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Overview



Code obfuscation — what is it?

Informally, to obfuscate a program P means
to transform it into a program P ′ that is still
executable but for which it is hard to extract
information.
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Code obfuscation — what is it?

static obfuscation ⇒ obfuscated programs
that remain fixed at runtime.

tries to thwart static analysis
attacked by dynamic techniques (debugging,
emulation, tracing).

dynamic obfuscators ⇒ transform
programs continuously at runtime, keeping
them in constant flux.

tries to thwart dynamic analysis
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Bogus Control
Flow



Complicating control flow

Transformations that make it difficult for an
adversary to analyze the flow-of-control:

1 insert bogus control-flow
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Complicating control flow

Transformations that make it difficult for an
adversary to analyze the flow-of-control:

1 insert bogus control-flow
2 flatten the program
3 hide the targets of branches to make it difficult

for the adversary to build control-flow graphs

None of these transformations are immune
to attacks
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Opaque Expressions

Simply put:

an expression whose value is
known to you as the defender (at
obfuscation time) but which is
difficult for an attacker to figure out
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Opaque Expressions

Simply put:

an expression whose value is
known to you as the defender (at
obfuscation time) but which is
difficult for an attacker to figure out

Notation:
PT for an opaquely true predicate
PF for an opaquely false predicate
P? for an opaquely indeterminate predicate
E=v for an opaque expression of value v
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Opaque Expressions

Graphical notation:

true false true false true false
P?PT PF

Building blocks for many obfuscations.
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Opaque Expressions

An opaquely true predicate:

true false
2|(x2 +x)T
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Opaque Expressions

An opaquely true predicate:

true false
2|(x2 +x)T

An opaquely indeterminate predicate:

falsetrue
x mod 2 = 0?
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Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
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Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
2 superfluous branches which will always be

taken
3 branches which will sometimes be taken and

sometimes not, but where this doesn’t matter

The resilience reduces to the resilience of
the opaque predicates.
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Inserting bogus control-flow

A bogus block (green) appears as it might
be executed while, in fact, it never will:

true false
PT
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Inserting bogus control-flow

Sometimes execute the blue block,
sometimes the green block.

The green and blue blocks should be
semantically equivalent.

true false
P?
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Inserting bogus control-flow

Extend a loop condition P by conjoining it
with an opaquely true predicate PT :

true

false

false

false truetrue
P P PT

13 / 109



Control Flow
Flattening



Control-flow flattening

Removes the control-flow structure of
functions.
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Control-flow flattening

Removes the control-flow structure of
functions.

Put each basic block as a case inside a
switch statement, and wrap the switch
inside an infinite loop.

Chenxi Wang’s PhD thesis:
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✞ ☎

int modexp(int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
✝ ✆

if (k<w)

if (x[k]==1) 

s=R*R mod n
L = R

k++

R=sR=(s*y) mod n

s=1
k=0

return L

B6 :

B1 :

B2 :

B5 :

goto B1

B4 :B3 :

B0 :



✞ ☎

int modexp(int y, int x[], int w, int n) {

int R, L, k, s;

int next=0;

for(;;)

switch(next) {

case 0 : k=0; s=1; next=1; break;

case 1 : if (k<w) next=2; else next=6; break;

case 2 : if (x[k]==1) next=3; else next=4; break

case 3 : R=(s*y)%n; next=5; break;

case 4 : R=s; next=5; break;

case 5 : s=R*R%n; L=R; k++; next=1; break;

case 6 : return L;

}

}
✝ ✆



next=3

if (k<w)

else

next=2

next=6

next=5

R=(s*y)%n R=s

next=5

S=R*R%n

L=R

K++

next=1

return Lk=0
s=1

next=1

next=0

switch(next)

if (x[k]==1)

else

next=4

B5

B6

B0

B1

B3 B4

B2



k ← f3(k5)

B6 :

B0 :

B1 :

B2 :

B4 :B3 :

B5 :

k5← Init(· · ·)

k5← f1(k5)

k5← f2(k5)

Red lines form the dominator tree.

We insert functions Init, f1, f2, f3 that, when
B5 is reached must have executed, and the
new value for k has been evolved.



Performance penalty

Replacing 50% of the branches in three
SPEC programs slows them down by a
factor of 4 and increases their size by a
factor of 2.
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Performance penalty

Replacing 50% of the branches in three
SPEC programs slows them down by a
factor of 4 and increases their size by a
factor of 2.
Why?

1 The for loop incurs one jump,
2 the switch incurs a bounds check the next

variable,
3 the switch incurs an indirect jump through a

jump table.
Optimize?

1 Keep tight loops as one switch entry.
2 Use gcc’s labels-as-values ⇒ a jump table

lets you jump directly to the next basic block.
20 / 109



Attack against Control-flow flattening

Attack:
1 Work out what the next block of every block is.
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Attack against Control-flow flattening

Attack:
1 Work out what the next block of every block is.
2 Rebuild the original CFG!

How does an attacker do this?
1 use-def data-flow analysis
2 constant-propagation data-flow analysis

21 / 109



next as an opaque predicate!

int modexp(int y, int x[], int w, int n) {

int R, L, k, s;

int next=E=0;

for(;;)

switch(next) {

case 0 : k=0; s=1; next=E=1; break;

case 1 : if (k<w) next=E=2; else next=E=6; break

case 2 : if (x[k]==1) next=E=3; else next=E=4;

break;

case 3 : R=(s*y)%n; next=E=5; break;

case 4 : R=s; next=E=5; break;

case 5 : s=R*R%n; L=R; k++; next=E=1; break;

case 6 : return L;

}

}
22 / 109



In-Class Exercise

1 Flatten this CFG:
ENTER

EXIT
goto B2

B6

X := X − 2;
B5

Y := X + 5;
B4

X := X−1;

A[X] := 10;

if X <> 4 goto B6

if x >= 10 goto B4
B2

B3

X := 20;
B1

2 Give the source code for the flattened graph
above. 23 / 109



Constructing
Opaque

Predicates



Opaque values from array aliasing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

36 58 1 46 23 5 16 65 2 41 2 7 1 37 0 11 16

Invariants:
1 every third cell (in pink), starting will cell 0,

is ≡ 1 mod 5;
2 cells 2 and 5 (green) hold the values 1 and

5, respectively;
3 every third cell (in blue), starting will cell 1,

is ≡ 2 mod 7;
4 cells 8 and 11 (yellow) hold the values 2

and 7, respectively.
25 / 109



Opaque values from array aliasing

You can update a pink element as often as
you want, with any value you want, as long
as you ensure that the value is always
≡ 1 mod 5!

That is, make any changes you want, while
maintaining the invariant.

This will make static analysis harder for the
attacker.

26 / 109



✞ ☎

int g[] = {36,58,1,46,23,5,16,65,2,41,

2,7,1,37,0,11,16,2,21,16};

if ((g[3] % g[5])==g[2])

printf("true!\n");

g[5] = (g[1]*g[4])%g[11] + g[6]%g[5];

g[14] = rand();

g[4] = rand()*g[11]+g[8];

int six = (g[4] + g[7] + g[10])%g[11];

int seven = six + g[3]%g[5];

int fortytwo = six * seven;
✝ ✆

pink: opaquely true predicate.

blue: g is constantly changing at runtime.

green: an opaque value 42.

Initialize g at runtime!



int modexp(int y, int x[], int w, int n) {

int R, L, k, s;

int next=0;

int g[] = {10,9,2,5,3};

for(;;)

switch(next) {

case 0 : k=0; s=1; next=g[0]%g[1]=1; break;

case 1 : if (k<w) next=g[g[2]]=2;

else next=g[0]-2*g[2]
=6; break;

case 2 : if (x[k]==1) next=g[3]-g[2]=3;

else next=2*g[2]
=4; break;

case 3 : R=(s*y)%n; next=g[4]+g[2]=5; break;

case 4 : R=s; next=g[0]-g[3]=5; break;

case 5 : s=R*R%n; L=R; k++; next=g[g[4]]%g[2]=1;

break;

case 6 : return L;

}

}



Opaque predicates from pointer

aliasing

Create an obfuscating transformation from
a known computationally hard static
analysis problem.
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Opaque predicates from pointer

aliasing

Create an obfuscating transformation from
a known computationally hard static
analysis problem.
We assume that

1 the attacker will analyze the program statically,
and

2 we can force him to solve a particular static
analysis problem to discover the secret he’s
after, and

3 we can generate an actual hard instance of this
problem for him to solve.

Of course, these assumptions may be false!
29 / 109
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you know to be true.
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Construct one or more heap-based graphs,
keep pointers into those graphs, create
opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink)
and G2 (blue):

delete

split insert

q1

q2

q1

q2

q1 q2

q2

q1



Construct one or more heap-based graphs,
keep pointers into those graphs, create
opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink)
and G2 (blue):

movedelete

split insert

q2

q1 q1

q2q2

q1

q1 q2

q2

q1



Invariants

Two invariants:
“G1 and G2 are circular linked lists”
“q1 points to a node in G1 and q2 points to a
node in G2.”
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Invariants

Two invariants:
“G1 and G2 are circular linked lists”
“q1 points to a node in G1 and q2 points to a
node in G2.”

Perform enough operations to confuse even
the most precise alias analysis algorithm,

Insert opaque queries such as (q1 6= q2)
T

into the code.

31 / 109



Branch Functions



Jumps through branch functions

Replace unconditional jumps with a call to a
branch function.

Calls normally return to where they came
from. . . But, a branch function returns to the
target of the jump!

...

call bf

bf() {

}
... b

b:

a

return to T [h(a)]+a

T [h(a)] = b−a
T [h(. . .)] = . . .

jmp b

b:

a:

33 / 109



Jumps through branch functions

Designed to confuse disassembly.

39% of instructions are incorrectly
assembled using a linear sweep
disassembly.

25% for recursive disassembly.

Execution penalty: 13%

Increase in text segment size: 15%.

34 / 109



Breaking opaque
predicates



Breaking opaque predicates
✞ ☎

...

x1← ·· ·;
x2← ·· ·;
...

b← f (x1,x2, . . .);
if b goto . . .
✝ ✆

1 find the instructions that make up
f (x1,x2, . . .);

2 find the inputs to f , i.e. x1,x2 . . .;
3 find the range of values R1 of x1,. . . ;
4 compute the outcome of f for all input

values;
5 kill the branch if f ≡ true.

36 / 109



Breaking opaque predicates
✞ ☎

int x = some complicated

expression;
int y = 42;

z = . . .
boolean b = (34*y*y-1)==x*x;

if b goto . . .
✝ ✆

1 Compute a backwards slice from b,
2 Find the inputs (x and y),
3 Find range of x and y ,

4 Use number-theory/brute force to
determine b ≡ false.

37 / 109



Breaking ∀x ∈ Z : n|p(x)

Mila Dalla Preda:

Attack opaque predicates confined to a
single basic block.
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Breaking ∀x ∈ Z : 2|(x2+x)

Opaquely true predicate ∀x ∈ Z : 2|(x2+x):

(1) (2) (3) (4)
✞ ☎

x = . . .;
y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .
✝ ✆
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Breaking ∀x ∈ Z : 2|(x2+x)

Opaquely true predicate ∀x ∈ Z : 2|(x2+x):

(1) (2) (3) (4)
✞ ☎
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✞ ☎
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Using Abstract Interpretation

Consider the case when x is an even

✞ ☎
x = even number;

y = x * x;

y = y + x;

z = y % 2;

b = z==0;

if b . . .
✝ ✆

✞ ☎
x = even;
y = x *a x = even ∗a even = even;
y = y +a x = even+a even = even;
z = y %a 2 = even mod 2 = 0;
b = z==0; = true

if b . . .
✝ ✆
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Using Abstract Interpretation

Consider the case when x starts out being odd:

✞ ☎
x = odd number;

y = x * x;

y = y + x;

z = y % 2;

b = z==0;

if b . . .
✝ ✆

✞ ☎
x = odd;
y = x *a x = odd ∗a odd = odd;
y = y +a x = odd +a odd = even;
z = y %a 2 = even mod 2 = 0;
b = z==0; = true

if b . . .
✝ ✆

Regardless of whether x’s initial value is
even or odd, b is true!
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Breaking ∀x ∈ Z : n|p(x)

Regardless of whether x’s initial value is
even or odd, b is true!

You’ve broken the opaque predicate,
efficiently!!

By constructing different abstract domains,
Algorithm REPMBG is able to break all
opaque predicates of the form
∀x ∈ Z : n|p(x) where p(x) is a polynomial.

46 / 109



In-Class Exercise

1 An obfuscator has inserted the opaquely
true predicate ∀x ∈ Z : 2|(2x +4):

✞ ☎

x = . . .;

if ((((2*x+4) % 2) == 0)T) {

some statement

}
✝ ✆

Or, in simpler operations:✞ ☎

x = . . .;
y = 2 * x;

y = y + 4;

z = y % 2;

b = z==0;

if b . . .
✝ ✆

2 Play we’re an attacker! 47 / 109



3 Do a symbolic evaluation, using these rules:

x y x ∗a y

even even even
even odd even
odd even even
odd odd odd

x y x +a y

even even even
even odd odd
odd even odd
odd odd even

x x mod a2

even 0
odd 1



4 First, let’s assume that x is even.

x = even;

y = 2 * x;

y = y + 4;

z = y % 2;

b = z==0;

if b . . .

x = even;

y = 2 *a x =

y = y +a 4 =

z = y %a 2 =

b = z==0; =

if b . . .



5 Now, let’s assume that x is odd.

x = odd;

y = x * x;

y = y + x;

z = y % 2;

b = z==0;

if b . . .

x = odd;

y = 2 *a x =

y = y +a 4 =

z = y %a 2 =

b = z==0; =

if b . . .



Integer Arithmetic



Encoding Integer Arithmetic

x +y = x −¬y −1

x +y = (x ⊕y)+2 · (x ∧y)

x +y = (x ∨y)+(x ∧y)

x +y = 2 · (x ∨y)− (x⊕y)

www.hackersdelight.org

52 / 109
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Integer Arithmetic – Example

One possible encoding of
✞ ☎

z = x + y + w
✝ ✆

is
✞ ☎

z = (((x ˆ y) + ((x & y) << 1)) | w) +

(((x ˆ y) + ((x & y) << 1)) & w);
✝ ✆

Many others are possible, which is good for
diversity.
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Transforming Integers — The identity

transformation
✞ ☎

typedef int T1;

T1 E1(int e) {return e;}

int D1(T1 e) {return e;}

T1 ADD1(T1 a, T1 b) {return E1(D1(a)+D1(b));}

T1 MUL1(T1 a, T1 b) {return E1(D1(a)*D1(b));}

BOOL LT1(T1 a, T1 b) {return D1(a)<D1(b);}
✝ ✆

E1 transforms cleartext integers into the
obfuscated representation,
D1 transforms obfuscated integers into
cleartext,
ADD1, etc., perform operations in
obfuscated space. 54 / 109



Transforming Integers — The identity

transformation

LT

D

D
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D

D

*

DE intint
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intE

E

int

int

int

int

int

int

int

int int
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Linear Transformation I

We have 3 integer variables x,y,z, and we
want to encode them with a
linear transformation:

x ′ = a ·x +b

y ′ = a ·y +b

z ′ = a ·z +b

Let a be an odd constant, and b a random
constant.

Let’s pick a = 7, b = 5.
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Linear Transformation II

✞ ☎

int E(int e) {return a*e + b;}

int D(int e) {return ?;}

int ADD(int a, int b) {return ?;}

int MUL(int a, int b) {return ?;}

BOOL LT(int a, int b) {return a<b;}
✝ ✆

We need to solve for x :

x ′ = a ·x +b

x = a−1 ·x ′−a−1 ·b
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Linear Transformation III

Remember, all arithmetic is done mod 232!

x ′ = a ·x +b

x = a−1 ·x ′−a−1 ·b

a = 7

a−1 = 3067833783

Why???
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Linear Transformation IV

Why??? Well, because

3067833783 ·7 mod 232 = 1

Why??? Because
Euclid’s Extended Algorithm tells us

gcd(7,232) = 3067833783 ·7+2 ·232 = 1

And, since 2 ·232 mod 232 = 0, we get

3067833783 ·7 = 1 mod 232

I.e., 3067833783 is the inverse of 7, mod
232.
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Linear Transformation V

We compute a−1 ·b

a−1 ·b = 3067833783 ·5 mod 232

And now we can encode and decode
integers:

✞ ☎

int E(int e) {return 7*e + 5;}

int D(int e) {return 3067833783*e - 2454267027;}

int ADD(int a, int b) {return ?;}

int MUL(int a, int b) {return ?;}

BOOL LT(int a, int b) {return a<b;}
✝ ✆
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Linear Transformation VI

Let’s try an example, 10:

E(10) = (7∗10+5) mod 232

= 75

D(75) = (3067833783 ·75−2454267027) mod 232

= 1

So, now we can encode and decode
integers, using the linear formula
x ′ = a ·x +b!
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Linear Transformation VII (a)

What about addition in the encoded domain?
✞ ☎

int E(int e) {return 7*e + 5;}

int D(int e) {return 3067833783*e - 2454267027;}

int ADD(int a, int b) {return ?;}
✝ ✆

E(x)+E(y) = E(D(E(x))+D(E(y)))

= E((a−1 ·x−a−1 ·b)+

(a−1 ·y −a−1 ·b))

= a · (a−1 ·x−a−1 ·b)+

(a−1 ·y −a−1 ·b)+b

= x−b+y −b+b = x +y −b
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Linear Transformation VII (b)

So, we get
✞ ☎

int ADD(int a, int b) {

return a + b - 2454267027;

}
✝ ✆

63 / 109



Linear Transformation VIII

Example:✞ ☎

int main () {

int x = 10;

int y = 12;

int z = x + y;

printf(z);

}
✝ ✆

We get:

✞ ☎

int main () {

int x = 7*10 + 5; // 75

int y = 7*12 + 5; // 89

int z = 75 + 89 - 5; // 159

printf(3067833783*z - 2454267027); // 22!

}
✝ ✆
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Exercise: Integer encoding

Consider again the GCD routine:
✞ ☎

int gcd(int x, int y) {

int temp;

while (true) {

boolean b = x%y == 0;

if (b) break;

temp = x%y;

x = y;

y = temp;

}

}
✝ ✆

Use the E()/D() scheme above to encode
the integer variables.
What kind of encoding would work well
here? 65 / 109



Another Number-theoretic trick
✞ ☎

#define N4 (53*59)

int E4(int e,int p) {return p*N4+e;}

int D4(int e) {return e%N4;}

int ADD4(int a, int b) {return a+b;}

int MUL4(int a, int b) {return a*b;}

BOOL Lint(int a, int b) {return D4(a)<D4(b);}
✝ ✆

An integer y is represented as N ∗p+y ,
where N is the product of two close primes,
and p is a random value.
Addition and multiplication are performed in
obfuscated space.
Comparisons require deobfuscation.
Parameterized obfuscation: create a family
of representation by choosing different

66 / 109



Computer
Viruses



Computer Viruses

Viruses
1 are self-replicating ;
2 attach themselves to other files;
3 requires user assistance to to replicate.
4 use obfuscation to hide!
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Computer Viruses: Phases

PropagationDormant

Triggering

Action
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Computer Viruses: Phases. . .

Dormant — lay low, avoid detection.

Propagation — infect new files and
systems.

Triggering — decide to move to action
phase

Action — execute malicious actions, the
payload.
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Virus Types

Program/File virus:

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus:

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus:
Attaches to: document (.doc,.pdf,. . . ).

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus:
Attaches to: document (.doc,.pdf,. . . ).
Run when: document is opened.

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus:
Attaches to: document (.doc,.pdf,. . . ).
Run when: document is opened.
Propagates by: emailing documents.

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus:
Attaches to: document (.doc,.pdf,. . . ).
Run when: document is opened.
Propagates by: emailing documents.

Boot sector virus:

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus:
Attaches to: document (.doc,.pdf,. . . ).
Run when: document is opened.
Propagates by: emailing documents.

Boot sector virus:
Attaches to: hard drive boot sector.

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus:
Attaches to: document (.doc,.pdf,. . . ).
Run when: document is opened.
Propagates by: emailing documents.

Boot sector virus:
Attaches to: hard drive boot sector.
Run when: computer boots.

71 / 109



Virus Types

Program/File virus:
Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus:
Attaches to: document (.doc,.pdf,. . . ).
Run when: document is opened.
Propagates by: emailing documents.

Boot sector virus:
Attaches to: hard drive boot sector.
Run when: computer boots.
Propagates by: sharing floppy disks.
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Computer Viruses: Propagation

File Header

Original
Program

Virus

File Header

Original
Program
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Virus Defenses

Signatures: Regular expressions over the
virus code used to detect if files have been
infected.
Checking can be done

1 periodically over the entire filesystem;
2 whenever a new file is downloaded.
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Virus Countermeasures

Viruses need to protect themselves against
detection.

This means hiding any distringuishing
features, making it hard to construct
signatures.

By encrypting its payload, the virus hides
its distinguishing features.

Encryption is often no more than xor with a
constant.
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Virus Countermeasures: Encryption

By encrypting its payload, the virus hides
its distinguishing features.

The decryption routine itself, however, can
be used to create a signature!
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Computer Countermeasures:

Encryption. . .

Original
Program

File Header

Original
Program Encrypted

Key

Virus Code

Routine
Decryption

File Header
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Virus Countermeasures:

Polymorphism

Each variant is encrypted with a different
key.
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Virus Countermeasures:

Metamorphism

To prevent easy creation of signatures for
the decryption routine, metamorphic
viruses will mutate the decryptor, for each
infection.

The virus contains a mutation engine which
can modify the decryption code while
maintaining its semantics.
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Computer Countermeasures:

Metamorphism. . .

Program

Mutation
Engine

Routine

Mutated
Decryption
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Original
Program
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Virus Countermeasures:

Metamorphism. . .

To counter metamorphism, virus detectors
can run the virus in an emulator.

The emulator gathers a trace of the
execution.

A virus signature is then constructed over
the trace.

This makes it easier to ignore garbage
instructions the mutation engine may have
inserted.
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Virtualization



Interpreters

An interpreter is program that behaves like
a CPU, but which has its own

instruction set,
program,
program counter
execution stack

Many programming languages are
implemented by constructing an interpreter
for them, for example Java, Python, Perl,
etc.
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Interpreters for Obfuscation

while (1)
switch (prog[pc])

case ADD: ...
stack[sp]=...

a = a + 5;
...

void foo() {

}

...

prog=[ADD,...];

pc++; sp−−;

stack=...;
int pc=...;
int sp=...;
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Interpreter Engine

I := Get next instruction.

Decode the instruction.

Op := the opcode
Arg1 := 1st argument
Arg2 := 2nd argument
....

Perform the function
of the opcode.

Instruct−

add
store

mul

ionstream

....

....

Heap

Stack

Memory

"Hello!"
Static
Data
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Diversity

Viruses want diversity in the code they
generate.

This means, every version of the virus
should look different, so that they are hard
for the virus detector to find.

We want the same when we protect our
programs!
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Tigress Diversity

tigress.cs.arizona.edu

Interpreter diversity:
1 8 kinds of instruction dispatch: switch, direct,

indirect, call, ifnest, linear, binary, interpolation
2 2 kinds of operands: stack, registers
3 arbitrarily complex instructions
4 operators are randomized

Along with: flatten, merge functions, split
functions, opaque predicates, etc.
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Tigress Diversity

Every input program generates a unique
interpreter.

A seed sets the random number generator
that allows us to generate many different
interpreters for the same input program.

The split transformation can be used to
break up the interpreter in pieces, to make
it less easy to detect.
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In-class Exercise

✞ ☎

tigress --Transform=Virtualize --Functions=fib \

--VirtualizeDispatch=switch \

--out=v1.c test1.c

gcc -o v1 v1.c

tigress --Transform=Virtualize --Functions=fib \

--VirtualizeDispatch=indirect \

--out=v2.c test1.c

gcc -o v2 v2.c
✝ ✆
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In-class Exercise

✞ ☎

tigress --Transform=Virtualize --Functions=fib \

--VirtualizeDispatch=switch \

--Transform=Virtualize --Functions=fib \

--VirtualizeDispatch=indirect \

--out=v3.c test1.c

gcc -o v3 v3.c

tigress --Transform=Virtualize --Functions=fib \

--VirtualizeDispatch=switch \

--VirtualizeSuperOpsRatio=2.0 \

--VirtualizeMaxMergeLength=10 \

--VirtualizeOptimizeBody=true \

--out=v4.c test1.c

gcc -o v4 v4.c
✝ ✆
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Attack 1

Reverse engineer the instruction set!

Look at the instruction handlers, and figure
out what they do:
✞ ☎

case o233:

(pc) ++;

s[sp - 1].i = s[sp - 1].i < s[sp].i;

(sp) --;

break;
✝ ✆

Then recreate the original program from the
virtual one.
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Counter Attack 1

Make instructions with complex semantics,
using super operators:
✞ ☎
case o98:

(pc) ++;

*((int *)s[sp + 0].v) = s[sp + -1].i;

*((int *)((void *)(l + *((int *)(pc + 4))))) =

*((int *)((void *)(l + *((int *)pc))));

s[sp + -1].i = *((int *)((void *)(l + *((int *)(pc + 8))))) +

*((int *)(pc + 12));

s[sp + 0].v = (void *)(l + *((int *)(pc + 16)));

pc += 20;

break;
✝ ✆

Then recreate the original program from the
virtual one.
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Attack 2

Dynamic attack: run the program, collect all
instructions, look for patterns that look like
the virtual PC:

}

ADD: ...
SUB: ...

PC++;
JUMP ...

switch (Program[PC]) {add
store

mul

....

....

Program

Trace:switch,ADD,PC++,JUMP,switch,...
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Counter Attack 2

Tigress can merge several programs, so
they execute in tandem, making it harder to
detect what is the PC (there are many
PCs!).

add
store

mul

....

....

Program

}

ADD: ...
SUB: ...

JUMP ...

switch (Program[PC]) {

PC1++; PC2++; PC3++;
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Discussion



Code Obfuscation — What’s it Good

For?

Diversification — make every program
unique to prevent malware attacks
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Code Obfuscation — What’s it Good

For?

Diversification — make every program
unique to prevent malware attacks

Prevent collusion — make every program
unique to prevent diffing attacks

Code Privacy — make programs hard to
understand to protect algorithms

Data Privacy — make programs hard to
understand to protect secret data (keys)

Integrity — make programs hard to
understand to make them hard to change
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