
c© July 28, 2014 Christian Collberg

Attack Models

ISSISP Verona 2014

Christian Collberg
University of Arizona

www.cs.arizona.edu/˜collberg

www.cs.arizona.edu/~collberg

Models

Models

To build secure systems, we need sound
models.

Which security properties should be
assured?

What type of attacks can be launched?

3 / 79

Principle of Easiest Penetration

Definition (Principle of Easiest Penetration)

An adversary must be expected to use any
available means of penetration — not the most
obvious means, and not against the part of the
system that has been best defended.

The attacker will not behave the way we
want him to behave.

4 / 79

Attack Trees

We need to model threats against computer
systems.

What are the different ways in which a
system can be attacked?

If we can understand this, we can design
proper countermeasures.

Attack trees are a way to methodically
describe the security of a system.

5 / 79

Structure of Attack Trees

The root node is the overall goal the
attacker wants to achieve.

Attack trees have both AND and OR nodes:

OR: Alternatives to achieving a goal.
AND: Different steps toward achieving a

goal.

Each node is a subgoal.

Child nodes are ways to achieve a subgoal.

6 / 79

Example I — Open a Safe

Open Safe

Pick LockLearn Combo

Find Written
Combo

Get Combo
From Target

ThreatenBlackmailEavesdropp

Listen to Convo
Get target to
state Combo

Bribe

Cut Open Safe
Install

Improperly

and

7 / 79

Example I — Open a Safe
Examine the safe/safe owner/attacker’s
abilities/etc. and assign values to the
nodes:

P = Possible
I = Impossible

The value of an OR node is possible if any
of its children are possible.
The value of an AND node is possible if all
children are possible.
A path of P:s from a leaf to the root is a
possible attack!
Once you know the possible attacks, you
can think of ways to defend against them!

8 / 79

Example I — Open a Safe

Open Safe (P)

Pick Lock (I)
Learn Combo

(P)

Find Written
Combo (I)

Get Combo
From Target (P)

Threaten (I)Blackmail (I)Eavesdropp (I)

Listen to Convo
(P)

Get target to
state Combo (I)

Bribe (P)

Cut Open Safe
(P)

Install
Improperly (I)

and

9 / 79

Example I — Open a Safe

We can be more specfic and model
the cost of an attack.

Costs propagate up the tree:

OR nodes: take the min of the children.
AND nodes: take the sum the children.

10 / 79

Example I — Open a Safe

Open Safe
($10K)

Pick Lock
($30K)

Learn Combo
($20K)

Find Written
Combo ($75K)

Get Combo
From Target

($20K)

Threaten
($60K)

Blackmail
($100K)

Eavesdropp
($60K)

Listen to Convo
($20K)

Get target to
state Combo

($40K)

Bribe ($20K)

Cut Open Safe
($10K)

Install
Improperly

($100K)

and

11 / 79

Example II — Read a Message

Goal: Read a message sent from computer A to
B.

1 Convince sender to reveal message
1 Bribe user, OR
2 Blackmail user, OR
3 Threaten user, OR
4 Fool user.

12 / 79

Example II — Read a Message

Goal: Read a message sent from computer A to
B.

1 Convince sender to reveal message
1 Bribe user, OR
2 Blackmail user, OR
3 Threaten user, OR
4 Fool user.

2 Read message while it is being entered
1 Monitor electromagnetic radiation, OR
2 Visually monitor computer screen.

12 / 79

Example II — Read a Message

Goal: Read a message sent from computer A to
B.

1 Convince sender to reveal message
1 Bribe user, OR
2 Blackmail user, OR
3 Threaten user, OR
4 Fool user.

2 Read message while it is being entered
1 Monitor electromagnetic radiation, OR
2 Visually monitor computer screen.

3 Read message while stored on A’s disk.
1 Get access to hard drive, AND
2 Read encrypted file.

12 / 79

Example II — Read a Message

4 Read message while being sent from A to
B.

1 Intercept message in transit, AND
2 Read encrypted message.

13 / 79

Example II — Read a Message

4 Read message while being sent from A to
B.

1 Intercept message in transit, AND
2 Read encrypted message.

5 Convince recipient to reveal message
1 Bribe user, OR
2 Blackmail user, OR
3 Threaten user, OR
4 Fool user.

13 / 79

Example II — Read a Message

4 Read message while being sent from A to
B.

1 Intercept message in transit, AND
2 Read encrypted message.

5 Convince recipient to reveal message
1 Bribe user, OR
2 Blackmail user, OR
3 Threaten user, OR
4 Fool user.

6 Read message while it is being read
1 Monitor electromagnetic radiation, OR
2 Visually monitor computer screen.

13 / 79

Example II — Read a Message

7 Read message when being stored on B’s
disk.

1 Get stored message from B’s disk after
decryption

1 Get access to disk, AND
2 Read encrypted file.

OR
2 Get stored message from backup tapes after

decryption.

14 / 79

Example II — Read a Message

7 Read message when being stored on B’s
disk.

1 Get stored message from B’s disk after
decryption

1 Get access to disk, AND
2 Read encrypted file.

OR
2 Get stored message from backup tapes after

decryption.

8 Get paper printout of message
1 Get physical access to safe, AND
2 Open the safe.

14 / 79

In-class Exercise: Attack Trees

Alice wants to make sure that Bob cannot
log into any account on the Unix machine
she is administering.

Alice draws an attack tree to see what
Bob’s attack options are.

Show the tree!

Source: Michael S. Pallos,
http://www.bizforum.org/whitepapers/candle-4.htm.

15 / 79

http://www.bizforum.org/whitepapers/candle-4.htm

In-class Exercise II

Every night, Alice, 16, sits down with her
laptop in front of the TV in the living room
and adds a paragraph to her diary,
describing her latest dating adventures.

Bob, her 13-year-old bratty brother, would
love to get his grubby hands on her writings.

Help Bob plan an attack (or Alice to defend
herself against an attack!) by constructing a
detailed attack tree!

16 / 79

In-class Exercise II. . .

Bob knows this about Alice:
1 She writes and stores her diary directly on

her laptop.
2 The hard drive is encrypted with 512-bit

AES.
3 She’s written down her pass-phrase on a

post-it note.
4 She stores the post-it note in a safe in her

bedroom.

17 / 79

In-class Exercise II. . .

1 The safe is locked with a 5-pin
pin-and-tumbler lock.

2 She carries the key to the safe on a chain
around her neck wherever she goes.

3 She leaves the laptop next to her bed at
night.

4 The laptop is always connected to the
Internet over wifi.

18 / 79

In-class Exercise II. . .

We know the following about Bob:
1 He can roam freely around the house.
2 His paper-route has given him the financial

means to purchase various attack tools off
the Internet.

19 / 79

In-class Exercise II. . .

Your solution should consider both physical
attacks and cyber attacks.

I will only give you credit for attacks and
concepts we have discussed in class!

You don’t have to assign costs to the nodes
of the tree.

Make sure to mark AND and OR nodes
unambiguously.

You can draw the actual tree or, if you
prefer, represent the tree with indented,
nested, numbered lists.

20 / 79

Attack Targets

Who’s our adversary?

What does a typical program look like?

22 / 79

Who’s our adversary?

What does a typical program look like?

What valuables does the program contain?

22 / 79

Who’s our adversary?

What does a typical program look like?

What valuables does the program contain?

What is the adversary’s motivation for
attacking your program?

22 / 79

Who’s our adversary?

What does a typical program look like?

What valuables does the program contain?

What is the adversary’s motivation for
attacking your program?

What information does he start out with as
he attacks your program?

22 / 79

Who’s our adversary. . . ?

What is his overall strategy for reaching his
goals?

23 / 79

Who’s our adversary. . . ?

What is his overall strategy for reaching his
goals?

What tools does he have to his disposal?

23 / 79

Who’s our adversary. . . ?

What is his overall strategy for reaching his
goals?

What tools does he have to his disposal?

What specific techniques does he use to
attack the program?

23 / 79

Example Program

audioplayer key

encrypted

media

tamper−detectlicense−check

decrypt decode

analogue

fingerprintviolation−response

activation

code

user key

24 / 79

Example Program

✞ ☎

1 typedef unsigned i n t u i n t ;
2 typedef u i n t ∗ waddr t ;
3 u i n t p layer key = 0xbabeca75 ;
4 u i n t the key ;
5 u i n t ∗ key = &the key ;
6 FILE∗ audio ;
7 i n t a c t i v a t i o n c o d e = 42;

✝ ✆

25 / 79

Example Program

✞ ☎

7 void FIRST FUN (){}
8 u i n t hash (waddr t addr , waddr t l a s t) {
9 u i n t h = ∗addr ;

10 for (; addr<=l a s t ; addr ++) hˆ=∗ addr ;
11 return h ;
12 }
13 void die (char∗ msg) {
14 f p r i n t f (s tde r r , ”%s !\n ” ,msg) ;
15 key = NULL ;
16 }

✝ ✆

26 / 79

Example Program

✞ ☎

19 u i n t p lay (u i n t user key ,
20 u i n t encrypted media [] ,
21 i n t media len) {
22 i n t code ;
23 p r i n t f (” Please enter a c t i v a t i o n code : ”) ;
24 scanf (”%i ” ,&code) ;
25 i f (code != a c t i v a t i o n c o d e) d ie (” wrong code ”) ;
26
27 ∗key = user key ˆ p layer key ;

✝ ✆

27 / 79

Example Program

✞ ☎

27 i n t i ;
28 for (i =0; i<media len ; i ++) {
29 u i n t decrypted = ∗key ˆ encrypted media [i] ;
30 asm v o l a t i l e (
31 ” jmp L1 \n\ t ”
32 ” . a l i g n 4 \n\ t ”
33 ” . long 0xb0b5b0b5\n\ t ”
34 ” L1 : \n\ t ”
35) ;
36 i f (t ime (0) > 1221011472) d ie (” exp i red ”) ;
37 f l o a t decoded = (f l o a t) decrypted ;
38 f p r i n t f (audio , ”%f \n ” , decoded) ; f f l u s h (audio) ;
39 }
40 }

✝ ✆

28 / 79

Example Program

✞ ☎

41 void LAST FUN(){}
42 u i n t p layer main (u i n t argc , char ∗argv []) {
43 u i n t user key = · · ·
44 u i n t encrypted media [100] = · · ·
45 u i n t media len = · · ·
46 u i n t hashVal = hash ((waddr t) FIRST FUN ,
47 (waddr t)LAST FUN) ;
48 i f (hashVal != HASH) d ie (” tampered ”) ;
49 p lay (user key , encrypted media , media len) ;
50 }

✝ ✆

29 / 79

What’s the Adversary’s Motivation?

The adversary’s wants to

remove the protection semantics.

Protection

Semantics

Core

Semantics

Protection

Semantics

Core

Semantics

Attack

Semantics

P

P

30 / 79

What’s the Adversary’s Motivation?

The adversary’s wants to

remove the protection semantics.
add his own attack semantics (ability to
save game-state, print,. . .)

Protection

Semantics

Core

Semantics

Protection

Semantics

Core

Semantics

Attack

Semantics

P

P

30 / 79

What’s the Adversary’s Motivation?

The adversary’s wants to

remove the protection semantics.
add his own attack semantics (ability to
save game-state, print,. . .)
ensure that the core semantics remains
unchanged.

Protection

Semantics

Core

Semantics

Protection

Semantics

Core

Semantics

Attack

Semantics

P

P

30 / 79

What does he want to do to our
Player program?

get decrypted digital media

31 / 79

What does he want to do to our
Player program?

get decrypted digital media

extract the player key

31 / 79

What does he want to do to our
Player program?

get decrypted digital media

extract the player key

use the program after the expiration date
remove use-before check
remove activation code

31 / 79

What does he want to do to our
Player program?

get decrypted digital media

extract the player key

use the program after the expiration date
remove use-before check
remove activation code

distribute the program to other users
remove fingerprint 0xb0b5b0b5

31 / 79

What does he want to do to our
Player program?

get decrypted digital media

extract the player key

use the program after the expiration date
remove use-before check
remove activation code

distribute the program to other users
remove fingerprint 0xb0b5b0b5

reverse engineer the algorithms in the
player

31 / 79

What are the methods of attack?

1 the black box phase
feed the program inputs,
record its outputs,
draw conclusions about its behavior.

32 / 79

What are the methods of attack?

1 the black box phase
feed the program inputs,
record its outputs,
draw conclusions about its behavior.

2 the dynamic analysis phase
execute the program
record which parts get executed for different
inputs.

32 / 79

What are the methods of attack?

1 the black box phase
feed the program inputs,
record its outputs,
draw conclusions about its behavior.

2 the dynamic analysis phase
execute the program
record which parts get executed for different
inputs.

3 the static analysis phase
examining the executable code directly
use disassembler, decompiler, . . .

32 / 79

What are the methods of attack?

4 the editing phase
use understanding of the internals of the
program
modify the executable
disable license checks

33 / 79

What are the methods of attack?

4 the editing phase
use understanding of the internals of the
program
modify the executable
disable license checks

5 the automation phase.
encapsulates his knowledge of the attack in an
automated script
use in future attacks.

33 / 79

Cracking with gdb

Learning the executable (Linux)

1 Print dynamic symbols:
✞ ☎

> objdump -T player2
✝ ✆

2 Disassemble:
✞ ☎

> objdump -d player2 | head
✝ ✆

3 Start address:
✞ ☎

> objdump -f player2 | grep start
✝ ✆

4 Address and size of segments:
✞ ☎

> objdump -x player2 | egrep ’rodata|text|Name’
✝ ✆

35 / 79

Learning the executable (Mac OS X)

1 Print dynamic symbols:
✞ ☎

> objdump -T player2
✝ ✆

2 Disassemble:
✞ ☎

> otool -t -v player2
✝ ✆

3 Start address:
✞ ☎

> otool -t -v player2 | head
✝ ✆

4 Address and size of segments:
✞ ☎
otool -l player2 | gawk ’/__text/,/size/{print}’

otool -l player2 | gawk ’/__cstring/,/size/{print}’
✝ ✆

36 / 79

Learning the executable

1 Find strings in the program:
✞ ☎

> strings player2
✝ ✆

2 The strings and their offsets:
✞ ☎

> strings -o player2
✝ ✆

3 The bytes of the executable:
✞ ☎

> od -a player2
✝ ✆

37 / 79

Tracing the executable

1 ltrace traces library calls:
✞ ☎

> ltrace -i -e printf player2
✝ ✆

2 strace traces system calls:
✞ ☎

> strace -i -e write player2
✝ ✆

3 On Mac OS X:
✞ ☎

sudo dtruss player1
✝ ✆

38 / 79

Debugging with gdb

1 To start gdb:
✞ ☎

gdb -write -silent --args player2 0xca7ca115 1000
✝ ✆

2 Search for a string in an executable:
✞ ☎

(gdb) find startaddress, +length, "string"

(gdb) find startaddress, stopaddress, "string"
✝ ✆

39 / 79

Debugging with gdb

1 Breakpoints:
✞ ☎

(gdb) break *0x......

(gdb) hbreak *0x......
✝ ✆

hbreak sets a hardware breakpoint which
doesn’t modify the executable itself.

2 Watchpoints:
✞ ☎

(gdb) rwatch *0x......

(gdb) awatch *0x......
✝ ✆

40 / 79

Debugging with gdb. . .

1 To disassemble instructions:
✞ ☎

(gdb) disass startaddress endaddress

(gdb) x/3i address

(gdb) x/i $pc
✝ ✆

2 To examine data (x=hex,s=string,
d=decimal, b=byte,. . .):
✞ ☎

(gdb) x/x address

(gdb) x/s address

(gdb) x/d address

(gdb) x/b address
✝ ✆

3 Print register values:
✞ ☎

(gdb) info registers
✝ ✆

41 / 79

Debugging with gdb. . .

1 Examine the callstack:
✞ ☎

(gdb) where

(gdb) bt -- same as where

(gdb) up -- previous frame

(gdb) down -- next frame
✝ ✆

2 Step one instruction at a time:
✞ ☎

(gdb) display/i $pc

(gdb) stepi -- step one instruction

(gdb) nexti -- step over function calls
✝ ✆

3 Modify a value in memory:
✞ ☎

(gdb) set {unsigned char}address = value

(gdb) set {int}address = value
✝ ✆

42 / 79

Patching executables with gdb

Cracking an executable proceedes in these
steps:

1 find the right address in the executable,
2 find what the new instruction should be,
3 modify the instruction in memory,
4 save the changes to the executable file.

Start the program to allow patching:
✞ ☎

> gdb -write -q player1
✝ ✆

Make the patch and exit:
✞ ☎

(gdb) set {unsigned char} 0x804856f = 0x7f

(gdb) quit
✝ ✆

43 / 79

Let’s Attack!

Let’s crack!

Let’s get a feel for the types of techniques
attackers typically use.

Our example cracking target will be the
DRM player.

Our chief cracking tool will be the gdb

debugger.

45 / 79

Step 1: Learn about the executable
✞ ☎

> f i l e p layer
p layer : ELF 64− b i t LSB executable , dynamica l ly l i n k e d

> objdump −T p layer
DYNAMIC SYMBOL TABLE:
0xa4 scanf
0x90 f p r i n t f
0x12 t ime

> objdump −x p layer | egrep ’ rodata | t e x t |Name ’
Name Size VMA LMA F i l e o f f
. t e x t 0x4f8 0x4006a0 0x4006a0 0x6a0
. rodata 0x84 0x400ba8 0x400ba8 0xba8

> objdump − f p layer | grep s t a r t
s t a r t address 0x4006a0

✝ ✆

46 / 79

Step 2: Breaking on library functions

Treat the program as a black box

Feed it inputs to see how it behaves.
✞ ☎

> p layer 0xca7ca115 1 2 3 4
Please enter a c t i v a t i o n code : 42
exp i red !
Segmentation f a u l t
✝ ✆

Find the assembly code equivalent of

if (time(0) > some value)· · ·

Replace it with

if (time(0) <= some value)· · ·

47 / 79

Example Program

✞ ☎

27 i n t i ;
28 for (i =0; i<media len ; i ++) {
29 u i n t decrypted = ∗key ˆ encrypted media [i] ;
30 i f (t ime (0) > 1221011472) d ie (” exp i red ”) ;
31 f l o a t decoded = (f l o a t) decrypted ;
32 f p r i n t f (audio , ”%f \n ” , decoded) ; f f l u s h (audio) ;
33 }
34 }

✝ ✆

48 / 79

Breaking on library functions

main

Stack

time(){...}

open() {...}

write() {...}
> break time

> bt

> set ... 0x7e

> gdb −−write

if (time()>...)

> quitabort();

time

play

49 / 79

Step 2: Breaking on library functions

At 0x4008bc is the offending conditional branch:
✞ ☎

> gdb −w r i t e −s i l e n t −−args p layer 0xca7ca115 \
1000 2000 3000 4000

(gdb) break t ime
Breakpoint 1 a t 0x400680
(gdb) run
Please enter a c t i v a t i o n code : 42
Breakpoint 1 , 0x400680 i n t ime ()
(gdb) where 2
#0 0x400680 i n t ime
#1 0x4008b6 i n ??
(gdb) up
#1 0x4008b6 i n ??
(gdb) disassemble $pc−5 $pc+7
0x4008b1 c a l l q 0x400680
0x4008b6 cmp $0x48c72810,%rax
0x4008bc j l e 0x4008c8
✝ ✆50 / 79

X86 condition codes

CCCC Name Means

0000 O overflow

0001 NO Not overflow

0010 C/B/NAE Carry, below, not above nor equal

0011 NC/AE/NB Not carry, above or equal, not below

0100 E/Z Equal, zero

0101 NE/NZ Not equal, not zero

0110 BE/NA Below or equal, not above

0111 A/NBE Above, not below nor equal

1000 S Sign (negative)

1001 NS Not sign

1010 P/PE Parity, parity even

1011 NP/PO Not parity, parity odd

1100 L/NGE Less, not greater nor equal

1101 GE/NL Greater or equal, not less

1110 LE/NG Less or equal, not greater

1111 G/NLE Greater, not less nor equal

51 / 79

Step 2: Breaking on library functions

Patch the executable:

replace the jle with a jg (x86 opcode
0x7f)

✞ ☎

(gdb) set {unsigned char}0x4008bc = 0x7f
(gdb) disassemble 0x4008bc 0x4008be
0x4008bc j g 0x4008c8
✝ ✆

52 / 79

Step 3: Static pattern-matching

search the executable for character strings.
✞ ☎

> player 0xca7ca115 1000 2000 3000 4000

tampered!

Please enter activation code: 99

wrong code!

Segmentation fault
✝ ✆

53 / 79

Example Program

✞ ☎

19 u i n t p lay (u i n t user key ,
20 u i n t encrypted media [] ,
21 i n t media len) {
22 i n t code ;
23 p r i n t f (” Please enter a c t i v a t i o n code : ”) ;
24 scanf (”%i ” ,&code) ;
25 i f (code != a c t i v a t i o n c o d e) d ie (” wrong code ”) ;
26
27 ∗key = user key ˆ p layer key ;

✝ ✆

54 / 79

Static pattern-matching

msg:

 .ascii "wrong!"

if (wrong_code)

> find "wrong!"

printf(msg);

> gdb

found at 0x0b9a

> find 0x0b9a

> disas

found at 0x6a3c

55 / 79

Step 3: Static pattern-matching

the code that checks the activation code
looks something like this:

✞ ☎

addr1 : . a s c i i ” wrong code ”
. . .
cmp read value,activation code

j e somewhere
addr2 : move addr1 , reg0

c a l l p r i n t f
✝ ✆

56 / 79

Step 3: Static pattern-matching

1 search the data segment to find address
addr1 where "wrong code" is allocated.

2 search through the text segment for an
instruction that contains that address as a
literal:

✞ ☎

(gdb) f i n d 0x400ba8 ,+0x84 , ” wrong code ”
0x400be2
(gdb) f i n d 0x4006a0 ,+0 x4f8 ,0 x400be2
0x400862
(gdb) disassemble 0x40085d 0x400867
0x40085d cmp %eax,%edx
0x40085f j e 0x40086b
0x400861 mov $0x400be2,%edi
0x400866 c a l l q 0x4007e0
✝ ✆

57 / 79

Step 5: Recovering internal data

1 ask the debugger to print out decrypted
media data!

✞ ☎

(gdb) hbreak ∗0x4008a6
(gdb) commands
>x / x −0x8+$rbp
>continue
>end
(gdb) cont
Please enter a c t i v a t i o n code : 42
Breakpoint 2 , 0x4008a6
0 x 7 f f f f f f f d c 8 8 : 0xbabec99d
Breakpoint 2 , 0x4008a6
0 x 7 f f f f f f f d c 8 8 : 0xbabecda5

. . .
✝ ✆

58 / 79

Recovering internal data

> when break

 print audio

int audio

audio=decrypt();

> gdb

> watch audio

59 / 79

Step 6: Tampering with the
environment

1 To avoid triggering the timeout, wind back
the system clock!

2 Change the library search path to force the
program to pick up hacked libraries!

3 Hack the OS (we’ll see this later).

60 / 79

Tampering with the environment

> player

abort();

> set time \

19551112,10:04pm

if (time()>...)

61 / 79

Step 8: Differential attacks

1 Find two differently fingerprinted copies of
the program

2 Diff them!
✞ ☎
asm (

” jmp L1 \n\ t ”
” . a l i g n 4 \n\ t ”
” . long 0xb0b5b0b5\n\ t ”
” L1 : \n\ t ”

) ;
✝ ✆

✞ ☎
asm (

” jmp L1 \n\ t ”
” . a l i g n 4 \n\ t ”
” . long 0xada5ada5\n\ t ”
” L1 : \n\ t ”

) ;
✝ ✆

62 / 79

Differential attacks

user:

user:

.ascii "CAL"

.ascii "BOB" > vbindiff p1 p2

"I AM BOB!"

"I AM CAL!"

63 / 79

Step 9: Decompilation
✞ ☎

L080482A0 (A8 , Ac , A10) {
ebx = A8 ;
esp = ” Please enter a c t i v a t i o n code : ” ;
eax = L080499C0 () ;
V4 = ebp − 16;
∗esp = 0x80a0831 ;
eax = L080499F0 () ;
eax = ∗ (ebp − 16) ;
i f (eax != ∗L080BE2CC) {

V8 = ” wrong code ” ;
V4 = 0x80a082c ;
∗esp = ∗L080BE704 ;
eax = L08049990 () ;
∗L080BE2C8 = 0;

}
✝ ✆

65 / 79

Example Program

✞ ☎

19 u i n t p lay (u i n t user key ,
20 u i n t encrypted media [] ,
21 i n t media len) {
22 i n t code ;
23 p r i n t f (” Please enter a c t i v a t i o n code : ”) ;
24 scanf (”%i ” ,&code) ;
25 i f (code != a c t i v a t i o n c o d e) d ie (” wrong code ”) ;
26
27 ∗key = user key ˆ p layer key ;

✝ ✆

66 / 79

✞ ☎

eax = ∗L080BE2C8 ;
ed i = 0 ;
ebx = ebx ˆ ∗L080BE2C4 ;
∗eax = ebx ;
eax = A10 ;
i f (eax <= 0) {} else {

while (1) {
es i = ∗ (Ac + edi ∗ 4) ;

L08048368 : ∗esp = 0;
i f (L08056DD0 () > 1521011472) {

V8 = ” exp i red ” ;
V4 = 0x80a082c ;
∗esp = ∗L080BE704 ;
L08049990 () ;
∗L080BE2C8 = 0;

}
✝ ✆

Example Program
✞ ☎

1 typedef unsigned i n t u i n t ;
2 typedef u i n t ∗ waddr t ;
3 u i n t p layer key = 0xbabeca75 ;
4 u i n t the key ;
5 u i n t ∗ key = &the key ;
6 FILE∗ audio ;
7 i n t a c t i v a t i o n c o d e = 42;
8
9 void FIRST FUN (){}

10 u i n t hash (waddr t addr , waddr t l a s t) {
11 u i n t h = ∗addr ;
12 for (; addr<=l a s t ; addr ++) hˆ=∗ addr ;
13 return h ;
14 }
15 void die (char∗ msg) {
16 f p r i n t f (s tde r r , ”%s !\n ” ,msg) ;
17 key = NULL ;
18 }

✝ ✆
68 / 79

✞ ☎

ebx = ebx ˆ es i ;
(save) 0 ;
ed i = ed i + 1 ;
(save) ebx ;
esp = esp + 8;
V8 = ∗esp ;
V4 = ”%f \n ” ; ∗esp = ∗L080C02C8 ;
eax = L08049990 () ;
eax = ∗L080C02C8 ;
∗esp = eax ;
eax = L08049A20 () ;
i f (ed i == A10) {goto L080483a7 ;}
eax = ∗L080BE2C8 ; ebx = ∗eax ;

}
ch = 176; ch = 176;
goto L08048368 ;

}
L080483a7 :
}
✝ ✆

✞ ☎

L080483AF (A8 , Ac) {
· · ·
ecx = 0x8048260 ;
edx = 0x8048230 ;
eax = ∗L08048230 ;
i f (0 x8048260 >= 0x8048230) {

do {
eax = eax ˆ ∗edx ;
edx = edx + 4;

} while (ecx >= edx) ;
}
i f (eax != 318563869) {

V8 = ” tampered ” ;
V4 = 0x80a082c ;
∗esp = ∗L080BE704 ;
L08049990 () ;
∗L080BE2C8 = 0;

}
V8 = A8 − 2;
V4 = ebp + −412;
∗esp = ∗ (ebp + −416);
return (L080482A0 ()) ;

}
✝ ✆

Example Program
✞ ☎

1 typedef unsigned i n t u i n t ;
2 typedef u i n t ∗ waddr t ;
3 u i n t p layer key = 0xbabeca75 ;
4 u i n t the key ;
5 u i n t ∗ key = &the key ;
6 FILE∗ audio ;
7 i n t a c t i v a t i o n c o d e = 42;
8
9 void FIRST FUN (){}

10 u i n t hash (waddr t addr , waddr t l a s t) {
11 u i n t h = ∗addr ;
12 for (; addr<=l a s t ; addr ++) hˆ=∗ addr ;
13 return h ;
14 }
15 void die (char∗ msg) {
16 f p r i n t f (s tde r r , ”%s !\n ” ,msg) ;
17 key = NULL ;
18 }

✝ ✆
71 / 79

Discussion

What can the attacker do?

Pattern-match on static code and execution
patterns.

73 / 79

What can the attacker do?

Pattern-match on static code and execution
patterns.

Disassemble/decompile machine code.

73 / 79

What can the attacker do?

Pattern-match on static code and execution
patterns.

Disassemble/decompile machine code.

Debug binary code without source code.

73 / 79

What can the attacker do?

Pattern-match on static code and execution
patterns.

Disassemble/decompile machine code.

Debug binary code without source code.

Compare two related program versions.

73 / 79

What can the attacker do?

Pattern-match on static code and execution
patterns.

Disassemble/decompile machine code.

Debug binary code without source code.

Compare two related program versions.

Modify the executable.

73 / 79

What can the attacker do?

Pattern-match on static code and execution
patterns.

Disassemble/decompile machine code.

Debug binary code without source code.

Compare two related program versions.

Modify the executable.

Tamper with the execution environment.

73 / 79

In-Class Exercise

Alice writes a program that she only wants
Bob to execute 5 times.

At the end of each run, the program writes
a file .AliceSecretCount with the
number of runs so far.

At the beginning of each run, the program
reads the file .AliceSecretCount and, if
the number of runs so far is ≥ 5, it exits with
an error message BAD BOB! .

Draw a detailed attack tree with all attacks
available to Bob!

74 / 79

