
c© April 30, 2014 Christian Collberg

Software Protection:

How to Crack Programs, and

Defend Against Cracking

Lecture 8: Hardware

Moscow State University, Spring 2014

Christian Collberg
University of Arizona

www.cs.arizona.edu/˜collberg

www.cs.arizona.edu/~collberg

Introduction

This lecture

1 Disk and dongle protection against software
and media piracy.

Disk protection — distribute the program on a
physical medium, such as a CD and make the
CD hard to copy.

3 / 69

This lecture

1 Disk and dongle protection against software
and media piracy.

Disk protection — distribute the program on a
physical medium, such as a CD and make the
CD hard to copy.
Dongle protection — the program refuses to
run without a hardware token distributed with
the program.

3 / 69

This lecture. . .

2 Trusted Platform Module (TPM):
Small chip soldered to the motherboard of a PC
Used to boot a trusted environment
IBM/Lenovo ThinkPad ships with a TPM chips
not used in practice

4 / 69

This lecture. . .

3 Crypto-processor:
Can execute encrypted programs.
Contains encryption key.
Program is encrypted with processor’s public
key.
Only one computer can run the program!

5 / 69

This lecture. . .

4 Attacks on tamperproof hardware:
Physical attacks (shave off the top!)
Side channel attacks (“listen” to the chip!)

6 / 69

Dongles and
Tokens

Dongles

Dongles are hardware devices distributed
with a program.

8 / 69

Dongles

Dongles are hardware devices distributed
with a program.

Prevent piracy.

8 / 69

Dongles

Dongles are hardware devices distributed
with a program.

Prevent piracy.

The dongle must be connected to the user’s
computer,

8 / 69

Dongles

Dongles are hardware devices distributed
with a program.

Prevent piracy.

The dongle must be connected to the user’s
computer,

The program periodically queries the
dongle.

8 / 69

Dongles

Dongles are hardware devices distributed
with a program.

Prevent piracy.

The dongle must be connected to the user’s
computer,

The program periodically queries the
dongle.

Is the dongle present? Genuine?

8 / 69

HASP

Today dongles are active devices with
built-in processors.

9 / 69

HASP

Today dongles are active devices with
built-in processors.

Sometimes backed up by a battery.

9 / 69

class Dongle {

private static long count = 3;

private static long memory[]=new long[127];

private static String password = "heyahaya";

private static final long ID = 2376423;

private static final long KEY = 0xab0ab012;

private static java.util.Random rnd;

public static final byte LOGIN = 0;

public static final byte ISPRESENT = 1;

public static final byte ENCODE = 2;

public static final byte DECODE = 3;

public static final byte READ = 4;

public static final byte WRITE = 5;

public static final byte GETID = 6;

public static final byte GETTIME = 7;

public static final long PRESENT = 0xca75ca75;

static long call(byte operation,

String pw,

long arg1, long arg2) {

if (!pw.equals(password) || (count<0)) return -1;

switch (operation) {

case LOGIN : count--;

rnd=new java.util.Random(arg1);

return 0;

case ISPRESENT : return PRESENT;

case ENCODE : return arg1ˆKEY;

case DECODE : return arg1ˆKEY;

case READ : return memory[(int)arg1];

case WRITE : memory[(int)arg1]=arg2;

return 0;

case GETID : return ID;

case GETTIME : return System.currentTimeMillis

default : return -1;

}

}

}

Aladin HASP

The dongle has a small amount of internal
memory

12 / 69

Aladin HASP

The dongle has a small amount of internal
memory

a battery-backed internal realtime clock,

12 / 69

Aladin HASP

The dongle has a small amount of internal
memory

a battery-backed internal realtime clock,

an identifier unique to every dongle

12 / 69

Aladin HASP

The dongle has a small amount of internal
memory

a battery-backed internal realtime clock,

an identifier unique to every dongle

a counter,

12 / 69

Aladin HASP

The dongle has a small amount of internal
memory

a battery-backed internal realtime clock,

an identifier unique to every dongle

a counter,

a password,

12 / 69

Aladin HASP

The dongle has a small amount of internal
memory

a battery-backed internal realtime clock,

an identifier unique to every dongle

a counter,

a password,

a pseudo-random number generator

12 / 69

Aladin HASP

The dongle has a small amount of internal
memory

a battery-backed internal realtime clock,

an identifier unique to every dongle

a counter,

a password,

a pseudo-random number generator

an encryption engine with a hardcoded key.

12 / 69

✞ ☎

public class Main {

static String password = "heyahaya";

static final long timeout = 1281964454908L;

static final long seed = 260124545;

static java.util.Random rnd;

public static void main (String args[]) {

Dongle.call(Dongle.LOGIN,password,seed,0);

rnd = new java.util.Random(seed);

if (Dongle.call(Dongle.GETTIME,

password,0,0)>timeout)

System.exit(-1);

. . .

}

}
✝ ✆

Calling the dongle

✞ ☎

if (Dongle.call(Dongle.ISPRESENT,password,0,0)!=

Dongle.PRESENT) {

System.err.println("No dongle present");

System.exit(-1);

}

. . .

long here = Dongle.call(Dongle.ISPRESENT,password,0,0);

. . .

boolean OK = here == Dongle.PRESENT;

. . .

if (!OK) System.exit(-1);
✝ ✆

Obfuscate the challenge calls such that
automatic removal becomes difficult.

14 / 69

Add bogus calls!

✞ ☎

Dongle.call((byte)42,password,secret1,secret2);
✝ ✆

Sprinkle bogus calls to the dongle all over
your code!

15 / 69

Problem with Dongles

Contribute to the cost of distribution.

If they contain a battery they will eventually
have to be replaced.

If they are lost, the owner will have to
request a new copy.

⇒ Today are only used to protect very
expensive programs.

16 / 69

http://www.nodongle.com

We can make Emulators for any protection type, Hasp4,
HaspHL, Sentinel Super Pro, Aladdin Hardlock, . . . , any
protection.

Our emulators are 100% perfect, 100% guaranteed.
100% private,. . .

Dongle Emulator is a software to allow your program to
run without any key attached

We dont have fixed prices, our prices depends [sic] on
protection, not program price dependent, this will be very
cheap if compared with program price...

Send a email with some infos about your program, like
name and protection, so we can give you a personalized
answer.

17 / 69

http://www.nodongle.com

Authenticated
boot using a

trusted platform
module

Algorithm: Authenticated boot

We’ve assumed the program executes in an
untrusted environment. The adversary can

1 examine (reverse engineer),
2 modify (tamper),
3 copy (pirate),

our program.

19 / 69

Algorithm: Authenticated boot

We’ve assumed the program executes in an
untrusted environment. The adversary can

1 examine (reverse engineer),
2 modify (tamper),
3 copy (pirate),

our program.
Our techniques have been software based:

1 obfuscation (to make a program harder to
examine),

2 tamperproofing (to make modification harder),
3 watermarking (to trace copying).

19 / 69

Algorithm: Authenticated boot

What if we could trust the client to run
trusted

1 hardware,
2 operating system,
3 applications?

20 / 69

Trusted Platform Boot

Trusted Server

Client

Client

21 / 69

Trusted Platform Boot

Client

Client

Untrusted Client

Trusted Server

21 / 69

Trusted Platform Boot

Untrusted Client

Client

Client
Trusted Server

Client
SW/HW

21 / 69

Trusted Platform Boot

Untrusted Client

Client

Client
Trusted Server

Client
SW/HW

21 / 69

Trusted Platform Boot

SHA−1

Trusted Server

Untrusted Client

Client
SW/HW

21 / 69

Trusted Platform Boot

buy a book!

Trusted Server

Untrusted Client

I want to Client
SW/HW

21 / 69

Trusted Platform Boot

Prove you are safe!

Trusted Server

Untrusted Client

Client
SW/HW

21 / 69

Trusted Platform Boot

Untrusted Client

Trusted Server
Here are hashes

over all my

code!

Client
SW/HW

21 / 69

Algorithm: Authenticated boot

Before you agree to communicate with a
system you ask it to prove to you that it
won’t do anything bad.

22 / 69

Algorithm: Authenticated boot

Before you agree to communicate with a
system you ask it to prove to you that it
won’t do anything bad.
Anything that’s running on Bob’s computer
could, potentially, affect whether you should
trust it:

1 OS,
2 BIOS,
3 bootloader,
4 application programs,
5 firmware, . . .

22 / 69

Algorithm: Authenticated boot

then

load

measure

then

load

measure

then

load

measure

then

load

measure

CRTM

kernel

BIOS

loader

23 / 69

Secure boot vs. Authenticated boot

Secure boot: only ever boot a system
consisting of code that you trust.

Authenticated boot:
Bob can boot whatever system he wants!
But, he cannot lie about what system he’s
booted!

24 / 69

Client

0
1

15

...

Server

SHA-1()

EK

PCR[0]
PCR[1]

PCR[15]

nonce←RND()

send nonce

1.

kernelSML:

Client

0
1

15

...

Server

SHA-1()

EK

PCR[0]
PCR[1]

PCR[15]

receive nonce2.
nonce←RND()

send nonce

1.

kernelSML:

0
1

15

Server Client

SHA-1()

PCR[0]
PCR[1]

PCR[15]

3.send (quote,SML)

receive nonce2.
nonce←RND()

send nonce

1.

kernel

quote← sig{PCR,nonce}EK priv

SML:

Client

0
1

15

...

Server

SHA-1()

EK

PCR[0]
PCR[1]

PCR[15]

3.send (quote,SML)

receive nonce2.
nonce←RND()

send nonce

1.

kernel

quote← sig{PCR,nonce}EK priv

receive (quote,SML)4.

SML:

Client

0
1

15

...

Server

SHA-1()

EK

PCR[0]
PCR[1]

PCR[15]

3.send (quote,SML)

receive nonce2.
nonce←RND()

send nonce

1.

kernel

quote← sig{PCR,nonce}EK priv

receive (quote,SML)

cert(EK pub) OK?

4.

5.

SML:

Client

0
1

15

...

Server

SHA-1()

EK

PCR[0]
PCR[1]

PCR[15]

3.send (quote,SML)

receive nonce2.
nonce←RND()

send nonce

1.

kernel

quote← sig{PCR,nonce}EK priv

receive (quote,SML)

cert(EK pub) OK?

sig{PCR,nonce2}EK priv
valid?

4.

5.

6.

SML:

Client

0
1

15

...

Server

SHA-1()

EK

PCR[0]
PCR[1]

PCR[15]

receive nonce2.
nonce←RND()

send nonce

1.
3.send (quote,SML)

kernel

quote← sig{PCR,nonce}EK priv

receive (quote,SML)

cert(EK pub) OK?

sig{PCR,nonce2}EK priv
valid?

nonce2 fresh?

4.

5.

6.

7.

SML not tampered?

measurements OK?

SML:

IBM’s implementation

Database of measurements for Redhat
Fedora: 25000 measurements.

A typical SML: 700-1000 measurements.

26 / 69

IBM’s implementation

Database of measurements for Redhat
Fedora: 25000 measurements.

A typical SML: 700-1000 measurements.
How to collect “good” measurements:

1 boot a “trusted system”
2 measure all modules, config files, scripts⇒

whitelist of hashes

26 / 69

IBM’s implementation

Database of measurements for Redhat
Fedora: 25000 measurements.

A typical SML: 700-1000 measurements.
How to collect “good” measurements:

1 boot a “trusted system”
2 measure all modules, config files, scripts⇒

whitelist of hashes

How to collect “bad” measurements:
1 boot a compromised system (root kits, trojans,

. . .)
2 measure infected files⇒ blacklist of hashes

How do we keep these lists up-to-date?!?!
26 / 69

Sealing

Disney encrypts Nemo with a special
sealing key Seal .

27 / 69

Sealing

Disney encrypts Nemo with a special
sealing key Seal .
Seal depends on

the values in the PCRs
the TPM itself.

⇒ your friend with an identical computer
can’t watch your copy of Nemo!

27 / 69

Sealing

Disney encrypts Nemo with a special
sealing key Seal .
Seal depends on

the values in the PCRs
the TPM itself.

⇒ your friend with an identical computer
can’t watch your copy of Nemo!
If you reboot with slightly hacked OS

the PCRs will have changed
⇒ the Seal will be different
⇒ you can’t decrypt Nemo!

27 / 69

Sealing

Disney encrypts Nemo with a special
sealing key Seal .
Seal depends on

the values in the PCRs
the TPM itself.

⇒ your friend with an identical computer
can’t watch your copy of Nemo!
If you reboot with slightly hacked OS

the PCRs will have changed
⇒ the Seal will be different
⇒ you can’t decrypt Nemo!

Microsoft could do the same to protect
Office.

27 / 69

Encrypted
execution

Encrypted execution

Idea:
Encrypt the program.
Keep a (unique) secret key in the CPU.
Decrypt inside the CPU.

Protect algorithms (privacy)!

Protect from tampering (integrity)!

Protect from cloning (piracy)!

Assume the CPU cannot be tampered with.

29 / 69

XOM Overview

server

ALU

cacheDES

RSA

A
R

M
CPU

Kpriv

Ksym

EKsym
(P)

EKpub
(Ksym)

P

Kpub

30 / 69

The XOM architecture

Stanford design.

Never implemented in silicon.

Simulated in software.

Operating system, XOMOS, runs on top of
it.

31 / 69

The XOM architecture — Compartments

Each process may run in different security
mode.

Encrypted programs are slow!

Programs may switch between encrypted
and cleartext execution.
CPU has 4 Compartments:

logical containers
protect one process from being observed or
modified by another process.
the OS is untrusted: runs in its own
compartment!

32 / 69

The XOM architecture — Compartments

Compartment 0: code runs unencrypted

ACTIVE register: current executing
compartment

Session key table: Maps compartment ID
to key.

Each register is tagged with compartment
key.

Each cache line is tagged with
compartment key.

On-chip data is in cleartext.

On cache flush: encrypt!
33 / 69

The XOM architecture — Example

ALUDES
CPU

RAM

session-key table

ID session-key

0 --------

1 Asym

2 Bsym

3 --------

register file

reg contents tag

r0 42 0

r1 67 2

r2 314 2

r3 218 1

cache

addr cache line tag

0

1 I1 2

2 I2 1

3 D1 2

ACTIVE

2

34 / 69

The XOM architecture — Example

RAM

CPU

addr contents

0

1 Bsym(I1‖CRC(I1))
2 Asym(I2‖CRC(I2))
3 Bsym(D1‖CRC(D1))

35 / 69

The XOM architecture — Example

The CPU tries to load data value D1 at address
3 into register r0:

1 Look in the cache line: empty!

36 / 69

The XOM architecture — Example

The CPU tries to load data value D1 at address
3 into register r0:

1 Look in the cache line: empty!
2 Cache miss, read Bsym(D1‖CRC(D1)) from

address 3.

36 / 69

The XOM architecture — Example

The CPU tries to load data value D1 at address
3 into register r0:

1 Look in the cache line: empty!
2 Cache miss, read Bsym(D1‖CRC(D1)) from

address 3.
3 Look up key for the active compartment:

Bsym.

36 / 69

The XOM architecture — Example

The CPU tries to load data value D1 at address
3 into register r0:

1 Look in the cache line: empty!
2 Cache miss, read Bsym(D1‖CRC(D1)) from

address 3.
3 Look up key for the active compartment:

Bsym.
4 Decrypt the cache-line!

36 / 69

The XOM architecture — Example

5 Adversary could have swapped D1it for
another encrypted value from some other
part of the code!

Store CRC hash of each cache line.
If CRC doesn’t match⇒ exception!
Otherwise, load D1 into register r0
Set r0’s tag to 2.

37 / 69

Attacks on
Tamperproof

Devices

Attacks on Tamperproof Devices

Assumption: Physical barrier isn’t broken!
This section:

1 Attacking the XBOX
2 Invasive attacks on smartcards
3 Non-invasive attacks on smartcards

39 / 69

The Microsoft XBOX hack

MIT Ph.D. student Andrew “bunnie” Huang
got an XBOX game console from his fiance’
for Christmas.

40 / 69

The Microsoft XBOX hack

MIT Ph.D. student Andrew “bunnie” Huang
got an XBOX game console from his fiance’
for Christmas.

He took it apart.

40 / 69

The Microsoft XBOX hack

MIT Ph.D. student Andrew “bunnie” Huang
got an XBOX game console from his fiance’
for Christmas.

He took it apart.

He cracked the security.

40 / 69

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

X86 CPU, 64 MB of cheap RAM,
northbridge and southbridge chips, IDE
controllers, etc.

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

System startup:
1 boot block executes

42 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

System startup:
1 boot block executes
2 boot block decrypts, verifies, and jumps to the

bootloader

42 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

System startup:
1 boot block executes
2 boot block decrypts, verifies, and jumps to the

bootloader
3 bootloader decrypts, verifies, and jumps to the

OS kernel
42 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

Observations:
1 key and decryptor in the southbridge.

43 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

Observations:
1 key and decryptor in the southbridge.
2 the CPU decrypts

43 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

Observations:
1 key and decryptor in the southbridge.
2 the CPU decrypts
3 ⇒ key/decryptor will travel in cleartext over two

busses!
43 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

Which bus to tap?
1 north-southbridge bus: 0nly 8 bits wide!

44 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

Which bus to tap?
1 north-southbridge bus: 0nly 8 bits wide!
2 solder a tap board onto the bus

44 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

Which bus to tap?
1 north-southbridge bus: 0nly 8 bits wide!
2 solder a tap board onto the bus
3 sniff the decryptor + key

44 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

Which bus to tap?
1 north-southbridge bus: 0nly 8 bits wide!
2 solder a tap board onto the bus
3 sniff the decryptor + key
4 pattern match⇒ RC/4 decryptor!

44 / 69

The Microsoft XBOX hack

TAP

CPU

M
A
R

bootloader

1) decrypt kernel

3) call kernel

fake boot block

1) decrypt bootloader

kernel

FLASH ROMsouthbridge

128−bit RC/4 key

RC/4 decryptor

secret boot block

3) call bootloader

2) decryption OK?

128−bits

8−bits

200 Mhz

2) decryption OK?

8−bits

200 Mhznorthbridge

<10 Mhz

64−bits

133 Mhz

MOD

Which bus to tap?
1 north-southbridge bus: 0nly 8 bits wide!
2 solder a tap board onto the bus
3 sniff the decryptor + key
4 pattern match⇒ RC/4 decryptor!
5 try every 16 bytes from bootblock as key!

44 / 69

Hacking
smartcards

Smartcards

3DES

RSASHA−1

EEPROMRAM

Vcc

RST

Vpp

CLK

GND

I/O

Mass transit, prepaid phone cards,
identification cards, SIM cards, pay-TV
set-top boxes, credit cards.
Protected memory in which a secret can be
stored. 46 / 69

Smartcards

3DES

RSASHA−1

EEPROMRAM

Vcc

RST

Vpp

CLK

GND

I/O

Gets power and clock from
Card Acceptance Device (CAD).
CAD and card communicate over 1-bit
serial ylink.

47 / 69

Invasive vs. non-invasive attacks

3DES

RSASHA−1

EEPROMRAM

Vcc

RST

Vpp

CLK

GND

I/O

Invasive attack:
1 expose the bare chip,

48 / 69

Invasive vs. non-invasive attacks

3DES

RSASHA−1

EEPROMRAM

Vcc

RST

Vpp

CLK

GND

I/O

Invasive attack:
1 expose the bare chip,
2 probe the surface to extract information

48 / 69

Invasive vs. non-invasive attacks

3DES

RSASHA−1

EEPROMRAM

Vcc

RST

Vpp

CLK

GND

I/O

Invasive attack:
1 expose the bare chip,
2 probe the surface to extract information
3 poke the surface to modify the chip

48 / 69

Invasive vs. non-invasive attacks

3DES

RSASHA−1

EEPROMRAM

Vcc

RST

Vpp

CLK

GND

I/O

Invasive attack:
1 expose the bare chip,
2 probe the surface to extract information
3 poke the surface to modify the chip

Non-invasive attack:
monitor execution characteristics (power,
radiation, execution time) etc.

48 / 69

Invasive vs. non-invasive attacks

3DES

RSASHA−1

EEPROMRAM

Vcc

RST

Vpp

CLK

GND

I/O

Invasive attack:
1 expose the bare chip,
2 probe the surface to extract information
3 poke the surface to modify the chip

Non-invasive attack:
monitor execution characteristics (power,
radiation, execution time) etc.
watch normal operations or induce faults

48 / 69

Smartcards — Invasive attacks

Chipworks can extract analog or digital circuits from
semiconductor devices and deliver detailed
easy-to-understand schematics that document a single
functional block or all the circuits. . . . We decapsulate the
chip and analyze the die to locate the circuit blocks of
interest. Then, using our Image Capture and Imaging
System (ICIS) we generate mosiacs for each level of
interconnect. Finally, advanced software and expertise is
used to extract the circuits for analysis.

49 / 69

Smartcards — Invasive attacks —

Depackaging

1 Remove the chip from the card itself by
heating and bending it.

2 Remove the epoxy resin around the chip by
dipping it in 60◦C fuming nitric acid.

3 Clean the chip by washing it with acetone in
an ultrasonic bath.

4 Mount the exposed chip in a test package
and connect its pads to the pins of the
package.

50 / 69

Smartcards — Invasive attacks —

Deprocessing

5 Use an optical microscope to take large
high-resolution pictures of the chip surface.

6 Identify major architectural features (ROM,
ALU, EEPROM, etc.) and/or lower-level
features such as busses and gates.

7 Remove the top metal track layer by dipping
the chip in hydrofluoric acid in an ultrasonic
bath.

8 Repeat from 5, for each layer.

51 / 69

Smartcards — Invasive attacks — Reverse

Engineering

Reverse engineer the chip

Analyze the information collected

Understand the functional units of the chip

52 / 69

Smartcards — Invasive attacks —

Microprobing

9 To allow the probe contact with the chip,
use a laser cutter mounted on the
microscope to remove (patches of) the
passivation layer that covers the top-layer
aluminum interconnect lines.

10 Record the activity on a few of the bus lines
(as many as you have probes) as you go
through a transaction with the card.

11 Repeat from 10 until you’ve collected the
bus activity trace from all of the bus lines.

53 / 69

Smartcards — Christopher Tarnovsky

54 / 69

Smartcards — Christopher Tarnovsky

Dish Network is accusing News Corp . . . of hiring hacker
Christopher Tarnovsky to break into Dish’s network, steal
the security codes, and use them to make pirated cards
to flood the black market.

Tarnovsky admitted in court he was paid James Bond
villain style, with $20,000 cash payments mailed from
Canada hidden inside “electronic devices.”

http://gizmodo.com/383753/news-corp-hires-

55 / 69

http://gizmodo.com/383753/news-corp-hires-hacker-to-break-into-dish-satellite-network-steal-security-codes-for-pirate-cards

Smartcards — Invasive attacks —

Summary

Attacks get harder as features get smaller

Rent a lab!

User your university lab!

56 / 69

Smartcards — Non-invasive attacks

Passive attack:
Watch what comes out of the chip
. . . , electromagnetic radiation, power
consumption, execution time, . . .

Active attack:
Feed carefully constructed
data/power/clock/. . . to the chip,
then measure the chip’s behavior.

57 / 69

Smartcards — Timing attacks

✞ ☎

s[0] = 1;

for(k=0; k<w; k++) {

if (x[k] == 1)

R[k] = (s[k]*y) mod
n;

else

R[k] = s[k];

s[k+1] = R[k]*R[k] mod n

}

return R[w-1];
✝ ✆

Ask card: “please encrypt this file with your
secret key”

58 / 69

Boardlevel
protection

IBM 4758 cryptographic coprocessor

Physical protection hasn’t been broken!

Costs about $4000.

Vending machines that “sell money”:
topping up mobile phones, adding money to
smartcards, or printing postage stamps.

Used by banks to protect electronic
transfers from insider attacks.

60 / 69

IBM 4758 cryptographic coprocessor

Sensors
Vcc

32 bit internal bus

P

u
b

s

I
C

CPU
486

D
A

T
E

R
N

D4MB

power
temp

mesh

SHA−1
RSA
3DES

RAM
4MB

FLASH

RAM
32KB

BOARD
PCI

radiation

61 / 69

IBM 4758 cryptographic coprocessor

PCI card — plug in to a host computer.

486-type processor, 4MB of RAM, 4MB of
FLASH, 32KB of battery backed RAM.

Cryptographic facilities: DES, 3DES, RSA,
true random number generation, SHA-1.

Date and time unit.

62 / 69

IBM 4758 — Tamper-detection

When tamper-detection sensor triggers:
1 Turn off power to the battery backed RAM⇒

zero secret code and data.
2 Reset the CPU⇒ destroy RAM contents.

63 / 69

IBM 4758 — Attacks and Defenses

Penetration attacks:
⇒ “polyurethane mixture and a film with an
imprinted circuit pattern to detect minute
penetration and erosion attacks”

64 / 69

IBM 4758 — Attacks and Defenses

Penetration attacks:
⇒ “polyurethane mixture and a film with an
imprinted circuit pattern to detect minute
penetration and erosion attacks”

Memory remanence attacks:
Freeze/radiate, remove from computer, drill
down to RAM
⇒ temperature and radiation sensors

64 / 69

IBM 4758 — Attacks and Defenses

Penetration attacks:
⇒ “polyurethane mixture and a film with an
imprinted circuit pattern to detect minute
penetration and erosion attacks”

Memory remanence attacks:
Freeze/radiate, remove from computer, drill
down to RAM
⇒ temperature and radiation sensors

Fault-induction attacks:
Bring voltage abnormally high or low.
⇒ low and high voltage sensors.

64 / 69

IBM 4758 — Attacks and Defenses

Power analysis attacks:
⇒ filter the power supply

65 / 69

IBM 4758 — Attacks and Defenses

Power analysis attacks:
⇒ filter the power supply

Electromagnetic analysis attacks:
⇒ shield the board in a metal enclosure
(Faraday Cage)

65 / 69

IBM 4758 — Summary

No known attacks against the physical
protection of the 4758.

66 / 69

IBM 4758 — Summary

No known attacks against the physical
protection of the 4758.

Lessons: Must protect against
any kind of leakage of information
any injection of faulty code/data
any adverse environmental conditions

66 / 69

IBM 4758 — Summary

No known attacks against the physical
protection of the 4758.

Lessons: Must protect against
any kind of leakage of information
any injection of faulty code/data
any adverse environmental conditions

Can we build a device that is
efficient,
secure, and
cheap?

66 / 69

Discussion

Disadvantages

Deployment — long time before new
technology is on every PC.
Cost — extra hardware is expensive.
Usability —

Lose a dongle?
Upgrade to a faster CPU, with different key?
Software vendor goes out of business?

Security — invasive attacks, side-channel
attacks.
Performance — crypto-processors are
slower.
Engineering — design complexity, ease of
testing, . . .

68 / 69

Thank You!

69 / 69

