) randomly reorders f ’s
formal parameters and adds extra, bogus,
formals.

}

Argument
Order

Insert
Bogus
Arguments

void f(

,

){

Randomize

){

}

void f(

,
,

50 / 1

Non-Protocol-Preserving Primitives —

RPC encode

RPC encode(n,seed) assigns a new
random encoding of the n:th remote
procedure call RPC(n,args).

,RPC(93, ,)RPC(42,),

If the adversary ignores block updates, he
may execute an invalid block containing an
RPC with an obsolete encoding.
This alerts the server of the tampering. 51 / 1

Non-Protocol-Preserving Primitives —

RPC encode

RPC encode(n,seed) assigns a new
random encoding of the n:th remote
procedure call RPC(n,args).

,RPC(93, ,)RPC(42,),

RPC(93, ,)), ,

Insert
Bogus
Arguments

Randomize
Argument
Order

Randomize
RPC
Number

RPC(42,

51 / 1

RPC encode. . .

,RPC(93, ,)RPC(42,),

If the adversary ignores block updates, he
may execute an invalid block containing an
RPC with an obsolete encoding.

This alerts the server of the tampering.

52 / 1

Mechanisms —
Strategies

System Overview — Diversity Graph

Diversity Graph

Strategies

Code
transformer

Overseer

Server

spatial diversity

Client

semantic diversity

temporal diversity

scheduler
Diversity

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

The diversity graph represents the complex
dependencies between blocks and
protocols.

54 / 1

System Overview — Diversity Graph

Diversity Graph

Strategies

Code
transformer

Overseer

Server

spatial diversity

Client

semantic diversity

temporal diversity

scheduler
Diversity

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

How does a transformation applied to one
block force updates to other blocks?

Initially, similar to a call graph.
55 / 1

Diversity Graph — Forward Update Cycle

int g;

void foo(){

g++;

}

int main(){

foo();

}

Diversity Graph — Forward Update Cycle

int g;

void foo(){

g++;

}

int main(){

foo();

}

main
p
0

maini
0,0

foo
p
0

fooi
0,0

g
p
0

Diversity Graph — Forward Update Cycle

int g;

void foo(){

g++;

}

int main(){

foo();

}

main
p
0

maini
0,0

foo
p
0

fooi
0,0

g
p
0

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

flatten(fooi
0,0)

Diversity Graph — Forward Update Cycle

int g;

void foo(){

g++;

}

int main(){

foo();

}

main
p
0

maini
0,0

foo
p
0

fooi
0,0

g
p
0

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

main
p
0

maini
0,0

foo
p
0

fooi
0,1fooi

0,0 fooi
0,2

g
p
1g

p
0

flatten(fooi
0,0) encode var(gp

0)

Diversity Graph — Forward Update Cycle

int g;

void foo(){

g++;

}

int main(){

foo();

}

main
p
0

maini
0,0

foo
p
0

fooi
0,0

g
p
0

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

main
p
0

maini
0,0

foo
p
0

fooi
0,1fooi

0,0 fooi
0,2

g
p
1g

p
0

main
p
0

maini
0,0 maini

0,1

foo
p
0 foo

p
1

fooi
0,1fooi

0,0 fooi
0,2 fooi

1,0

g
p
1

g
p
0

flatten(fooi
0,0) encode var(gp

0) rnd args(foop
0)

56 / 1

Strategies

Diversity Graph

scheduler
Diversity

Strategies

Code
transformer

Server

spatial diversity

Client

semantic diversity

temporal diversity

Overseer

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

Temporal Diversity: program is
continuously renewed.
Spatial Diversity: defense-in-depth,
multiple layers of primitives.
Semantic Diversity: software aging,
variants are not interchangeable.

57 / 1

Scheduler Operation

flatten(...)
opaque(...)

var_encode(...)
merge(...)

Primitives

RPC_encode(...)

split(...)
rnd_args(...)

interpret(...)

Security
Requirements

profile

foo 78%
main 22%

spatial diversity
semantic diversity

temporal diversity

Overseer

Server
Blocks

CIL

Diversity Graph

scheduler
Diversity

Strategies

Code
transformer

Client

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

// client.c

int __attribute((level(0))) g;

void foo() __attribute((level(9)));

void foo() {g++; RPC(2,g);}

int main() {foo();}

g0main0,0

foo0,1foo0,0

58 / 1

Scheduler Operation

flatten(...)
opaque(...)

var_encode(...)
merge(...)

Primitives

RPC_encode(...)

split(...)
rnd_args(...)

interpret(...)

Security
Requirements

profile

foo 78%
main 22%

spatial diversity
semantic diversity

temporal diversity

Overseer

Server
Blocks

CIL

Diversity Graph

scheduler
Diversity

Strategies

Code
transformer

Client

Performance profile

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

// client.c

int __attribute((level(0))) g;

void foo() __attribute((level(9)));

void foo() {g++; RPC(2,g);}

int main() {foo();}

foo0,0

g0main0,0

foo0,1

58 / 1

Scheduler Operation

flatten(...)
opaque(...)

var_encode(...)
merge(...)

Primitives

RPC_encode(...)

split(...)
rnd_args(...)

interpret(...)

Current
diversity
graph

Security
Requirements

profile

foo 78%
main 22%

spatial diversity
semantic diversity

temporal diversity

Overseer

Server
Blocks

CIL

Diversity Graph

scheduler
Diversity

Strategies

Code
transformer

Client

Performance profile

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

// client.c

int __attribute((level(0))) g;

void foo() __attribute((level(9)));

void foo() {g++; RPC(2,g);}

int main() {foo();}

foo0,0

g0main0,0

foo0,1

58 / 1

Scheduler Operation

flatten(...)
opaque(...)

var_encode(...)
merge(...)

Primitives

RPC_encode(...)

split(...)
rnd_args(...)

interpret(...)

Current
diversity
graph

Security
Requirements

profile

foo 78%
main 22%

spatial diversity
semantic diversity

temporal diversity

Overseer

Server
Blocks

CIL

Diversity Graph

scheduler
Diversity

Strategies

Code
transformer

Client

Performance profile

Current working set

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

// client.c

int __attribute((level(0))) g;

void foo() __attribute((level(9)));

void foo() {g++; RPC(2,g);}

int main() {foo();}

g0main0,0

foo0,0 foo0,1

58 / 1

Scheduler Operation

flatten(...)
opaque(...)

var_encode(...)
merge(...)

Primitives

RPC_encode(...)

split(...)
rnd_args(...)

interpret(...)

Current
diversity
graph

on diversity and
performance

Primitives’ effect

Security
Requirements

profile

foo 78%
main 22%

spatial diversity
semantic diversity

temporal diversity

Overseer

Server
Blocks

CIL

Diversity Graph

scheduler
Diversity

Strategies

Code
transformer

Client

Performance profile

Current working set

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

// client.c

int __attribute((level(0))) g;

void foo() __attribute((level(9)));

void foo() {g++; RPC(2,g);}

int main() {foo();}

foo0,1

g0main0,0

foo0,0

58 / 1

Scheduler Operation

Active Set

flatten(...)
opaque(...)

var_encode(...)
merge(...)

Primitives

RPC_encode(...)

split(...)
rnd_args(...)

interpret(...)

Current
diversity
graph

on diversity and
performance

Primitives’ effect

Security
Requirements

Server

profile

foo 78%
main 22%

spatial diversity
semantic diversity

temporal diversity

Overseer

Blocks

CIL

Diversity Graph

scheduler
Diversity

Strategies

Code
transformer

Client

Performance profile

Current working set

on the
client’s
call stack

Functions

// client.c

int __attribute((level(0))) g;

void foo() __attribute((level(9)));

void foo() {g++; RPC(2,g);}

int main() {foo();}

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

foo0,1

g0main0,0

foo0,0

58 / 1

Scheduler Operation

Active Set

flatten(...)
opaque(...)

var_encode(...)
merge(...)

Primitives

RPC_encode(...)

split(...)
rnd_args(...)

interpret(...)

Current
diversity
graph

on diversity and
performance

Primitives’ effect

Replacement
rate

Security
Requirements

profile

foo 78%
main 22%

spatial diversity
semantic diversity

temporal diversity

Overseer

Server
Blocks

CIL

Diversity Graph

scheduler
Diversity

Strategies

Code
transformer

Client

Performance profile

Current working set

on the
client’s
call stack

Functions

// client.c

int __attribute((level(0))) g;

void foo() __attribute((level(9)));

void foo() {g++; RPC(2,g);}

int main() {foo();}

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

foo0,1foo0,0

g0main0,0

58 / 1

Scheduler Operation

Active Set

flatten(...)
opaque(...)

var_encode(...)
merge(...)

Primitives

RPC_encode(...)

split(...)
rnd_args(...)

interpret(...)

Current
diversity
graph

on diversity and
performance

Primitives’ effect

Replacement
rate

New
diversity
graph

Security
Requirements

profile

foo 78%
main 22%

spatial diversity
semantic diversity

temporal diversity

Overseer

Server
Blocks

CIL

Diversity Graph

scheduler
Diversity

Strategies

Code
transformer

Client

Performance profile

Current working set

on the
client’s
call stack

Functions

New working set

Invalidated blocks

// client.c

int __attribute((level(0))) g;

void foo() __attribute((level(9)));

void foo() {g++; RPC(2,g);}

int main() {foo();}

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

foo0,1foo0,0

g0main0,0

58 / 1

Crime and Punishment

if (!blockOK())
Block

receive
request/

Server Client
getBlock(22)scheduler

Block

punish();

1 Is the requested block part of the current
block working set?

59 / 1

Crime and Punishment

Block

receive
request/

punish();
if (!rpcOK()) RPC(2,42)

Server Client
getBlock(22)scheduler

Block

punish();
if (!blockOK())

1 Is the requested block part of the current
block working set?

2 Valid RPC number? Valid RPC argument
types? 59 / 1

Crime and Punishment

punish();
if (!rpcOK())

punish();
if (!activeSetOK())

RPC(2,42)

Block

receive
request/

Server

Overseer

Client
Diversity Graph

getBlock(22)
Block

punish();
if (!blockOK())

scheduler

Active Set

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

1 Is the requested block part of the current
block working set?

2 Valid RPC number? Valid RPC argument
types? 59 / 1

Crime and Punishment

receive
request/

Overseer

Diversity Graph

punish();
if (!rpcOK()) RPC(2,42)

Server Client
getBlock(22)

punish(){

}

scheduler
Block

punish();
if (!blockOK())

Active Set

punish();
if (!activeSetOK())

Block

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

• insert delays();
• send delay block;
• send allocMem block;
• collect forensics;

• send kill block;

1 Is the requested block part of the current
block working set?

2 Valid RPC number? Valid RPC argument
types? 59 / 1

Security
Evaluation

Crime and Punishment

if (!blockOK())
Block

receive
request/

Server Client
getBlock(22)scheduler

Block

punish();

1 Is the requested block part of the current
block working set?

61 / 1

Crime and Punishment

Block

receive
request/

punish();
if (!rpcOK()) RPC(2,42)

Server Client
getBlock(22)scheduler

Block

punish();
if (!blockOK())

1 Is the requested block part of the current
block working set?

2 Valid RPC number? Valid RPC argument
types? 61 / 1

Crime and Punishment

punish();
if (!rpcOK())

punish();
if (!activeSetOK())

RPC(2,42)

Block

receive
request/

Server

Overseer

Client
Diversity Graph

getBlock(22)
Block

punish();
if (!blockOK())

scheduler

Active Set

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

1 Is the requested block part of the current
block working set?

2 Valid RPC number? Valid RPC argument
types? 61 / 1

Crime and Punishment

receive
request/

Overseer

Diversity Graph

punish();
if (!rpcOK()) RPC(2,42)

Server Client
getBlock(22)

punish(){

}

scheduler
Block

punish();
if (!blockOK())

Active Set

punish();
if (!activeSetOK())

Block

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

• insert delays();
• send delay block;
• send allocMem block;
• collect forensics;

• send kill block;

1 Is the requested block part of the current
block working set?

2 Valid RPC number? Valid RPC argument
types? 61 / 1

Enumeration of the Attack Space

Tamper asset
without being

detected

Avoid
detec-

tion

Reverse engineer
updates

Patch
A

with
new
en-
cod-
ings

Extract
new
vari-

able/RPC
en-
cod-

ings &
call
sig-
nau-
res

from
N0, . . . ,Nk

Find
ancestor
Nk−1 of

new block
NkCompare

Nk

against
all

other
blocks

Compare
call-

graphs

Prevent server
from making
meaningful

updates to A

Ignore
up-

dates
to A

Report an active
set that has

RPCs/variables
A uses

Report
valid

active
set

con-
taining
blocks
with

RPC-
s/vari-
ables

A

Find
RPC-
s/vari-
ables

A

uses

Analyze
blocks

&
build
call

graph

Prevent
server
from

replacing
A with

new blocks
Report
A ⊆

active
set

Report
valid

active
set

con-
taining

A

Analyze
blocks

&
build
call

graph

Analyze
A to
deter-
mine
that
they

are or-
phan

blocks

Tamper
with
A

Find
asset
blocks

A

Detect
asset
blocks

Is Ai

an
asset
block?

Analyze
block

Ai

Find
blocks

Probe
server
for all
blocks

Wait
for

blocks
to ap-
pear

in
block
bag

62 / 1

Enumeration of the Attack Space

Tamper asset
without being

detected

Avoid detection

Reverse
engineer
updates

Prevent server
from making
meaningful

updates to A

Prevent server
from replacing A

with new blocks

Analyze A to
determine that

they are orphan
blocks

Tamper
with A

Find asset blocks
A

Detect
asset
blocks

Find
blocks

Root represents the asset in the client code
(security check, code that updates a global
variable, the integrity of a control-flow path,
global data, . . .).
Attack steps:

1 find the asset blocks
2 tamper with these blocks
3 avoid detection by the server.

63 / 1

The Attack Space — Avoiding Detection

Avoid
detec-

tion

Reverse engineer
updates

Prevent server
from making
meaningful

updates to A

Prevent server
from replacing A

with new blocks

Analyze A to
determine that

they are orphan
blocks

1 Orphan blocks (no calls, RPCs):
modify at will !

64 / 1

The Attack Space — Avoiding Detection

Avoid
detec-

tion

Reverse engineer
updates

Prevent server
from making
meaningful

updates to A

Prevent server
from replacing A

with new blocks

Analyze A to
determine that

they are orphan
blocks

1 Orphan blocks (no calls, RPCs):
modify at will !

2 Trick the server that asset blocks are all
active: server can’t update!

64 / 1

The Attack Space — Avoiding Detection

Avoid
detec-

tion

Reverse engineer
updates

Prevent server
from making
meaningful

updates to A

Prevent server
from replacing A

with new blocks

Analyze A to
determine that

they are orphan
blocks

1 Orphan blocks (no calls, RPCs):
modify at will !

2 Trick the server that asset blocks are all
active: server can’t update!

3 Trick the server to only make trivial changes
to asset blocks: ignore updates!

64 / 1

The Attack Space — Avoiding Detection

Avoid
detec-

tion

Reverse engineer
updates

Prevent server
from making
meaningful

updates to A

Prevent server
from replacing A

with new blocks

Analyze A to
determine that

they are orphan
blocks

1 Orphan blocks (no calls, RPCs):
modify at will !

2 Trick the server that asset blocks are all
active: server can’t update!

3 Trick the server to only make trivial changes
to asset blocks: ignore updates!

4 Reverse engineer/patch new variants on 64 / 1

The Attack Space — Countermeasures

Avoid
detec-

tion

Reverse engineer
updates

Prevent server
from making
meaningful

updates to A

Prevent server
from replacing A

with new blocks

Analyze A to
determine that

they are orphan
blocks

1 Slow down reverse engineering using
protocol-preserving primitives.

65 / 1

The Attack Space — Countermeasures

Avoid
detec-

tion

Reverse engineer
updates

Prevent server
from making
meaningful

updates to A

Prevent server
from replacing A

with new blocks

Analyze A to
determine that

they are orphan
blocks

1 Slow down reverse engineering using
protocol-preserving primitives.

2 Use opaque to connect orphan blocks to
the rest of the program.

65 / 1

The Attack Space — Countermeasures

Avoid
detec-

tion

Reverse engineer
updates

Prevent server
from making
meaningful

updates to A

Prevent server
from replacing A

with new blocks

Analyze A to
determine that

they are orphan
blocks

1 Slow down reverse engineering using
protocol-preserving primitives.

2 Use opaque to connect orphan blocks to
the rest of the program.

3 Use opaque primitive to insert calls to
non-existing functions. If the adversary
reports an active set containing such a 65 / 1

Security Evaluation — Empirical Test #1

Blocks

Code
transformer

ClientServer

Block Bag

Ignore updates!

Protocol−Preserving

Non Protocol−Preserving

RPC_encode(...)

bar1,0bar0,0

Attack: Ignore block updates!

66 / 1

Security Evaluation — Empirical Test #1

Blocks

Code
transformer

ClientServer

Block Bag

Ignore updates!

Protocol−Preserving

Non Protocol−Preserving

RPC_encode(...)

bar1,0bar0,0

Attack: Ignore block updates!
Simulated Test: Turn off client updates.

66 / 1

Security Evaluation — Empirical Test #1

Blocks

Code
transformer

ClientServer

Block Bag

Ignore updates!

Protocol−Preserving

Non Protocol−Preserving

RPC_encode(...)

bar1,0bar0,0

Attack: Ignore block updates!
Simulated Test: Turn off client updates.
Result : RPCs are frequent in our test
program, the server reliably detected the
malicious behavior shortly after the first
RPC encode update. 66 / 1

Security Evaluation — Empirical Test #2

Blocks

Code
transformer

Request complete
program!

Block Bag

Protocol−Preserving

opaque(...)

Non Protocol−Preserving

ClientServer

bogus()
if (PF)

Attack: Build a snapshot of the entire
program, in order to analyze it off-line!

67 / 1

Security Evaluation — Empirical Test #2

Blocks

Code
transformer

Request complete
program!

Block Bag

Protocol−Preserving

opaque(...)

Non Protocol−Preserving

ClientServer

bogus()
if (PF)

Attack: Build a snapshot of the entire
program, in order to analyze it off-line!
Simulated Test: Client disassembles its
blocks, requests referenced blocks.

67 / 1

Security Evaluation — Empirical Test #2

Blocks

Code
transformer

Request complete
program!

Block Bag

Protocol−Preserving

opaque(...)

Non Protocol−Preserving

ClientServer

bogus()
if (PF)

Attack: Build a snapshot of the entire
program, in order to analyze it off-line!
Simulated Test: Client disassembles its
blocks, requests referenced blocks.
Result : The malicious client quickly
requested nonexistent blocks. 67 / 1

Security Evaluation — Empirical Test #3

All blocks are active!

ClientServer

Block Bag

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

Attack: Prevent the server from updating
blocks!

68 / 1

Security Evaluation — Empirical Test #3

All blocks are active!

ClientServer

Block Bag

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

Attack: Prevent the server from updating
blocks!
Simulated Test: Client reports the entire
contents of the block bag as the active set.

68 / 1

Security Evaluation — Empirical Test #3

All blocks are active!

ClientServer

Block Bag

main
p
0

maini
0,0

foo
p
0

fooi
0,0 fooi

0,1

g
p
0

Attack: Prevent the server from updating
blocks!
Simulated Test: Client reports the entire
contents of the block bag as the active set.
Result : Using the program call graph the
server reliably identified the malicious 68 / 1

Security Evaluation — Empirical Test #4

We’re porting ChocolateDoom to Tigress.
Capture-the-Flag exercises!
To appear. . . 69 / 1

Discussion

Summary

A system for detecting tampering of clients
running on untrusted nodes in a distributed
system.

71 / 1

Summary

A system for detecting tampering of clients
running on untrusted nodes in a distributed
system.
Assume the adversary has complete
knowledge of our system

no security-through-obscurity

71 / 1

Summary — Security

Protocol-preserving primitives:
Gives attacker limited time-window for
analysis/tampering.

72 / 1

Summary — Security

Protocol-preserving primitives:
Gives attacker limited time-window for
analysis/tampering.

Non-protocol-preserving primitives:
Harder to tamper without modifying expected
behavior⇒ easier tamper-detection.

72 / 1

Summary — Security

Protocol-preserving primitives:
Gives attacker limited time-window for
analysis/tampering.

Non-protocol-preserving primitives:
Harder to tamper without modifying expected
behavior⇒ easier tamper-detection.

Security:
Function of the frequency of code updates and
the complexity and variability generated by
primitives.

72 / 1

Summary — Performance

Highly tunable:
Control which parts of the program to
transform, which transformations to apply,
update frequency.

73 / 1

Summary — Performance

Highly tunable:
Control which parts of the program to
transform, which transformations to apply,
update frequency.

Performance overhead:
Infrastructure: 4% to 23%.
Update delay: 2 to 3 seconds
(protocol-preserving primitives), 7 to 24
seconds (non-protocol-preserving primitives).

73 / 1

Discussion

Optimize differently for different scenarios:
Client performance
Server performance
Network latency/bandwidth
Client energy use
Time-to-crack

74 / 1

Discussion

Optimize differently for different scenarios:
Client performance
Server performance
Network latency/bandwidth
Client energy use
Time-to-crack

What about different network topologies?
client-server
1 server + n untrusted clients running same
code?
1 server + n untrusted clients running different
code?
1 server + n trusted clients + m untrusted
clients?

74 / 1

