
c© June 23, 2014 Christian Collberg

Software Protection:

How to Crack Programs, and

Defend Against Cracking

Lecture 8: Watermarking

Minsk, Belarus, Spring 2014

Christian Collberg
University of Arizona

www.cs.arizona.edu/˜collberg

www.cs.arizona.edu/~collberg


Today’s lecture

1 Watermarking

2 / 72



.

Embed a unique identifier into the
executable of a program.

3 / 72



.

Embed a unique identifier into the
executable of a program.

A watermark is much like a copyright notice.

3 / 72



.

Embed a unique identifier into the
executable of a program.

A watermark is much like a copyright notice.

Won’t prevent an attacker from reverse
engineering or pirating it the program.

3 / 72



.

Embed a unique identifier into the
executable of a program.

A watermark is much like a copyright notice.

Won’t prevent an attacker from reverse
engineering or pirating it the program.

Allows us to show that the program the
attacker claims to be his, is actually ours.

3 / 72



.

Embed a unique identifier into the
executable of a program.

A watermark is much like a copyright notice.

Won’t prevent an attacker from reverse
engineering or pirating it the program.

Allows us to show that the program the
attacker claims to be his, is actually ours.

Software fingerprinting: every copy you sell
will have a different unique mark in it

3 / 72



.

Embed a unique identifier into the
executable of a program.

A watermark is much like a copyright notice.

Won’t prevent an attacker from reverse
engineering or pirating it the program.

Allows us to show that the program the
attacker claims to be his, is actually ours.

Software fingerprinting: every copy you sell
will have a different unique mark in it

Trace the copy back to the original owner,
and take legal action.

3 / 72



History and
Applications

p. 468

p0 p1 p2



Customer #27182818

Filtering mark Secret mark
(invisible,fragile)

Fingerprint mark
(invisible,robust)

Meta−data mark
(visible,fragile)

Authorship mark
((in)visible,robust)

Licensing mark
(invisible,robust)

(visible,robust)

Validation mark

MD5(kitten.jpg)

(visible,fragile)

      <right> copy−once </right>

</license>

<license object="kitten.jpg">

   </grant>

   <grant to="Alice">

"Cute kitten in window in Venice"
"Attack mice at dawn"

0xc6ba8f25d2dfc44cf518d7f327c8e83f

PG−13

Customer #31415926
c© 2006 Collberg



Audio marking: Echo hiding

Embed echoes that are short enough to be
imperceptible to the human ear:

p1

δ0
δ1

p0

6 / 72



Audio: Least Significant Bit

LSB of an audio sample is the one that
contributes least to your perception,

p0 p1 p2

7 / 72



Audio: Least Significant Bit

LSB of an audio sample is the one that
contributes least to your perception,

Alter without adversely affecting quality!

p0 p1 p2

7 / 72



Audio: Least Significant Bit

LSB of an audio sample is the one that
contributes least to your perception,

Alter without adversely affecting quality!

Attack: randomly replace the least
significant bit of every sample!

p0 p1 p2

7 / 72



Image: Patchwork

Embed a single bit by manipulating the
brightness of pixels.

8 / 72



Image: Patchwork

Embed a single bit by manipulating the
brightness of pixels.
Use a pseudo-random number sequence to
trace out pairs (A,B) of pixels

8 / 72



Image: Patchwork

Embed a single bit by manipulating the
brightness of pixels.
Use a pseudo-random number sequence to
trace out pairs (A,B) of pixels
During embedding adjust the brightness of
A up by a small amount, and B down by the
same small amount:

8 / 72



Patchwork: Embedding And

Recognition

EMBED(P,key ):

1 Init RND(key); δ ← 5

2 i ← RND(); j ← RND()

3 Adjust the brightness of
pixels ai and bi :
ai ← ai +δ ; bj ← bj −δ

4 repeat from 2 ≈ 10000
times

RECOGNIZE(P,key ):

1 Init RND(key); S← 0

2 i ← RND(); j ← RND()

3 S← S+(ai −bj)

4 repeat from 2 ≈ 10000
times

5 if S≫ 0⇒ 0 output
"marked!"

9 / 72



Blind vs. Informed

Watermarking recognizers are either blind
or informed.

10 / 72



Blind vs. Informed

Watermarking recognizers are either blind
or informed.

To extract a blind mark you need the
marked object and the secret key.

10 / 72



Blind vs. Informed

Watermarking recognizers are either blind
or informed.

To extract a blind mark you need the
marked object and the secret key.

To extract an informed mark you need extra
information, such as original,
unwatermarked, object.

10 / 72



Watermarking text

Cover object types:
the text itself with formatting (ASCII text); or
free-flowing text;
an image of the text (PostScript or PDF).

11 / 72



Watermarking Text: PDF

Similar to marking images.

of my generation,

I saw the best minds

starving hysterical naked

of my generation,

starving hysterical naked

I saw the best minds

{

{12pt

14pt

{

{12pt

12pt

12 / 72



Watermarking Text: PDF

Similar to marking images.

Example: encode 0-bit or a 1-bit by hanging
word/line spacing.

of my generation,

I saw the best minds

starving hysterical naked

of my generation,

starving hysterical naked

I saw the best minds

{

{12pt

14pt

{

{12pt

12pt

12 / 72



Watermarking Text: formatted ASCII

Encode the mark in white-space: 1 space =
0-bit, 2 spaces = 1-bit:

✞ ☎

I saw the best minds

of my generation,

starving hysterical naked
✝ ✆

✞ ☎

I saw the best minds

of my generation,

starving hysterical naked
✝ ✆

13 / 72



Watermarking Text: Synonym

replacement

Replace words with synonyms.

Insert spelling or punctuation errors.
✞ ☎

I saw the best minds

of my generation,

starving hysterical naked
✝ ✆

✞ ☎

I observed the choice intellects

of my generation,

famished hysterical nude
✝ ✆

14 / 72



Watermarking Text: Syntax

Encode a mark in the syntactic structure of
an English text:

1 Devise an extract function which computes a
bit from a sentence,

2 Modify the sentence until it embeds the right
bit.

✞ ☎

I saw the best minds

of my generation,

starving hysterical naked
✝ ✆

✞ ☎

It was the best minds

of my generation that I saw,

starving hysterical naked
✝ ✆

15 / 72



Watermarking Text: Atallah et al.

1 Chunk up the watermark, embed one piece
per sentence.

2 A function computes one bit per syntax tree
node.

3 Modify sentence until these bits embed a
watermark chunk.

4 A marker sentence precedes every
watermark-bearing sentence.

✞ ☎

I saw the best minds

of my generation,

starving hysterical naked
✝ ✆

16 / 72



Watermarking Text: Atallah et al.

✞ ☎

I saw the best minds

of my generation,

starving hysterical naked
✝ ✆

✞ ☎

I saw the best minds of my

generation. They were starving

hysterical naked. None, baby,

none were smarter than them. Nor

more lacking in supply of essential

nutrients or in more need of

adequate clothing. Baby.
✝ ✆

17 / 72



Watermarking
Software

p. 478



Static watermarks

key

Embed
Static Static 

Extract

key

w
P

w
P ′

You care about

Encoding bitrate

Stealth

Resilience to attack

19 / 72



Ideas for Software Watermark

Algorithms

Encode the watermark

in a permutation of a language structure

20 / 72



Ideas for Software Watermark

Algorithms

Encode the watermark

in a permutation of a language structure

in an embedded media object

20 / 72



Ideas for Software Watermark

Algorithms

Encode the watermark

in a permutation of a language structure

in an embedded media object

in a statistical property of the program

20 / 72



Ideas for Software Watermark

Algorithms

Encode the watermark

in a permutation of a language structure

in an embedded media object

in a statistical property of the program

as a solution to a static analysis problem

20 / 72



Ideas for Software Watermark

Algorithms

Encode the watermark

in a permutation of a language structure

in an embedded media object

in a statistical property of the program

as a solution to a static analysis problem

in the topology of a CFG

20 / 72



Dynamic watermarks

Dynamic Dynamic 
ExtractEmbedw

P
P ′ w

I1, · · · ,IkI1, · · · ,Ik

Encode the watermark in the runtime state
of the program

21 / 72



Dynamic watermarks

Dynamic Dynamic 
ExtractEmbedw

P
P ′ w

I1, · · · ,IkI1, · · · ,Ik

Encode the watermark in the runtime state
of the program

Dynamic marks appear more robust, but
are more cumbersome to use

21 / 72



Attacks against software watermarks

key

Embed
Static Static 

Extract

key

w
P

w
P ′

The adversary knows the algorithm

22 / 72



Attacks against software watermarks

key

Embed
Static Static 

Extract

key

w
P

w
P ′

The adversary knows the algorithm

The adversary has complete access to the
program

22 / 72



Attacks against software watermarks

key

Embed
Static Static 

Extract

key

w
P

w
P ′

The adversary knows the algorithm

The adversary has complete access to the
program

The adversary doesn’t know the key

22 / 72



Attacks against software watermarks

key

Embed
Static Static 

Extract

key

w
P

w
P ′

The adversary knows the algorithm

The adversary has complete access to the
program

The adversary doesn’t know the key

The adversary doesn’t know the embedding
location (it’s key dependent)

22 / 72



Attacks — Rewrite attack

Alice has to assume that Bob will try to
destroy her marks before trying to resell the
program!

One attack will always succeed. . .

23 / 72



Attacks — Rewrite attack

Alice has to assume that Bob will try to
destroy her marks before trying to resell the
program!

One attack will always succeed. . .

42 Extract ?Attack
Rewrite P’’P’

Ideally, this is the only effective attack.

23 / 72



Attacks — Additive attack

Bob can also add his own watermarks to
the program:

11

42
P’

Attack
Additive P’’

42
23

19 Extract ?

An additive attack can help Bob to cast
doubt in court as to whose watermark is the
original one.

24 / 72



Attacks — Distortive attack

A distortive attack applies
semantics-preserving transformations to try
to disturb Alice’s recognizer:

transformations

P’’ ?Distortive

preserving
Semantics−

P’
42 Extract42Attack

25 / 72



Attacks — Distortive attack

A distortive attack applies
semantics-preserving transformations to try
to disturb Alice’s recognizer:

transformations

P’’ ?Distortive

preserving
Semantics−

P’
42 Extract42Attack

Transformations: code optimizations,
obfuscations,. . .

25 / 72



Attacks — Collusive attack

Bob buys two differently marked copies and
comparing them to discover the location of
the fingerprint:

AttackP2

17

P1

42 P’’
ExtractCollusive ?

26 / 72



Attacks — Collusive attack

Bob buys two differently marked copies and
comparing them to discover the location of
the fingerprint:

AttackP2

17

P1

42 P’’
ExtractCollusive ?

Alice should apply a different set of
obfuscations to each distributed copy, so
that comparing two copies of the same
program will yield little information.

26 / 72



Watermarking
by

Permutation
p. 486

goto B3if (e) goto B2

· · · · · ·
B2

· · · · · ·
B1

B0

· · · · · ·
goto B2

B5

· · · · · ·
B6

B7

· · · · · ·

if (e) goto B2

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·
if (e) goto B6

if (e) goto B3

· · · · · ·

· · · · · ·

if (e) goto B2

· · · · · ·

if (e) goto B3

· · · · · ·

· · · · · ·
goto B2

· · · · · ·

if (e) goto B6

B0

B1

B2

B3

B4

B5

B6

B7 B7

B4

B3

B6

B1

B2

B5

B0
goto B1

goto B2

goto B7

goto B5

· · · · · ·
if (e) goto B6

B4

if (e) goto B3

· · · · · ·
B3



Algorithm WMDM: Reordering Basic

Blocks

goto B3if (e) goto B2

· · · · · ·

B2

· · · · · ·

B1

B0

· · · · · ·
goto B2

B5

· · · · · ·

B6

B7

· · · · · ·

if (e) goto B2

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·
if (e) goto B6

if (e) goto B3

· · · · · ·

· · · · · ·

if (e) goto B2

· · · · · ·

if (e) goto B3

· · · · · ·

· · · · · ·
goto B2

· · · · · ·

if (e) goto B6

B0

B1

B2

B3

B4

B5

B6

B7
B7

B4

B3

B6

B1

B2

B5

B0
goto B1

goto B2

goto B7

goto B5

· · · · · ·
if (e) goto B6

B4

if (e) goto B3

· · · · · ·

B3

28 / 72



Algorithm WMDM: Reordering Basic

Blocks

Performance overhead of 0-11% for three
standard high-performance computing
benchmarks.

29 / 72



Algorithm WMDM: Reordering Basic

Blocks

Performance overhead of 0-11% for three
standard high-performance computing
benchmarks.
Negligible slowdown for a set of Java
benchmarks.

29 / 72



Algorithm WMDM: Reordering Basic

Blocks

Performance overhead of 0-11% for three
standard high-performance computing
benchmarks.
Negligible slowdown for a set of Java
benchmarks.
If you have m items to reorder you can
encode

log2(m!)≈ log2(
√

2πm(m/e)m)=O(m logm)

watermarking bits.

29 / 72



Algorithm WMDM: Reordering Basic

Blocks

Performance overhead of 0-11% for three
standard high-performance computing
benchmarks.
Negligible slowdown for a set of Java
benchmarks.
If you have m items to reorder you can
encode

log2(m!)≈ log2(
√

2πm(m/e)m)=O(m logm)

watermarking bits.
What about stealth?

29 / 72



Tamperproofing
Watermarks

p. 494

Code c = decode(tudou);
int x = c.execute(42)

}

...
}

Code decode (Image m) {

void main() {

Image tudou =



Algorithm WMMC: Media watermark

...

}
int x = foo(42);

void main() {

}

int foo (int x) {

31 / 72



Algorithm WMMC: Media watermark

Image tudou =

}
int x = foo(42);

...
}

int foo (int x) {

void main() {

Bob uses Stirmark to destroy marks in
embedded images! 31 / 72



Algorithm WMMC: Media watermark

Code c = decode(tudou);
int x = c.execute(42)

}

...
}

Code decode (Image m) {

void main() {

Image tudou =

Bob uses Stirmark to destroy marks in
embedded images! 31 / 72



Algorithm
WMVVS

p. 506

Watermarks in CFGs



Algorithm WMVVS: Watermarks in

CFGs

Basic idea:
1 Embed the watermark in the CFG of a function.

33 / 72



Algorithm WMVVS: Watermarks in

CFGs

Basic idea:
1 Embed the watermark in the CFG of a function.
2 Tie the CFG tightly to the rest of the program.

33 / 72



Algorithm WMVVS: Watermarks in

CFGs

Basic idea:
1 Embed the watermark in the CFG of a function.
2 Tie the CFG tightly to the rest of the program.

Issues:
1 How do you encode a number in a CFG?
2 How do you find the watermark CFG?
3 How do you attach the watermark CFG to the

rest of the program?

33 / 72



Algorithm WMVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two

34 / 72



Algorithm WMVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible

34 / 72



Algorithm WMVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible
3 it is shallow (real code isn’t deeply nested)

34 / 72



Algorithm WMVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible
3 it is shallow (real code isn’t deeply nested)
4 it is small (real functions aren’t big)

34 / 72



Algorithm WMVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible
3 it is shallow (real code isn’t deeply nested)
4 it is small (real functions aren’t big)
5 it is resilient to edge-flips :

if a>=b goto Bj

· · ·
if a<b goto Bk

· · ·

BjBkBkBj

34 / 72



Algorithm WMVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible
3 it is shallow (real code isn’t deeply nested)
4 it is small (real functions aren’t big)
5 it is resilient to edge-flips :

if a>=b goto Bj

· · ·
if a<b goto Bk

· · ·

BjBkBkBj

Reducible Permutation Graphs (RPGs)

34 / 72



public static int bogus;

public static int m4(int i) {

i = i & 0x7BFF;

bogus+=2; i-=i>>2;

do {
i = i >> 3;

label: {
if (++bogus <= 0) {

i = i | 0x1000;

if ((bogus += 6) == 0)

break label;

}
++bogus;

i = i * 88 >>> 1;

}
i = i | 0x4;

} while((bogus += 6)<0);

bogus+=2; return i;

}



public void P(boolean S) {

if (S)

System.out.println("YES");

else

System.out.println("NO");

}

public void main (String args[]) {

for (int i=1; i<args.length; i++) {

if (args[0].equals(args[i])) {

P(true);

if (m4(3)<0)

P(false) ;

return;

}

}

m3(-1) ;

P(false);

}

public int bogus;

public int m4(int i) {

i = i & 0x7BFF;

bogus += 2;

i -= i >> 2;

do {

if (i<-6)

P(bogus<i);

i = i >> 3;

label: {

if (++bogus <= 0) {

i = i | 0x1000;

m3(0);

if ((bogus+=6)==0)

break label;

}

++bogus;

i = i * 88 >>> 1;

}

i = i | 0x4;

} while (((bogus += 6)<0)

&& (m3(9)>=0) )

bogus += 2;

return i;

}

public int m3(int i) {

i = i ˆ i >> 0x1F;

i = i / 4 * 3;

do {

i -= i >> 3;

if((bogus += 11) <= 0)

break;

i = i / 5 4;



Algorithm WMVVS: Recognition

So, how do you find the watermark CFG
among all the “real” CFGs?

37 / 72



Algorithm WMVVS: Recognition

So, how do you find the watermark CFG
among all the “real” CFGs?
Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every
watermark block.

37 / 72



Algorithm WMVVS: Recognition

So, how do you find the watermark CFG
among all the “real” CFGs?
Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every
watermark block.

Recognition procedure:
1 compute the mark value for each basic block in

the program

37 / 72



Algorithm WMVVS: Recognition

So, how do you find the watermark CFG
among all the “real” CFGs?
Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every
watermark block.

Recognition procedure:
1 compute the mark value for each basic block in

the program
2 assume that any function with more than t%

blocks marked is a watermark function

37 / 72



Algorithm WMVVS: Recognition

So, how do you find the watermark CFG
among all the “real” CFGs?
Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every
watermark block.

Recognition procedure:
1 compute the mark value for each basic block in

the program
2 assume that any function with more than t%

blocks marked is a watermark function
3 construct CFGs for the watermark functions

37 / 72



Algorithm WMVVS: Recognition

So, how do you find the watermark CFG
among all the “real” CFGs?
Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every
watermark block.

Recognition procedure:
1 compute the mark value for each basic block in

the program
2 assume that any function with more than t%

blocks marked is a watermark function
3 construct CFGs for the watermark functions
4 decode each one into an integer watermark

37 / 72



Algorithm WMVVS: Recognition

So, how do you find the watermark CFG
among all the “real” CFGs?
Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every
watermark block.

Recognition procedure:
1 compute the mark value for each basic block in

the program
2 assume that any function with more than t%

blocks marked is a watermark function
3 construct CFGs for the watermark functions
4 decode each one into an integer watermark

The embedder can split the watermarking
into pieces, for higher bitrate. 37 / 72



Steganographic Embeddings

Customer #27182818

Filtering mark Secret mark
(invisible,fragile)

Fingerprint mark
(invisible,robust)

Meta−data mark
(visible,fragile)

Authorship mark
((in)visible,robust)

Licensing mark
(invisible,robust)

(visible,robust)

Validation mark

MD5(kitten.jpg)

(visible,fragile)

      <right> copy−once </right>

</license>

<license object="kitten.jpg">

   </grant>

   <grant to="Alice">

"Cute kitten in window in Venice"
"Attack mice at dawn"

0xc6ba8f25d2dfc44cf518d7f327c8e83f

PG−13

Customer #31415926
c© 2006 Collberg

38 / 72



Watermark Embeddings

Watermarks are
short identifiers
difficult to locate
hard to destroy

39 / 72



Watermark Embeddings

Watermarks are
short identifiers
difficult to locate
hard to destroy

The adversary
knows that the object is marked
knows the algorithm used
doesn’t know the key
is active

39 / 72



Watermark Embeddings

Watermarks are
short identifiers
difficult to locate
hard to destroy

The adversary
knows that the object is marked
knows the algorithm used
doesn’t know the key
is active

You care about
data-rate
stealth
resilience

39 / 72



Steganographic Embeddings

Stegomarks are
long identifiers
difficult to locate

40 / 72



Steganographic Embeddings

Stegomarks are
long identifiers
difficult to locate

The adversary
wants to know if the object is marked
knows the algorithm used
doesn’t know the key
is passive

40 / 72



Steganographic Embeddings

Stegomarks are
long identifiers
difficult to locate

The adversary
wants to know if the object is marked
knows the algorithm used
doesn’t know the key
is passive

You care about
data-rate
stealth

40 / 72



Steganography — Prisoners’ Problem

Alice Bob

41 / 72



Steganography — Prisoners’ Problem

Alice Bob

41 / 72



Steganography — Prisoners’ Problem

Alice Bob

41 / 72



Steganography — Prisoners’ Problem

Wendy

Alice Bob

41 / 72



Steganography — Prisoners’ Problem

Wendy

Alice Bob

41 / 72



Steganography — Prisoners’ Problem

DAWN!

ESCAPE
AT

Wendy

Alice Bob

41 / 72



Steganography — Prisoners’ Problem

ESCAPE
AT
DAWN!

Wendy

BobAlice

41 / 72



Steganography — Null cipher

Easter is soon, dear! So many

flowers! Can you smell them?

Are you cold at night? Prison

food stinks! Eat well, still!

Are you lonely? The prison cat

is cute! Don’t worry! All is

well! Wendy is nice! Need you!

):

42 / 72



WMASB: Hidden Messages in x86

Binaries

Basic idea: Play compiler!

whenever the compiler has a
choice in which code to generate,
or the order in which to generate it,
pick the choice that embeds the
next bits from the message W.

43 / 72



WMASB: Hidden Messages in x86

Binaries

Basic idea: Play compiler!

whenever the compiler has a
choice in which code to generate,
or the order in which to generate it,
pick the choice that embeds the
next bits from the message W.

Four sources of ambiguity:
1 code layout (ordering of chains of basic blocks)

43 / 72



WMASB: Hidden Messages in x86

Binaries

Basic idea: Play compiler!

whenever the compiler has a
choice in which code to generate,
or the order in which to generate it,
pick the choice that embeds the
next bits from the message W.

Four sources of ambiguity:
1 code layout (ordering of chains of basic blocks)
2 instruction scheduling (instruction order within

basic blocks)

43 / 72



WMASB: Hidden Messages in x86

Binaries

Basic idea: Play compiler!

whenever the compiler has a
choice in which code to generate,
or the order in which to generate it,
pick the choice that embeds the
next bits from the message W.

Four sources of ambiguity:
1 code layout (ordering of chains of basic blocks)
2 instruction scheduling (instruction order within

basic blocks)
3 register allocation

43 / 72



WMASB: Hidden Messages in x86

Binaries

Basic idea: Play compiler!

whenever the compiler has a
choice in which code to generate,
or the order in which to generate it,
pick the choice that embeds the
next bits from the message W.

Four sources of ambiguity:
1 code layout (ordering of chains of basic blocks)
2 instruction scheduling (instruction order within

basic blocks)
3 register allocation
4 instruction selection 43 / 72



WMASB: Embedding
1 Construct:

1 codebook B of equivalent instruction
sequences

mul ri,x,5

shl ri,x,2

add ri,ri,x

add ri,x,x

add ri,ri,ri

add ri,ri,x

2 statistical model M of real code

44 / 72



WMASB: Embedding
1 Construct:

1 codebook B of equivalent instruction
sequences

mul ri,x,5

shl ri,x,2

add ri,ri,x

add ri,x,x

add ri,ri,ri

add ri,ri,x

2 statistical model M of real code

2 Encrypt W with key .

44 / 72



WMASB: Embedding
1 Construct:

1 codebook B of equivalent instruction
sequences

mul ri,x,5

shl ri,x,2

add ri,ri,x

add ri,x,x

add ri,ri,ri

add ri,ri,x

2 statistical model M of real code

2 Encrypt W with key .
3 Canonicalize P:

1 Sort block chains, procedures, modules
2 Order instructions in each block in standard

order
Replace each instruction with the first

44 / 72



WMASB: Embedding

4 Code layout: Embed bits from W by
reordering code segments within the
executable.

45 / 72



WMASB: Embedding

4 Code layout: Embed bits from W by
reordering code segments within the
executable.

5 Instruction scheduling:
1 Build dependency graph
2 Generate all valid instruction schedules
3 Embed bits from W by picking a schedule

Use M to avoid picking unusual schedules.

45 / 72



WMASB: Embedding

4 Code layout: Embed bits from W by
reordering code segments within the
executable.

5 Instruction scheduling:
1 Build dependency graph
2 Generate all valid instruction schedules
3 Embed bits from W by picking a schedule

Use M to avoid picking unusual schedules.

6 Instruction selection: Use B to embed bits
from W by replacing instructions. Use M to
avoid unusual instruction sequences.

45 / 72



WMASB: Stealth

Instruction selection:
There are 3078 different encodings of three
instructions for EAX=(EAX/2)!
Most don’t occur in real code. . .

46 / 72



WMASB: Stealth

Instruction selection:
There are 3078 different encodings of three
instructions for EAX=(EAX/2)!
Most don’t occur in real code. . .

Instruction scheduling:
Avoid bad schedules: no compiler would
generate it!
Avoid generating different schedules for two
blocks with the same dependency graph!

46 / 72



WMASB: Stealth

Instruction selection:
There are 3078 different encodings of three
instructions for EAX=(EAX/2)!
Most don’t occur in real code. . .

Instruction scheduling:
Avoid bad schedules: no compiler would
generate it!
Avoid generating different schedules for two
blocks with the same dependency graph!

Code layout:
Compilers lay out code for locality: don’t
deviate too much from that!

46 / 72



WMASB: Stealth

Encoding rate

Unstealthy code: 1
27

Stealthy: 1
89 .

47 / 72



WMASB: Stealth

Encoding rate

Unstealthy code: 1
27

Stealthy: 1
89 .

Encoding space:
58% from code layout
25% from instruction scheduling
17% from instruction selection

47 / 72



WMASB: Stealth

Encoding rate

Unstealthy code: 1
27

Stealthy: 1
89 .

Encoding space:
58% from code layout
25% from instruction scheduling
17% from instruction selection

Real code doesn’t use unusual instruction
sequences.

Real code contains many schedules for the
same dependency graph

47 / 72



Wanna design a watermarking

algorithm?

Find a language structure into which to
encode the mark (CFGs, threads, dynamic
control flow. . . )

〈language structure,encoder/decoder , tracer/locator
embedder/extractor ,attacker/protector〉 48 / 72



Wanna design a watermarking

algorithm?

Find a language structure into which to
encode the mark (CFGs, threads, dynamic
control flow. . . )
Construct an encoder/decoder
(number↔CFG,. . . )

〈language structure,encoder/decoder , tracer/locator
embedder/extractor ,attacker/protector〉 48 / 72



Wanna design a watermarking

algorithm?

Find a language structure into which to
encode the mark (CFGs, threads, dynamic
control flow. . . )
Construct an encoder/decoder
(number↔CFG,. . . )
Construct a tracer/locater to find locations
for the mark (using key, every function, . . . )

〈language structure,encoder/decoder , tracer/locator
embedder/extractor ,attacker/protector〉 48 / 72



Wanna design a watermarking

algorithm?

Find a language structure into which to
encode the mark (CFGs, threads, dynamic
control flow. . . )
Construct an encoder/decoder
(number↔CFG,. . . )
Construct a tracer/locater to find locations
for the mark (using key, every function, . . . )
Construct a embedder/extractor to tie the
mark to surrounding code

〈language structure,encoder/decoder , tracer/locator
embedder/extractor ,attacker/protector〉 48 / 72



Wanna design a watermarking

algorithm?

Find a language structure into which to
encode the mark (CFGs, threads, dynamic
control flow. . . )
Construct an encoder/decoder
(number↔CFG,. . . )
Construct a tracer/locater to find locations
for the mark (using key, every function, . . . )
Construct a embedder/extractor to tie the
mark to surrounding code
Decide on an attack model.

〈language structure,encoder/decoder , tracer/locator
embedder/extractor ,attacker/protector〉 48 / 72



Dynamic
Watermarking



Static watermarking?

Embedding ideas: Encode the watermark
1 as a permutation of the original code,or
2 in new but non-functional code

50 / 72



Static watermarking?

Embedding ideas: Encode the watermark
1 as a permutation of the original code,or
2 in new but non-functional code

Recognition: Extract the mark by analyzing
the code itself.

50 / 72



Static watermarking?

Embedding ideas: Encode the watermark
1 as a permutation of the original code,or
2 in new but non-functional code

Recognition: Extract the mark by analyzing
the code itself.
Attack ideas: Disrupt the recognizer by

1 permuting the original code, or
2 embedding your own watermark, or . . .

50 / 72



Dynamic watermarking!

Embedding idea: Embed the mark by
adding code that changes the program’s
behavior.

51 / 72



Dynamic watermarking!

Embedding idea: Embed the mark by
adding code that changes the program’s
behavior.

Recognition idea: Extract the mark by
running the program and analyzing its
behavior.

51 / 72



Dynamic watermarking!

Embedding idea: Embed the mark by
adding code that changes the program’s
behavior.

Recognition idea: Extract the mark by
running the program and analyzing its
behavior.

⇒ The program produces the watermark
into its state.

51 / 72



Dynamic watermarking API

Secret key: a special input sequence

I1, · · · ,Ik

Dynamic Dynamic 
ExtractEmbedw

P
P ′ w

I1, · · · ,IkI1, · · · ,Ik

52 / 72



Dynamic watermarking API —

Example

Secret input sequence to word processor
application:

〈spell check,enter text,change font, . . .〉.

53 / 72



Dynamic watermarking API —

Example

Secret input sequence to word processor
application:

〈spell check,enter text,change font, . . .〉.

Recognition procedure:
1 Run the watermark program with the secret

input,

53 / 72



Dynamic watermarking API —

Example

Secret input sequence to word processor
application:

〈spell check,enter text,change font, . . .〉.

Recognition procedure:
1 Run the watermark program with the secret

input,
2 Examine the state for the watermark.

53 / 72



Example

Simple semantics-preserving
transformations are less likely to affect a
dynamic watermark.

Secret watermarking input sequence:
〈“hello”,“world”〉.
The mark is stored in a global variable
watermark:✞ ☎

int watermark=0;

...

if (read() == "hello")

if (read() == "world")

watermark=42;

...
✝ ✆

54 / 72



Example

An attacker might apply various static code
transformations to destroy the mark:✞ ☎

int watermark=0;

int x = 3;

...

x = x*2;

if (read()=="hello")

if (read() == "world")

watermark= x*6+6 ;

...
✝ ✆

Static recognizers — get confused!
Dynamic recognizers —run the code, look
at the value of watermark, read out the
mark.
Simple static transformations won’t affect

55 / 72



Attack against dynamic state

The attacker could split the watermark

variable!
Careful in choosing what state in which you
store the mark!

1 It should be difficult for the adversary to modify
the state.

2 Modifying the state would make the program
too slow or too large to be useful.

3 It should be easy to tamperproof the state.

56 / 72



Disadvantages of dynamic

watermarks

1 Dynamic algorithms can’t protect parts of
programs: to recognize the mark the
program needs to be executed!

2 Dynamic watermarks have to be executed
to be recognized.

3 Non-determinism in the program can affect
the recognizer.

57 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!

58 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!
Basic embedding idea:

58 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!
Basic embedding idea:

1 Let n be the watermark number

58 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!
Basic embedding idea:

1 Let n be the watermark number
2 Convert n to a graph G that encodes the

number

58 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!
Basic embedding idea:

1 Let n be the watermark number
2 Convert n to a graph G that encodes the

number
3 Convert G to code C that builds the graph

58 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!
Basic embedding idea:

1 Let n be the watermark number
2 Convert n to a graph G that encodes the

number
3 Convert G to code C that builds the graph
4 Add C to your program so that it’s executed for

the special input

58 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!
Basic embedding idea:

1 Let n be the watermark number
2 Convert n to a graph G that encodes the

number
3 Convert G to code C that builds the graph
4 Add C to your program so that it’s executed for

the special input

Basic recognition idea:
1 Run the program for the special input

58 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!
Basic embedding idea:

1 Let n be the watermark number
2 Convert n to a graph G that encodes the

number
3 Convert G to code C that builds the graph
4 Add C to your program so that it’s executed for

the special input

Basic recognition idea:
1 Run the program for the special input
2 Dump all objects on the heap

58 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!
Basic embedding idea:

1 Let n be the watermark number
2 Convert n to a graph G that encodes the

number
3 Convert G to code C that builds the graph
4 Add C to your program so that it’s executed for

the special input

Basic recognition idea:
1 Run the program for the special input
2 Dump all objects on the heap
3 Reconstruct the graph G

58 / 72



Algorithm WMCT: Exploiting aliasing

Basic insight: Pointer analysis is hard!
Basic embedding idea:

1 Let n be the watermark number
2 Convert n to a graph G that encodes the

number
3 Convert G to code C that builds the graph
4 Add C to your program so that it’s executed for

the special input

Basic recognition idea:
1 Run the program for the special input
2 Dump all objects on the heap
3 Reconstruct the graph G
4 Convert G to the watermark number n

58 / 72



Algorithm WMCT: Example
✞ ☎

public class M {

public void main (String args[]) {

for (int i=1; i<args.length; i++) {

if (args[0].equals(args[i])) {

System.out.println("YES");

return;

}

}

System.out.println("NO");

}

}
✝ ✆

✞ ☎

> java M 2 3 4 5 2

YES

> java M 2 3 4 5 3

NO
✝ ✆

59 / 72



Algorithm WMCT: Example

Here we’re using a radix encoding.
Let n = 2, the base-2 expansion is
1 ·21+0 ·20: we get the graph

root n1 n2

Here’s the corresponding graph-building
code: ✞ ☎

WMNode n2 = new WMNode();

n2.digit = n2;

Node n1 = new WMNode();

n2.spine = n1;

n1.spine = n2;

n1.digit = n2;

Droot = new WMNode();
60 / 72



Algorithm WMCT: Example
✞ ☎

public class M {

class WMNode {public Node spine, digit;}

public static WMNode root;

public void main (String args[]) {

if (args[0].equals("2")) {

Build the graph here!

}

for (int i=1; i<args.length; i++) {

if (args[0].equals(args[i])) {

System.out.println("YES");

return;

}

}

System.out.println("NO");

}

}
✝ ✆

61 / 72



Increasing bitrate

How do we increase the bitrate?

62 / 72



Increasing bitrate

How do we increase the bitrate?

Easy — just build a bigger graph!

62 / 72



Increasing bitrate

How do we increase the bitrate?

Easy — just build a bigger graph!

But — bigger graph, less stealth!

62 / 72



Increasing bitrate

How do we increase the bitrate?

Easy — just build a bigger graph!

But — bigger graph, less stealth!
Ideas:

1 split the graph in smaller pieces!
2 choose an efficient graph encoding!

62 / 72



Increasing bitrate — Choosing

efficent graph encoding

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

500

1000

si
ze

(b
yt

es
)

PPCT graph bytecode size
reducible permutation graph bytecode size
permutation graph bytecode size
radix graph bytecode size

63 / 72



Increasing bitrate — Splitting graphs

n1 n2root n3

64 / 72



Increasing bitrate — Splitting graphs
✞ ☎

public static Node root;

public static Node n2;

public void main (String args[]) {

if (args[0].equals("2")) {

n2 = new Node();

Node n3 = new Node();

n2.digit = n3;

n2.spine = n3;

}

for (int i=1;i<args.length;i++) {

if (found(args[0], args, i)) {

System.out.println("YES");

return;

}

}

System.out.println("NO");

}
✝ ✆

65 / 72



Increasing bitrate — Splitting graphs
✞ ☎

public boolean found (

String value,

String args[],

int i) {

if (value.equals(args[i])) {

if ((i == 4)&&(n2 != null)) {

Node n1 = new Node();

n1.digit = n1;

n1.spine = n2;

Node n3 = n2.spine;

n3.spine = n1;

n3.digit = n1;

root = new Node();

root.spine = n1;

}

return true;

}

return false;

✝ ✆

66 / 72



Size of Java bytecode for building a

split Radix Graph

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

200

400

600

800

si
ze

(b
yt

es
)

1 component
2 components
3 components
4 components
5 components

Why does the total size grow with the
number of components?

67 / 72



Increasing resilience — thwarting

pointer analysis

n3

n1root n3 n2

n1 n2root

✞ ☎

Node n3 = new Node();

Node n2 = new Node();

n3.spine = n2; n2.digit = n3;

Node n1 = new Node();

n1.digit = n1; n1.spine = n3;

n3.digit = n1; n2.spine = n1;

root = new Node();

root.spine = n1;

· · ·
Node tmp = root.spine.spine;

root.spine.spine = tmp.spine;

tmp.spine.spine = tmp;

tmp.spine = tmp.digit;
✝ ✆

68 / 72



Increasing stealth — avoiding

unstealthy classes

1

root n2 n3

0

n1✞ ☎

class Person {public Object spouse;}

class Node extends Person {

public Object digit;}

· · ·
Node n1 = new Node();

n1.digit = n1;

java.awt.Event n3 =

new java.awt.Event(n1,0,n1);

Object n2[] = \{n3,n3\};

n1.spouse = n2;

root = new Person();

root.spouse = n1;
✝ ✆

69 / 72



Avoiding weak cuts

✞ ☎

public static void main (String args[]) {

int n = args.length;

if (args[0].equals("2")) {

· · ·
Node root = new Node(); root.spine = n1;

Node n2 = new Node(); n1.spine = n2;

n1.digit = n2; n2.spine = n1; n2.digit = n2;

· · ·
Node p = root.spine; int k = 0;

while (p.spine != root.spine) {p=p.spine; k++;}

n *= k;

}

for (int i=1; i<n; i++) {

if (args[0].equals(args[i]) &&

((root==null)||(root.spine!=root.spine.spine))){

System.out.println("YES"); return;

}
70 / 72



Algorithm WMCT: Summary

Size overhead — embed a 20-bit
watermark only requires 141 bytes of Java
bytecode. (Tamperproofing code adds
more).

71 / 72



Algorithm WMCT: Summary

Size overhead — embed a 20-bit
watermark only requires 141 bytes of Java
bytecode. (Tamperproofing code adds
more).

Performance overhead — the
graph-building code is only executed for the
special input.

71 / 72



Algorithm WMCT: Summary

Size overhead — embed a 20-bit
watermark only requires 141 bytes of Java
bytecode. (Tamperproofing code adds
more).

Performance overhead — the
graph-building code is only executed for the
special input.

Chief advantage — tamperproofing is easy.

71 / 72



Algorithm WMCT: Summary

Size overhead — embed a 20-bit
watermark only requires 141 bytes of Java
bytecode. (Tamperproofing code adds
more).

Performance overhead — the
graph-building code is only executed for the
special input.

Chief advantage — tamperproofing is easy.

Attacks — Scan the code for allocations
and pointer manipulations.

71 / 72



Algorithm WMCT: Summary

Size overhead — embed a 20-bit
watermark only requires 141 bytes of Java
bytecode. (Tamperproofing code adds
more).

Performance overhead — the
graph-building code is only executed for the
special input.

Chief advantage — tamperproofing is easy.

Attacks — Scan the code for allocations
and pointer manipulations.

Stealth — good in OO programs.

71 / 72



WMNT — Thread-Based Watermark

1−bit0−bit

C
Pwm

T1 T2 T3

Pwm

B

C C

B

A

P
A

B

A T2 T3

T1

Embed mark in which threads execute
which basic blocks.
Can have huge performance degradation.
Why? Parallelism-analysis is hard.

72 / 72


