
Software Protection:
How to Crack Programs,

and

Defend Against Cracking

MGU, Spring 2015

www.cs.arizona.edu/˜collberg

c© April 1, 2015 Christian Collberg

www.cs.arizona.edu/~collberg

About me

PhD from

Five years on the faculty at

One year at

Currently Professor at

2 / 42

Professional Interests

Software Protection
(tigress.cs.arizona.edu)

Compilers

Programming Languages

Scientific Ethics

Secure Provenance
(haathi.cs.arizona.edu).

3 / 42

tigress.cs.arizona.edu
haathi.cs.arizona.edu

Personal Interests

Travel (38 countries so far. . .)

Photography:
www.cs.arizona.edu/˜collberg/#travel

Foreign Languages

Music:

4 / 42

www.cs.arizona.edu/~collberg/#travel

Education

I teach courses on programming
languages, compilers, computer security.

5 / 42

Contact me

www.cs.arizona.edu/˜collberg

collberg@gmail.com

6 / 42

www.cs.arizona.edu/~collberg
collberg@gmail.com

MATE Scenarios

Software piracy

Alice
P

Alice is a software developer.

8 / 42

Software piracy

Alice Bob

P

P

Alice is a software developer.

Bob buys one copy of Alice’s program.

8 / 42

Software piracy

Alice BobP

P

P

P

Alice is a software developer.

Bob buys one copy of Alice’s program.

Bob illegally sells copies to his friends.
8 / 42

License check tampering

......

abort()
if (today()>"Aug 17")

Alice

P

9 / 42

License check tampering

......

abort()
if (today()>"Aug 17")

Alice
Bob

P

9 / 42

License check tampering

......

abort()
if (today()>"Aug 17")

......

if (false)
abort()

Alice
Bob

P

P

Bob removes license checks to be able to
run the program whenever he wants.

9 / 42

License check tampering

if (today()>"Aug 17")
abort()

......

......

if (false)
abort()

Alice
Bob

P

P
P ′

Bob removes license checks to be able to
run the program whenever he wants.

Alice protects her program so that it won’t
run after being tampered with.

9 / 42

Malicious reverse engineering

Alice
M

P

Alice’s program contains a valuable trade
secret (a clever algorithm or design).

10 / 42

Malicious reverse engineering

Alice Bob
M

P

Alice’s program contains a valuable trade
secret (a clever algorithm or design).

Bob, a rival developer, copies M into his
own program (code lifting).

10 / 42

Malicious reverse engineering

BobAlice
M

P

M

Alice’s program contains a valuable trade
secret (a clever algorithm or design).

Bob, a rival developer, copies M into his
own program (code lifting).

10 / 42

Malicious reverse engineering

Alice Bob
M

P

M
M

Q

Alice’s program contains a valuable trade
secret (a clever algorithm or design).

Bob, a rival developer, copies M into his
own program (code lifting).

10 / 42

Digital rights management (DRM)

Alice

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

11 / 42

Digital rights management (DRM)

media
Encrypted

Alice Bob

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

11 / 42

Digital rights management (DRM)

Software Player

media

Crypto keys

Encrypted
Alice Bob

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

11 / 42

Digital rights management (DRM)

Software Player

Cleartext media
Crypto keys

Encrypted
media

Alice Bob

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

11 / 42

Digital rights management (DRM)

Software Player

Cleartext media
Crypto keys

Encrypted
media

Carol

Alice Bob

A DRM media player contains
cryptographic keys that unlock and play
encrypted music files.

11 / 42

Protocol discovery

Call minutes

Alice Bob

P

Alice sells voice-over-IP call minutes.

12 / 42

Protocol discovery

Call minutes

mySkype!

Alice Bob

P P ′

Alice sells voice-over-IP call minutes.

Bob examines the VoIP client to discover
proprietary protocols to build his own rival
client.

12 / 42

Protecting military software

Alice Bob

The military want to be able to track
classified software.

13 / 42

Protecting military software

BobAlice

The military want to be able to track
classified software.
In 2001, an EP-3 spy/reconnaissance plane
landed on Hainan Island in China after a
collision. The crew was unable to destroy
all equipment.

13 / 42

Protecting military software

BobAlice

P

The military want to be able to track
classified software.
In 2001, an EP-3 spy/reconnaissance plane
landed on Hainan Island in China after a
collision. The crew was unable to destroy
all equipment.

13 / 42

The Man-At-The-End Problem

S
P

14 / 42

The Man-At-The-End Problem

S
S

P

P

P P

P

14 / 42

The Man-At-The-End Problem

Emulator

Decompiler
Disassembler

Debugger
Tracer
Slicer

S
S

P

P

PP

P

14 / 42

The Man-At-The-End Problem

Tracer
Slicer

Emulator
Disassembler
Decompiler

Debugger

S
S

P

P

P

P P

14 / 42

The Man-At-The-End Problem

1. Static/Dynamic Analysis
2. Modify
3. Test
4. Did it work?

S
S

P

P

P

PP

14 / 42

The Man-At-The-End Problem

4. Did it work?

2. Modify
1. Static/Dynamic Analysis

3. Test

S
S

P

P

PP

P

14 / 42

The Man-At-The-End Problem

1. Static/dynamic analysis
2. Select code
3. Select transformation
4. Apply transformation
5. Done?

S
S

P

P

P

P P

14 / 42

The Man-At-The-End Problem

1. Static/dynamic analysis

3. Select transformation

5. Done?

2. Select codeCode

4. Apply transformation
Transformations

S
S

P

P

PP

P

14 / 42

The Man-At-The-End Problem

S
S

P

P

P P

P

14 / 42

Tigress

15 / 42

R-MATE
Scenarios

Scenario: Protecting networked

computer games

Alice

P

17 / 42

Scenario: Protecting networked

computer games

BobAlice

P

17 / 42

Scenario: Protecting networked

computer games

Alice Bob

P

P

17 / 42

Scenario: Protecting networked

computer games

Cached data

BobAlice

P

P

17 / 42

Scenario: Protecting networked

computer games

Cached data

BobAlice

P

P

17 / 42

Scenario: Protecting networked

computer games

Cached data

Alice Bob

P

P

17 / 42

Scenario: Protecting medical records

Medical
records
database

Alice

Medical records must be protected from
improper access and
improper modification.

Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

18 / 42

Scenario: Protecting medical records

Medical
records
database

Confidential
medical data

Ek(brittney.pdf)

Bob
Alice

Medical records must be protected from
improper access and
improper modification.

Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

18 / 42

Scenario: Protecting medical records

records
database

Medical

medical data
Confidential

Ek(brittney.pdf)

Bob
Alice

Medical records must be protected from
improper access and
improper modification.

Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

18 / 42

Scenario: Protecting medical records

records
Medical

database

medical data
Confidential

Alice Ek(brittney.pdf)

Bob

Medical records must be protected from
improper access and
improper modification.

Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

18 / 42

Scenario: Protecting medical records

allow(nothing)

elsif (role="janitor")

allow(read|write)

allow(read)
elsif (role="nurse")

if (role="doctor")

Medical
records
database

medical data
Confidential

Ek(brittney.pdf)

Bob C
Alice

Medical records must be protected from
improper access and
improper modification.

Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

18 / 42

Scenario: Protecting medical records

Medical
records
database

allow(nothing)

if (role="doctor")

elsif (role="nurse")
allow(read)

allow(read|write)

read
elsif (role="janitor")

medical data
Confidential

Alice
C

Ek(brittney.pdf)

Bob

Medical records must be protected from
improper access and
improper modification.

Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

18 / 42

Scenario: Protecting medical records

allow(read|write)

read
elsif (role="janitor")

Medical
records
database

allow(nothing)

if (role="doctor")

elsif (role="nurse")
allow(read)

medical data
Confidential

CBob
Alice Ek(brittney.pdf)

Medical records must be protected from
improper access and
improper modification.

Records are stored on one secure site,
accessed from multiple (sometimes mobile)
devices.

18 / 42

Scenario: Wireless sensor networks

Alice
Bob

Sensor networks are common in military
scenarios.

19 / 42

Scenario: Wireless sensor networks

Wifi

CPU
Code

Sensor

Radioactivity?
Chemicals?
Troup movements?

Alice
Bob

Sensor networks are common in military
scenarios.

19 / 42

Scenario: Wireless sensor networks

Radioactivity?
Chemicals?
Troup movements?

Sensor

Wifi

CPU
Code

bad

bad

Alice
Bob

Sensor networks are common in military
scenarios.

The enemy can intercept/analyze/modify
sensors.

19 / 42

Scenario: Advanced Metering

Infrastructure

Smart Meter

Distribution
Control CenterElectrical Grid

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 20 / 42

Scenario: Advanced Metering

Infrastructure

Smart Meter

Electrical Grid
Distribution
Control Center

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 20 / 42

Scenario: Advanced Metering

Infrastructure

HACKED!

Electrical Grid

Smart Meter

Distribution
Control Center

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 20 / 42

Scenario: Advanced Metering

Infrastructure

Distribution
Control CenterElectrical Grid

HACKED!
Smart Meter

HACKED!

HACKED!

HACKED!

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 20 / 42

Scenario: Advanced Metering

Infrastructure

Disc
on

ne
ct

Electrical Grid

Smart Meter

HACKED!

Disconnect

Disconnect

Disc
onnect

Disconnect

Distribution
Control Center

HACKED!

HACKED!

HACKED!

Selective black-outs, consumers can adjust
usage based on current costs, small-scale
energy production, . . . 20 / 42

The Remote Man-At-The-End

Problem

Trusted Server

Client

Client

21 / 42

The Remote Man-At-The-End

Problem
Client

Client

Untrusted Client

Trusted Server

21 / 42

The Remote Man-At-The-End

Problem

Untrusted Client

Client

Client
Trusted Server

Client
SW/HW

21 / 42

The Remote Man-At-The-End

Problem
Client

Client

Untrusted Client

Trusted Server

Emulator
Disassembler
Decompiler

Debugger
Tracer
Slicer

Client
SW/HW

21 / 42

The Remote Man-At-The-End

Problem

1
Variant

Disassembler
Decompiler

Debugger
Tracer
SlicerUntrusted Client

Client

Client

Emulator

Trusted Server

SW/HW
Client

21 / 42

The Remote Man-At-The-End

Problem

1
VariantVariant

2

SlicerUntrusted Client

Client

Client

Emulator
Disassembler
Decompiler

Debugger
Tracer

Trusted Server

SW/HW
Client

21 / 42

The Remote Man-At-The-End

Problem

1
VariantVariant

2 3
Variant

Untrusted Client

Client

Client

Emulator
Disassembler
Decompiler

Debugger
Tracer
Slicer

Trusted Server

SW/HW
Client

21 / 42

The Remote Man-At-The-End

Problem

1
Variant

2
VariantVariant

3
Variant

4

Untrusted Client

Client

Client

Emulator
Disassembler
Decompiler

Debugger
Tracer
Slicer

Trusted Server

SW/HW
Client

21 / 42

Disassembler
Decompiler

Debugger
Tracer
Slicer

Self−protect
against
tampering!

Emulator

Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.

Disassembler
Decompiler

Debugger
Tracer
Slicer

Self−protect
against
tampering!

tampering!
Detect remote

Emulator

Definition (Man-At-The-End (MATE) Attacks)

MATE attacks occur in any setting where an adversary
has physical access to a device and compromises it by
inspecting, reverse engineering, or tampering with its
hardware or software.

Definition (Remote MATE (R-MATE) Attacks)

R-MATE attacks occur in distributed systems where
untrusted clients are in frequent communication with
trusted servers over a network, and where a malicious
user can get an advantage by compromising an untrusted
device.

Code
Obfuscation

Code obfuscation

To obfuscate a program means to

transform it into a form that is more
difficult for an adversary to
understand or change than the
original code.

24 / 42

Code obfuscation

To obfuscate a program means to

transform it into a form that is more
difficult for an adversary to
understand or change than the
original code.

Vague definition of difficult:

The obfuscated program requires
more human time, more money, or
more computing power to analyze
than the original program.

24 / 42

Code obfuscation — Example

obfuscated code
public class C {

static Object get0(Object[] I) {

Integer I7, I6, I4, I3; int t9, t8;

I7=new Integer(9);

for (;;) {

if (((Integer)I[0]).intValue()%((Integer)I[1]).intValue()==0)

{t9=1; t8=0;} else {t9=0; t8=0;}

I4=new Integer(t8);

I6=new Integer(t9);

if ((I4.intValue()ˆI6.intValue())!=0)

return new Integer(((Integer)I[1]).intValue());

else {

if ((((I7.intValue()+ I7.intValue()*I7.intValue())%2!=0)?0:1)!=1)

return new Integer(0);

I3=new Integer(((Integer)I[0]).intValue()%

((Integer)I[1]).intValue());

I[0]=new Integer(((Integer)I[1]).intValue());

I[1]=new Integer(I3.intValue());

}

}

}
25 / 42

Code obfuscation — Example original

code
public class C {

static int gcd(int x, int y) {

int t;

while (true) {

boolean b = x % y == 0;

if (b) return y;

t = x % y; x = y; y = t;

}

}

}

An obfuscation tool turns the original code
into obfuscated code.
We want obfuscating transformations that
make the program as hard to understand as
possible.

26 / 42

Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!

27 / 42

Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!

2 Data transformations
Replace data structures with new
representations!

27 / 42

Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!

2 Data transformations
Replace data structures with new
representations!

3 Control transformations
Destroy if-, while-, repeat-, etc.!

27 / 42

Types of obfuscation

1 Abstraction transformations
Destroy module structure, classes, functions,
etc.!

2 Data transformations
Replace data structures with new
representations!

3 Control transformations
Destroy if-, while-, repeat-, etc.!

4 Dynamic transformations
Make the program change at runtime!

27 / 42

Obfuscation example: original

program

✞ ☎

int main() {

int y = 6;

y = foo(y);

bar(y,42);

}
✝ ✆

✞ ☎

int foo(int x) {

return x*7;

}
✝ ✆

✞ ☎

void bar(int x, int z) {

if (x==z)

printf("%i\n",x);

}
✝ ✆

28 / 42

After abstraction transformation
✞ ☎

int main() {

int y = 6;

y = foobar(y,99,1);

foobar(y,42,2);

}
✝ ✆

✞ ☎

int foobar(int x, int z, int s) {

if (s==1)

return x*7;

else if (s==2)

if (x==z)

printf("%i\n",x);

}
✝ ✆

It appears as if main calls the same
function twice!

29 / 42

After data transformation
✞ ☎

int main() {

int y = 12;

y = foobar(y,99,1);

foobar(y,36,2);

}
✝ ✆

✞ ☎

int foobar(int x, int z, int s) {

if (s==1)

return (x*37)%51;

else if (s==2)

if (x==z) {

int x2=x*x % 51, x3=x2*x % 51;

int x4=x2*x2 % 51, x8=x4*x4 % 51;

int x11=x8*x3 % 51; printf("%i\n",x11);

}

}
✝ ✆

The integers are encrypted with RSA!
30 / 42

After control transformation

✞ ☎

int foobar(int x, int z, int s) {

char* next = &&cell0;

int retVal = 0;

cell0: next = (s==1)?&&cell1:&&cell2; goto *next;

cell1: retVal=(x*37)%51; goto end;

cell2: next = (s==2)?&&cell3:&&end; goto *next;

cell3: next = (x==z)?&&cell4:&&end; goto *next;

cell4: {

int x2=x*x % 51, x3=x2*x % 51;

int x4=x2*x2 % 51, x8=x4*x4 % 51;

int x11=x8*x3 % 51;

printf("%i\n",x11); goto end;

}

end: return retVal;

}
✝ ✆31 / 42

Anti-Tamper

What is code tampering?

Bob wants to modify the program binary so
that it does something different than we
want:

remove functionality (license check)
change data (password, cryptographic key)

add functionality (print, save game)

Tamperproofing the code makes it stop
working if Bob changes as little as a byte of
the binary!

33 / 42

Two phases of tamperproofing

Tamperproofing has to do two things:
1 detect tampering
2 respond to tampering

34 / 42

Two phases of tamperproofing

Tamperproofing has to do two things:
1 detect tampering
2 respond to tampering

Essentially:

if (tampering-detected()) abort

but this is too unstealthy!

34 / 42

Two phases of tamperproofing

Detection:
1 has the code been changed?
2 are variables in an OK state?

35 / 42

Two phases of tamperproofing

Detection:
1 has the code been changed?
2 are variables in an OK state?

Response:
1 refuse to run,
2 crash randomly,
3 phone home, . . .

35 / 42

Algorithm Chang & Atallah: Checker

network

abort()

...
foo(){

check(){

}

if (hash(foo)!=42)

}

36 / 42

Hash functions

✞ ☎

uint32 hash1 (addr_t addr,int words) {

uint32 h = *addr;

int i;

for(i=1; i<words; i++) {

addr++;

h ˆ= *addr;

}

return h;

}
✝ ✆

37 / 42

Hash functions

✞ ☎

void important_function () {

...

}

int main () {

int v = hash (important_function,1000);

if (v != 0x4C49F346) {

crash the program

}

important_function(...)

}
✝ ✆

38 / 42

Algorithm Chang & Atallah: Checker

network

abort()

...
foo(){

check(){

}

if (hash(foo)!=42)

}

39 / 42

Algorithm Chang & Atallah: Checker

network

foo(){
...

}

39 / 42

Algorithm Chang & Atallah: Checker

network

}

foo(){ foo(){
...

}
...

39 / 42

Algorithm Chang & Atallah: Checker

network

}

foo(){
...

}

foo(){

foo(){
...

}cp

...

check(){

}

}

if (hash(foo)!=42)

...
foo(){

39 / 42

Algorithm Chang & Atallah: Checker

network

if (hash(...)!=42)

foo(){
...

}

foo(){
...

}cp

}

check(){
if (hash(foo)!=42)

...
foo(){

check(){

}
cp

foo(){
...

}

}
39 / 42

Repairing Hacked Functions
✞ ☎

void copy_of_important_function () {

...

}

void important_function () {

...

}

int main () {

int v = hash (important_function,1000);

if (v != 0x4C49F346) {

memcpy(important_function,

copy_of_important_function,

1000)

}

important_function(...)

}
✝ ✆

40 / 42

Checker network

decrypt

play

getkey

decode

main

r1 c1

c0

c2r2

r3

c3

code — code blocks
ci — checkers
ri — repairers

41 / 42

Skype’s hash function

✞ ☎

uint32 hash7() {

addr_t addr=(addr_t)((uint32)addrˆ(uint32)addr);

addr = (addr_t)((uint32)addr + 0x688E5C);

uint32 hash = 0x320E83 ˆ 0x1C4C4;

int bound = hash + 0xFFCC5AFD;

do {

uint32 data=*((addr_t)((uint32)addr + 0x10));

goto b1; asm volatile(".byte 0x19"); b1:

hash = hash ⊕ data; addr -= 1; bound--;

} while (bound!=0);

goto b2; asm volatile(".byte 0x73"); b2:

goto b3; asm volatile(".word 0xC8528417,..."); b3:

hash-=0x4C49F346; return hash;

}
✝ ✆

42 / 42

