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Professional Interests

Software Protection
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Personal Interests

Travel (38 countries so far. . . )

Photography:
www.cs.arizona.edu/˜collberg/#travel

Foreign Languages

Music:
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Education

I teach courses on programming
languages, compilers, computer security.
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Contact me

www.cs.arizona.edu/˜collberg

collberg@gmail.com
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Alice is a software developer.

Bob buys one copy of Alice’s program.

Bob illegally sells copies to his friends.
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License check tampering

if (today()>"Aug 17")
abort()

......

......

if (false)
abort()

Alice
Bob

P

P
P ′

Bob removes license checks to be able to
run the program whenever he wants.

Alice protects her program so that it won’t
run after being tampered with.
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Alice’s program contains a valuable trade
secret (a clever algorithm or design).

Bob, a rival developer, copies M into his
own program (code lifting).
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Digital rights management (DRM)

Alice

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.
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Encrypted
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Alice Bob

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.
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Protocol discovery

Call minutes

Alice Bob

P

Alice sells voice-over-IP call minutes.
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Protocol discovery

Call minutes

mySkype!

Alice Bob

P P ′

Alice sells voice-over-IP call minutes.

Bob examines the VoIP client to discover
proprietary protocols to build his own rival
client.
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Protecting military software
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The military want to be able to track
classified software.
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Protecting military software
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The military want to be able to track
classified software.
In 2001, an EP-3 spy/reconnaissance plane
landed on Hainan Island in China after a
collision. The crew was unable to destroy
all equipment.
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The Man-At-The-End Problem

1. Static/Dynamic Analysis
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Scenario: Protecting medical records

Medical
records
database

Alice

Medical records must be protected from
improper access and
improper modification.

Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.
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Scenario: Wireless sensor networks
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Scenario: Wireless sensor networks

Radioactivity?
Chemicals?
Troup movements?

Sensor

Wifi

CPU
Code

bad

bad

Alice
Bob

Sensor networks are common in military
scenarios.

The enemy can intercept/analyze/modify
sensors.
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Disassembler
Decompiler

Debugger
Tracer
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against
tampering!

Emulator

Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.



Disassembler
Decompiler

Debugger
Tracer
Slicer

Self−protect
against
tampering!

tampering!
Detect remote

Emulator

Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.

Definition (Remote MATE (R-MATE) Attacks)

R-MATE attacks occur in distributed systems where
untrusted clients are in frequent communication with
trusted servers over a network, and where a malicious
user can get an advantage by compromising an untrusted
device.
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Code obfuscation

To obfuscate a program means to

transform it into a form that is more
difficult for an adversary to
understand or change than the
original code.
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Code obfuscation

To obfuscate a program means to

transform it into a form that is more
difficult for an adversary to
understand or change than the
original code.

Vague definition of difficult:

The obfuscated program requires
more human time, more money, or
more computing power to analyze
than the original program.
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Code obfuscation — Example

obfuscated code
public class C {

static Object get0(Object[] I) {

Integer I7, I6, I4, I3; int t9, t8;

I7=new Integer(9);

for (;;) {

if (((Integer)I[0]).intValue()%((Integer)I[1]).intValue()==0)

{t9=1; t8=0;} else {t9=0; t8=0;}

I4=new Integer(t8);

I6=new Integer(t9);

if ((I4.intValue()ˆI6.intValue())!=0)

return new Integer(((Integer)I[1]).intValue());

else {

if ((((I7.intValue()+ I7.intValue()*I7.intValue())%2!=0)?0:1)!=1)

return new Integer(0);

I3=new Integer(((Integer)I[0]).intValue()%

((Integer)I[1]).intValue());

I[0]=new Integer(((Integer)I[1]).intValue());

I[1]=new Integer(I3.intValue());

}

}

}
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Code obfuscation — Example original

code
public class C {

static int gcd(int x, int y) {

int t;

while (true) {

boolean b = x % y == 0;

if (b) return y;

t = x % y; x = y; y = t;

}

}

}

An obfuscation tool turns the original code
into obfuscated code.
We want obfuscating transformations that
make the program as hard to understand as
possible.
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Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!
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Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!

2 Data transformations
Replace data structures with new
representations!

3 Control transformations
Destroy if-, while-, repeat-, etc.!

4 Dynamic transformations
Make the program change at runtime!
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Obfuscation example: original

program

✞ ☎

int main() {

int y = 6;

y = foo(y);

bar(y,42);

}
✝ ✆

✞ ☎

int foo(int x) {

return x*7;

}
✝ ✆

✞ ☎

void bar(int x, int z) {

if (x==z)

printf("%i\n",x);

}
✝ ✆
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After abstraction transformation
✞ ☎

int main() {

int y = 6;

y = foobar(y,99,1);

foobar(y,42,2);

}
✝ ✆

✞ ☎

int foobar(int x, int z, int s) {

if (s==1)

return x*7;

else if (s==2)

if (x==z)

printf("%i\n",x);

}
✝ ✆

It appears as if main calls the same
function twice!
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After data transformation
✞ ☎

int main() {

int y = 12;

y = foobar(y,99,1);

foobar(y,36,2);

}
✝ ✆

✞ ☎

int foobar(int x, int z, int s) {

if (s==1)

return (x*37)%51;

else if (s==2)

if (x==z) {

int x2=x*x % 51, x3=x2*x % 51;

int x4=x2*x2 % 51, x8=x4*x4 % 51;

int x11=x8*x3 % 51; printf("%i\n",x11);

}

}
✝ ✆

The integers are encrypted with RSA!
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After control transformation

✞ ☎

int foobar(int x, int z, int s) {

char* next = &&cell0;

int retVal = 0;

cell0: next = (s==1)?&&cell1:&&cell2; goto *next;

cell1: retVal=(x*37)%51; goto end;

cell2: next = (s==2)?&&cell3:&&end; goto *next;

cell3: next = (x==z)?&&cell4:&&end; goto *next;

cell4: {

int x2=x*x % 51, x3=x2*x % 51;

int x4=x2*x2 % 51, x8=x4*x4 % 51;

int x11=x8*x3 % 51;

printf("%i\n",x11); goto end;

}

end: return retVal;

}
✝ ✆31 / 42



Anti-Tamper



What is code tampering?

Bob wants to modify the program binary so
that it does something different than we
want:

remove functionality (license check)
change data (password, cryptographic key)

add functionality (print, save game)

Tamperproofing the code makes it stop
working if Bob changes as little as a byte of
the binary!
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Two phases of tamperproofing

Tamperproofing has to do two things:
1 detect tampering
2 respond to tampering
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Two phases of tamperproofing

Tamperproofing has to do two things:
1 detect tampering
2 respond to tampering

Essentially:

if (tampering-detected()) abort

but this is too unstealthy!
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Two phases of tamperproofing

Detection:
1 has the code been changed?
2 are variables in an OK state?
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Two phases of tamperproofing

Detection:
1 has the code been changed?
2 are variables in an OK state?

Response:
1 refuse to run,
2 crash randomly,
3 phone home, . . .
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Algorithm Chang & Atallah: Checker

network

abort()

...
foo(){

check(){

}

if (hash(foo)!=42)

}

36 / 42



Hash functions

✞ ☎

uint32 hash1 (addr_t addr,int words) {

uint32 h = *addr;

int i;

for(i=1; i<words; i++) {

addr++;

h ˆ= *addr;

}

return h;

}
✝ ✆
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Hash functions

✞ ☎

void important_function () {

...

}

int main () {

int v = hash (important_function,1000);

if (v != 0x4C49F346) {

crash the program

}

important_function(...)

}
✝ ✆
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}
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Algorithm Chang & Atallah: Checker

network

if (hash(...)!=42)

foo(){
...

}

foo(){
...

}cp

}

check(){
if (hash(foo)!=42)

...
foo(){

check(){

}
cp

foo(){
...

}

}
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Repairing Hacked Functions
✞ ☎

void copy_of_important_function () {

...

}

void important_function () {

...

}

int main () {

int v = hash (important_function,1000);

if (v != 0x4C49F346) {

memcpy(important_function,

copy_of_important_function,

1000)

}

important_function(...)

}
✝ ✆
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Checker network

decrypt

play

getkey

decode

main

r1 c1

c0

c2r2

r3

c3

code — code blocks
ci — checkers
ri — repairers
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Skype’s hash function

✞ ☎

uint32 hash7() {

addr_t addr=(addr_t)((uint32)addrˆ(uint32)addr);

addr = (addr_t)((uint32)addr + 0x688E5C);

uint32 hash = 0x320E83 ˆ 0x1C4C4;

int bound = hash + 0xFFCC5AFD;

do {

uint32 data=*((addr_t)((uint32)addr + 0x10));

goto b1; asm volatile(".byte 0x19"); b1:

hash = hash ⊕ data; addr -= 1; bound--;

} while (bound!=0);

goto b2; asm volatile(".byte 0x73"); b2:

goto b3; asm volatile(".word 0xC8528417,..."); b3:

hash-=0x4C49F346; return hash;

}
✝ ✆
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