Attack Models
ISSISP Verona 2014

Christian Collberg
University of Arizona

WwWww.Cs.arizona.edu/~collberg

© July 28, 2014 Christian Collberg

www.cs.arizona.edu/~collberg

Models

Models

@ To build secure systems, we need sound
models.

@ Which security properties should be
assured?

@ What type of attacks can be launched?

Principle of Easiest Penetration

Definition (Principle of Easiest Penetration)

An adversary must be expected to use any
available means of penetration — not the most
obvious means, and not against the part of the
system that has been best defended.

@ The attacker will not behave the way we
want him to behave.

Attack Trees

@ We need to model threats against computer
systems.

@ What are the different ways in which a
system can be attacked?

@ If we can understand this, we can design
proper countermeasures.

@ Attack trees are a way to methodically
describe the security of a system.

Structure of Attack Trees

@ The root node is the overall goal the
attacker wants to achieve.

@ Attack trees have both AND and OR nodes:

OR: Alternatives to achieving a goal.
AND: Different steps toward achieving a
goal.

@ Each node is a subgoal.
@ Child nodes are ways to achieve a subgoal.

Example | — Open a Safe

Open Safe

Img]rztsgrly {Cut Open Safe} {Learn Combo} [Pick Lock J

Get Combo Find Written
From Target Combo

P

L Bribe J [Eavesdropp J [Blackmail J L Threaten }
and

Get target to
state Combo | (LiSten to Convo

7179

Example | — Open a Safe

@ Examine the safe/safe owner/attacker’s
abilities/etc. and assign values to the
nodes:

@ P = Possible
@ | = Impossible

@ The value of an OR node is possible if any
of its children are possible.

@ The value of an AND node is possible if all
children are possible.

@ A path of P:s from a leaf to the root is a
possible attack!

@ Once you know the possible attacks, you
can think of ways to defend against them!

Example | — Open a Safe

Open Safe (P)

{ Install J ‘Cut Open Safe} ‘ Learn Combo

Improperly (1) (P) (P) } Pick Lock (l)

Get Combo ‘ Find Written
From Target (P) Combo (I)

[Bribe (P) } [Eavesdropp(l)} [Blackmail (1) } [Threaten (1) }
n

Get target to ‘ Listen to Convo‘
state Combo (1) (P)

79

Example | — Open a Safe

@ We can be more specfic and model
the cost of an attack.

@ Costs propagate up the tree:

OR nodes: take the min of the children.
AND nodes: take the sum the children.

10/79

Example | — Open a Safe

Open Safe
($10K)
Img]rztsgrly Cut Open Safe} Learn Combo} { Pick Lock ‘
($100K) ($10K) ($20K) ($30K)
Ergtmcé’;:ggt Find Written
($20K) Combo ($75K)

Bribe ($20K) Eavesdropp } Blackmail }[Threaten ‘

($60K) ($100K) ($60K)

Listen to Convo
($20K)

Get target to
state Combo
($40K)

11/79

Example || — Read a Message

Goal: Read a message sent from computer A to
B.
@ Convince sender to reveal message

@ Bribe user, OR

@ Blackmail user, OR
© Threaten user, OR
O Fool user.

12/79

Example || — Read a Message

Goal: Read a message sent from computer A to
B.
@ Convince sender to reveal message
@ Bribe user, OR
@ Blackmail user, OR
© Threaten user, OR
@ Fool user.
@ Read message while it is being entered

@ Monitor electromagnetic radiation, OR
@ Visually monitor computer screen.

12/79

Example || — Read a Message

Goal: Read a message sent from computer A to
B.
@ Convince sender to reveal message
@ Bribe user, OR
@ Blackmail user, OR
© Threaten user, OR
@ Fool user.
@ Read message while it is being entered
@ Monitor electromagnetic radiation, OR
@ Visually monitor computer screen.
© Read message while stored on A’s disk.

@ Get access to hard drive, AND
@ Read encrypted file.

12/79

Example || — Read a Message

(% gead message while being sent from A to

@ Intercept message in transit, AND
@ Read encrypted message.

13/79

Example || — Read a Message

© Read message while being sent from A to
B

@ Intercept message in transit, AND
@ Read encrypted message.

@ Convince recipient to reveal message

@ Bribe user, OR

@ Blackmail user, OR
© Threaten user, OR
O Fool user.

13/79

Example || — Read a Message

© Read message while being sent from A to
B

@ Intercept message in transit, AND
@ Read encrypted message.
@ Convince recipient to reveal message
@ Bribe user, OR
@ Blackmail user, OR
© Threaten user, OR
Q Fool user.
©Q Read message while it is being read

@ Monitor electromagnetic radiation, OR
@ Visually monitor computer screen.

13/79

Example || — Read a Message

Q (I;{eﬁd message when being stored on B’s
isk.

@ Get stored message from B’s disk after
decryption
@ Get access to disk, AND
@ Read encrypted file.
OR
@ Get stored message from backup tapes after
decryption.

14/79

Example || — Read a Message

Q (I;{eﬁd message when being stored on B’s
isk.

@ Get stored message from B’s disk after
decryption
@ Get access to disk, AND
@ Read encrypted file.
OR
@ Get stored message from backup tapes after
decryption.

© Get paper printout of message
@ Get physical access to safe, AND
@ Open the safe.

14/79

In-class Exercise: Attack Trees

@ Alice wants to make sure that Bob cannot
log into any account on the Unix machine
she is administering.

@ Alice draws an attack tree to see what
Bob’s attack options are.

@ Show the tree!
@ Source: Michael S. Pallos,

http://www.bizforum.org/whitepapers/candle-4.htma

15/79

http://www.bizforum.org/whitepapers/candle-4.htm

In-class Exercise |l

@ Every night, Alice, 16, sits down with her
laptop in front of the TV in the living room
and adds a paragraph to her diary,
describing her latest dating adventures.

@ Bob, her 13-year-old bratty brother, would
love to get his grubby hands on her writings.

@ Help Bob plan an attack (or Alice to defend
herself against an attack!) by constructing a
detailed attack tree!

16/79

In-class Exercise |Il. ..

Bob knows this about Alice:

@ She writes and stores her diary directly on
her laptop.

@ The hard drive is encrypted with 512-bit
AES.

© She’s written down her pass-phrase on a
post-it note.

© She stores the post-it note in a safe in her
bedroom.

In-class Exercise |Il. ..

@ The safe is locked with a 5-pin
pin-and-tumbler lock.

@ She carries the key to the safe on a chain
around her neck wherever she goes.

© She leaves the laptop next to her bed at
night.

@ The laptop is always connected to the
Internet over wifi.

18/79

In-class Exercise |Il. ..

We know the following about Bob:
@ He can roam freely around the house.

@ His paper-route has given him the financial
means to purchase various attack tools off
the Internet.

19/79

In-class Exercise |Il. ..

@ Your solution should consider both physical
attacks and cyber attacks.

@ | will only give you credit for attacks and
concepts we have discussed in class!

@ You don’t have to assign costs to the nodes
of the tree.

@ Make sure to mark AND and OR nodes
unambiguously.

@ You can draw the actual tree or, if you
prefer, represent the tree with indented,
nested, numbered lists.

20/79

Attack Targets

Who'’s our adversary?

@ What does a typical program look like?

22/79

Who'’s our adversary?

@ What does a typical program look like?
@ What valuables does the program contain?

22/79

Who'’s our adversary?

@ What does a typical program look like?
@ What valuables does the program contain?

@ What is the adversary’s motivation for
attacking your program?

22/79

Who'’s our adversary?

@ What does a typical program look like?
@ What valuables does the program contain?

@ What is the adversary’s motivation for
attacking your program?

@ What information does he start out with as
he attacks your program?

22/79

Who’s our adversary...?

@ What is his overall strategy for reaching his
goals?

23/79

Who’s our adversary...?

@ What is his overall strategy for reaching his
goals?
@ What tools does he have to his disposal?

23/79

Who’s our adversary...?

@ What is his overall strategy for reaching his
goals?
@ What tools does he have to his disposal?

@ What specific techniques does he use to
attack the program?

23/79

Example Program

encrypted
media

v
——>—> -

analogue
activation
code

\

player key audio

> ‘ license check ‘ ‘ tamper detect ‘

violation response fingerprint

24/79

NO g~ owWND =

Example Program

typedef unsigned int uint;
typedef uintx waddr_t;

uint player_key = Oxbabeca75;
uint the_key;

uintx key = &the_key;

FILEx audio;

int activation_code = 42;

25/79

10
11
12
13
14
15
16

Example Program

void FIRST_-FUN(){}

uint hash (waddr_t addr, waddr_t last) {
uint h = xaddr;
for (;addr<=last ;addr++) h"=xaddr;
return h;

void die(charx msg) {
fprintf (stderr,"%s!\n” ,msg);
key = NULL;

}

26

19
20
21
22
23
24
25
26
27

Example Program

uint play(uint user_key,
uint encrypted_medial],
int media_len) {
int code;
printf (”Please enter activation code: ”);
scanf("%i” ,&code);
if (codel!=activation_code) die(”wrong code”);

N

xkey = user_key player_key;

27
28
29
30
31
32
33
34
35
36
37
38
39
40

Example Program

int i;

for(i=0;i<media_len;i++) {
uint decrypted = xkey ~
asm volatile (

encrypted_mediali];

"imp L1 \n\t”
> .align 4 \n\t”
” . long 0xb0b5b0b5\n\ t”
"L \n\t”

i

if (time(0) > 1221011472) die(”expired”);
float decoded = (float)decrypted;

fprintf (audio, "%f\n” ,decoded); fflush (audio);

28

41
42
43
44
45
46
47
48
49
50

Example Program

void LAST_FUN(){}
uint player_main (uint argc, char xargv[]) {

uint
uint
uint
uint

user_key = ---

encrypted_media[100] = ---

media_len = ...

hashVal = hash ((waddr_t)FIRST_FUN,
(waddr_t)LAST_FUN);

if (hashVal != HASH) die(”tampered”);
play (user_key, encrypted_media, media_len);

29/79

What'’s the Adversary’s Motivation?

The adversary’s wants to
@ remove the protection semantics.

P
P Core

Semantics

Core

Semantics Pr cL#0n

Protection

Semantics Attack
Semantics

30/79

What'’s the Adversary’s Motivation?

The adversary’s wants to
@ remove the protection semantics.

@ add his own attack semantics (ability to
save game-state, print,...)

P

P Core
Semantics

Core

Semantics Pr cL#0n
Sepent D
Protection

Semantics

Attack
Semantics

30/79

What'’s the Adversary’s Motivation?

The adversary’s wants to
@ remove the protection semantics.
@ add his own attack semantics (ability to
save game-state, print,...)
@ ensure that the core semantics remains
unchanged.

P

P Core
Semantics

Core

Semantics Pr cL#0n
Sepent D
Protection

Semantics Attack

Semantics

30/7

What does he want to do to our
Player program?

@ get decrypted digital media

31/7

What does he want to do to our
Player program?

@ get decrypted digital media
@ extractthe player_key

31/7

What does he want to do to our
Player program?

@ get decrypted digital media

@ extractthe player_key
@ use the program after the expiration date

@ remove use-before check
@ remove activation code

31/79

What does he want to do to our
Player program?

@ get decrypted digital media

@ extractthe player_key
@ use the program after the expiration date

@ remove use-before check
@ remove activation code

@ distribute the program to other users
@ remove fingerprint 0xb0b5b0b5

31/79

What does he want to do to our
Player program?

@ get decrypted digital media

@ extractthe player_key
@ use the program after the expiration date

@ remove use-before check
@ remove activation code

@ distribute the program to other users
@ remove fingerprint 0xb0b5b0b5
@ reverse engineer the algorithms in the
player

31/79

What are the methods of attack?

@ the black box phase

o feed the program inputs,
@ record its outputs,
@ draw conclusions about its behavior.

32/79

What are the methods of attack?

@ the black box phase

o feed the program inputs,
@ record its outputs,
@ draw conclusions about its behavior.

@ the dynamic analysis phase
@ execute the program
@ record which parts get executed for different
inputs.

32/79

What are the methods of attack?

@ the black box phase

o feed the program inputs,
@ record its outputs,
@ draw conclusions about its behavior.
@ the dynamic analysis phase
@ execute the program
@ record which parts get executed for different
inputs.
@ the static analysis phase
@ examining the executable code directly
@ use disassembler, decompiler, . ..

32/79

What are the methods of attack?

Q the editing phase
@ use understanding of the internals of the
program
@ modify the executable
o disable license checks

33/79

What are the methods of attack?

Q the editing phase
@ use understanding of the internals of the
program
@ modify the executable
o disable license checks
@ the automation phase.
@ encapsulates his knowledge of the attack in an
automated script
@ use in future attacks.

33/79

Cracking with gdb

Learning the executable (Linux)

@ Print dynamic symbols:

[> objdump -T player2 }

@ Disassemble:

[> objdump -d player2 | head]

© Start address:

£> objdump -f player2 | grep start J

© Address and size of segments:

£> objdump -x player2 | egrep ’rodataltexthameJ

35/79

Learning the executable (Mac OS X)

@ Print dynamic symbols:

£> objdump -T player2

© Disassemble:

£> otool -t -v player2

© Start address:

£> otool -t -v player2 | head

© Address and size of segments:

otool -1 player2 | gawk ’/__cstring/,/size/{print}’

Lotool -1 player2 | gawk ’'/__text/,/size/{print}’

36/79

Learning the executable

@ Find strings in the program:

£> strings player?2

@ The strings and their offsets:

[> strings -o player?

© The bytes of the executable:

[> od —-a player?

7179

Tracing the executable

@ 1ltrace traces library calls:

£> ltrace -1 -e printf player?

Q strace traces system calls:

[> strace —-i -e write player2

© On Mac OS X:

[sudo dtruss playerl

38/79

Debugging with gdb

@ To start gdb:

Lgdb -write —-silent —--args player2 Oxca7callb 1@@0

@ Search for a string in an executable:

‘(gdb) find startaddress, +length, "string" J

(gdb) find startaddress, stopaddress, "string"

39/79

Debugging with gdb

@ Breakpoints:

(gdb) break *0x......
(gdb) hbreak *0x......

hbreak sets a hardware breakpoint which
doesn’t modify the executable itself.

@ Waitchpoints:

(gdb) rwatch *0x...... }

(gdb) awatch *0x......

40/79

Debugging with gdb. . .

@ To disassemble instructions:

(gdb) disass startaddress endaddress
(gdb) x/31i address
(gdb) x/1i $pc

@ To examine data (x=hex,s=string,
d=decimal, b=byte,...):

(gdb) x/x address
(gdb) x/s address
(gdb) x/d address
(gdb) x/b address

@ Print register values:

L(gdb) info registers

41/79

o

Debugging with gdb. . .

Examine the callstack:

(gdb) where

(gdb) bt —— same as where
(gdb) up —-— previous frame
(gdb) down —-— next frame

Step one instruction at a time:

.

(gdb) display/i S$pc
(gdb) stepi —-— step one instruction
(gdb) nexti —-— step over function calls

Modify a value in memory:

-

N\

(gdb) set {unsigned char}address = wvalue
(gdb) set {int}address = value

42/79

Patching executables with gdb

Cracking an executable proceedes in these
steps:
@ find the right address in the executable,
Q find what the new instruction should be,
© modify the instruction in memory,
@ save the changes to the executable file.
Start the program to allow patching:

[> gdb -write —-g playerl }

Make the patch and exit:

(gdb) set {unsigned char} 0x804856f = 0x7f
(gdb) quit

43/79

Let’s Attack!

Let’s crack!

@ Let’s get a feel for the types of techniques
attackers typically use.

@ Our example cracking target will be the
DRM player.

@ Our chief cracking tool will be the gdb
debugger.

45/79

Step 1: Learn about the executable

~

> file player
player: ELF 64—bit LSB executable, dynamically linke

[eX

> objdump —-T player
DYNAMIC SYMBOL TABLE:
Oxa4 scanf

0x90 fprintf

0x12 time

> objdump —x player | egrep ’'rodata|text|Name’

Name Size VMA LMA File off
.text 0x4f8 0x4006a0 0x4006a0 O0x6a0
.rodata 0x84 0x400ba8 0x400ba8 O0xba8

> objdump —f player | grep start
start address 0x4006a0

46/79

Step 2: Breaking on library functions

@ Treat the program as a black box
@ Feed it inputs to see how it behaves.

> player Oxca7cal1i5 1 2 3 4
Please enter activation code: 42
expired!

Segmentation fault

@ Find the assembly code equivalent of
if (time (0) > some value)---
@ Replace it with

if (time(0) <= some value):---

27
28
29
30
31
32
33
34

Example Program

int

for(i=0;i<media_len;i++) {
uint decrypted = xkey ~ encrypted_media[i];
if (time(0) > 1221011472) die (”expired”);
float decoded = (float)decrypted;

fprintf (audio, "%f\n” ,decoded);

fflush (audio);

48/79

Breaking on library functions

y '3
time () {...}
open() {...} time
write () {...}
play
if (time()>...) main
abort ()
Stack

Y

49/79

Step 2: Breaking on library functions

At 0x4008bc is the offending conditional branch:

> gdb —write —silent —args player 0Oxca7cal15 \
1000 2000 3000 4000

(gdb) break time

Breakpoint 1 at 0x400680

(gdb) run

Please enter activation code: 42

Breakpoint 1, 0x400680 in time ()

(gdb) where 2

#0 0x400680 in time

#1 0x4008b6 in ?7?

(gdb) up

#1 0x4008b6 in ?7?

(gdb) disassemble $pc—5 $pc+7

0x4008b1 callg 0x400680

0x4008b6 cmp $0x48c72810,%rax

0x4008bc jle 0x4008c8

50/79

X86 condition codes

CCCC [Name Means

0000 (0] overflow

0001 NO Not overflow

0010 C/B/NAE Carry, below, not above nor equal
0011 NC/AE/NB | Not carry, above or equal, not below
0100 E/Z Equal, zero

0101 NE/NZ Not equal, not zero

0110 BE/NA Below or equal, not above

0111 A/NBE Above, not below nor equal

1000 S Sign (negative)

1001 NS Not sign

1010 P/PE Parity, parity even

1011 NP/PO Not parity, parity odd

1100 L/NGE Less, not greater nor equal

1101 GE/NL Greater or equal, not less

1110 LE/NG Less or equal, not greater

1111 G/NLE Greater, not less nor equal

51/79

Step 2: Breaking on library functions

Patch the executable:

@ replace the j1e with a jg (x86 opcode
0x7f)
(gdb) set {unsigned char}0x4008bc = Ox7f

(gdb) disassemble 0x4008bc 0x4008be
0x4008bc ig 0x4008c8

52/79

Step 3: Static pattern-matching

@ search the executable for character strings.

> player Oxca7call5 1000 2000 3000 4000

tampered!

Please enter activation code: 99
wrong code!

Segmentation fault

53/79

19
20
21
22
23
24
25
26
27

Example Program

uint play(uint user_key,
uint encrypted_medial],
int media_len) {
int code;
printf (”Please enter activation code: ”);
scanf("%i” ,&code);
if (codel!=activation_code) die(”wrong code”);

N

xkey = user_key player_key;

54/79

Static pattern-matching

X

msg:

.ascii "wrong!"

if (wrong_code)
printf (msg)

A
Y

55/79

Step 3: Static pattern-matching

@ the code that checks the activation code
looks something like this:

addr1: .ascii "wrong code”
cmp read_value,activation_code
je somewhere

addr2: move addr1, reg0
call printf

56/79

Step 3: Static pattern-matching

@ search the data segment to find address
addrl where "wrong code" is allocated.

@ search through the text segment for an
instruction that contains that address as a
literal:

(gdb) find 0x400ba8,+0x84,”wrong code”
0x400be2

(gdb) find 0x4006a0,+0x4f8 ,0x400be2
0x400862

(gdb) disassemble 0x40085d 0x400867
0x40085d cmp Yeax,%edx

0x40085f je 0x40086b

0x400861 mov $0x400be2,%edi
0x400866 callg 0x4007e0

Step 5: Recovering internal data

@ ask the debugger to print out decrypted
media data!

(gdb) hbreak x0x4008a6
(gdb) commands

>x/x —0x8+$rbp

>continue

>end

(gdb) cont

Please enter activation code: 42
Breakpoint 2, 0x4008a6
Ox7fffffffdc88: Oxbabec99d
Breakpoint 2, 0x4008a6
Ox7fffffffdc88: Oxbabecdab

58/79

Recovering internal data

=

int audio

audio=decrypt ()

Y

59/79

Step 6: Tampering with the
environment

@ To avoid triggering the timeout, wind back
the system clock!

@ Change the library search path to force the
program to pick up hacked libraries!

© Hack the OS (we'll see this later).

60/79

Tampering with the environment

if (time()>...)
abort ()

A
Y

61/79

Step 8: Differential attacks

@ Find two differently fingerprinted copies of
the program

Q Diff them!

asm (asm (
"jmp L1 \n\t” "jmp L1 \n\t”
”.align 4 \n\t” ”.align 4 \n\t”
”.long 0xb0b5b0b5\n\t” ”.long Oxadabada5\n\t”
"L1: \n\t” "L1: \n\t”

);)

62/79

Differential attacks

user:
.ascii "BOB"

user:
.ascii "ca "

& risiee
m%ﬂ‘ "I AM BOB!"
”$ ¥ 1 AM CALI"

63/79

33 1D 42 BD
18 OF 8E

89 EO 48 co

48 B3 C3 OF 2A

Co: OF BA 15

E8 6A 17 39 DD

00 44 8B 22 G A5]

1 FF BB 2% o0 48 3D

3D B2 93 0 B8E DO 47 G PR

CO E8 BS o0 48 C7 05 28

o0 E9 79 ' FEEP 66 OF AF Qo

83 ¢4 10 shodl B 41 BD 41 5E0E3 L[1AN
lqq
<Arrow keys move F find RET next difference ESC qult T move top

il /EBCDIC E =dit file 6 goto positicn B move bottom

Step 9: Decompilation

LO80482A0(A8, Ac, A10) {

ebx = A8;

esp "Please enter activation code:

eax = L080499CO0();

V4 = ebp — 16;

xesp = 0x80a0831 ;

eax = L080499F0 ();

eax = *(ebp — 16);

if (eax != xLO80BE2CC) {
V8 = ”"wrong code”;
V4 = 0x80a082c;
xesp = xLO80OBE704;
eax = L08049990 ();
xLO80BE2C8 = 0;

3

65

19
20
21
22
23
24
25
26
27

Example Program

uint play(uint user_key,
uint encrypted_medial],
int media_len) {
int code;
printf (”Please enter activation code: ”);
scanf("%i” ,&code);
if (codel!=activation_code) die(”wrong code”);

N

xkey = user_key player_key;

66/79

eax = *xL08B80BE2CS;
edi = 0;
ebx = ebx " xLO80BE2C4;
xeax = ebx;
eax = A10;
if (eax <= 0) {} else {

while (1) {

esi = x(Ac + edi x 4);

L08048368: =xesp = 0;
if (LOB056DDO() > 1521011472)
V8 = “expired”;
V4 = 0x80a082c;
xesp = xLO8OBE704;
L08049990 () ;
xLO80BE2C8 = 0;

—
QOWONOOOTA, WN =

_ e e e e e e
coONO O PR~ WN —

Example Program

typedef unsigned int uint;
typedef uintx waddr_t;

uint player_key = Oxbabeca75;
uint the_key;

uintx key = &the_key;

FILEx audio;

int activation_code = 42;

void FIRST_-FUN(){}

uint hash (waddr_t addr, waddr_t last) {
uint h = xaddr;
for (;addr<=last;addr++) h"=xaddr;
return h;

void die (charx msg) {
fprintf (stderr,”%s!\n” ,msg);
key = NULL;

1

68

ebx = ebx " esi;

(save)O;

edi = edi + 1;

(save)ebx;

esp = esp + 8;

V8 *@Sp;

V4 = "%f\n”; xesp = xL080C02C8;
eax = L08049990();

eax = *xL080C02C8;

xeSp = eax;

eax = L08049A20();

if (edi == A10) {goto L080483a7;}
eax = xL0O8B0BE2C8; ebx = xeax;

}
ch = 176; ch = 176;
goto L08048368;

}
L080483a7 :

}

LO80483AF (A8, Ac) {
ecx 0x8048260;
edx 0x8048230;
eax x1.08048230;
f (0x8048260 >= 0x8048230) {
do {
eax = eax = xedx;
edx = edx + 4;
} while(ecx >= edx);

}

if (eax != 318563869) {
V8 = "tampered”;
V4 = 0x80a082c;
xesp = xLO80BE704;
L08049990 () ;
xL0O80BE2C8 = O0;

}

V8 = A8 — 2;

4 = ebp + —412;

xesp = x(ebp + —416);

return (LO80482A0());

—
QOWONOOOTA, WN =

_ e e e e e e
coONO O PR~ WN —

Example Program

typedef unsigned int uint;
typedef uintx waddr_t;

uint player_key = Oxbabeca75;
uint the_key;

uintx key = &the_key;

FILEx audio;

int activation_code = 42;

void FIRST_-FUN(){}

uint hash (waddr_t addr, waddr_t last) {
uint h = xaddr;
for (;addr<=last;addr++) h"=xaddr;
return h;

void die (charx msg) {
fprintf (stderr,”%s!\n” ,msg);
key = NULL;

1

71

Discussion

What can the attacker do?

@ Pattern-match on static code and execution
patterns.

73/79

What can the attacker do?

@ Pattern-match on static code and execution
patterns.

@ Disassemble/decompile machine code.

73/79

What can the attacker do?

@ Pattern-match on static code and execution
patterns.

@ Disassemble/decompile machine code.
@ Debug binary code without source code.

73/79

What can the attacker do?

@ Pattern-match on static code and execution
patterns.

@ Disassemble/decompile machine code.
@ Debug binary code without source code.
@ Compare two related program versions.

73/79

What can the attacker do?

@ Pattern-match on static code and execution
patterns.

@ Disassemble/decompile machine code.

@ Debug binary code without source code.
@ Compare two related program versions.
@ Modify the executable.

73/79

What can the attacker do?

@ Pattern-match on static code and execution
patterns.

@ Disassemble/decompile machine code.

@ Debug binary code without source code.
@ Compare two related program versions.
@ Modify the executable.

@ Tamper with the execution environment.

73/79

In-Class Exercise

@ Alice writes a program that she only wants
Bob to execute 5 times.

@ At the end of each run, the program writes
afile .AliceSecretCount with the
number of runs so far.

@ At the beginning of each run, the program
reads the file .AliceSecretCount and, if
the number of runs so far is > 5, it exits with
an error message BAD BOB!.

@ Draw a detailed attack tree with all attacks
available to Bob!

74/79

