Call Forwarding:

A Simple Interprocedural Optimization Technique

for Dynamically Typed Languages *

Koen De Bosschere,! Saumya Debray, David Gudeman,* Sampath Kannan?

1 Department of Electronics
Universiteit Gent

B-9000 Gent, Belgium

Abstract

This paper discusses call forwarding, a simple interpro-
cedural optimization technique for dynamically typed
languages. The basic idea behind the optimization is
straightforward: find an ordering for the “entry actions”
of a procedure, and generate multiple entry points for
the procedure, so as to maximize the savings realized
from different call sites bypassing different sets of en-
try actions. We show that the problem of computing
optimal solutions to arbitrary call forwarding problems
is NP-complete, and describe an efficient greedy algo-
rithm for the problem. Experimental results indicate
that (¢) this algorithm is effective, in that the solutions
produced are generally close to optimal; and (¢) the
resulting optimization leads to significant performance
improvements for a number of benchmarks tested.

1 Introduction

The code generated for a function or procedure in a
dynamically typed language typically has to carry out
various type and range checks on its arguments before
it can operate on them. These runtime tests can incur
a significant performance overhead. As a very simple
example, consider the following function to compute the
average of a list of numbers:

*K. De Bosschere was supported by the National Fund for Sci-
entific Research of Belgium and by the Belgian National Incentive
Program for fundamental research in Artificial Intelligence. S.
Debray and D. Gudeman were supported in part by the National
Science Foundation under grant number CCR-9123520. S. Kan-
nan was supported in part by the National Science Foundation
under grant number CCR-9108969.

Copyright 1994 ACM. Appeared in the Proceed-

oings of the 21st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages, January 1994, pp. 409-420.

1 Department of Computer Science
The University of Arizona
Tucson, AZ 85721, USA

ave(L, Sum, Count) =
if null(L) then Sum/Count
else ave(tail(L),Sum+head(L),Count+1)

In a straightforward implementation of this function,
the code generated checks the type of each of its argu-
ments each time around the loop: the first argument
must be a (empty or non-empty) list, while the second
and third arguments must be numbers.! Notice, how-
ever, that some of this type checking is unnecessary: the
expression Sum+head (L) evaluates correctly only if Sum
is a number, in which case its value is also a number;
similarly, Count+1 evaluates correctly only if Count is
a number, and in that case it also evaluates to a num-
ber. Thus, once the types of Sum and Count have been
checked at the entry to the loop, further type checks on
the second and third arguments are not necessary.

The function in this example is tail recursive, making
it easy to recognize the iterative nature of its compu-
tation and use some form of invariant code motion to
move the type check out of the loop. In general, how-
ever, such redundant actions may be encountered where
the definitions are not tail recursive and where the loop
structure is not as easy to recognize. An alternative ap-
proach, which works in general, is to generate multiple
entry points for the function ave, so that a particular
call site can enter at the “appropriate” entry point, by-
passing any code 1t does not need to execute. In the
example above, this would give exactly the desired re-
sult: tail call optimization would compile the recursive
call to ave into a jump instruction, and noticing that
the recursive call does not need to test the types of its
second and third arguments, the target of this jump

'n reality, the generated code would distinguish between the
numeric types int and float, e.g., using “message splitting” tech-
niques as in [5, 6]—the distinction is not important here, and we
assume a single numeric type for simplicity of exposition.

would be chosen to bypass these tests.

However, notice that in the example above, even if
we generate multiple entry points for ave, the optimiza-
tion works only if the tests are generated in the right
order: since 1t 1s necessary to test the type of the first
argument each time around the loop, the tests on the
second and third arguments cannot be bypassed if the
type test on the first argument precedes those on the
other two arguments. As this example illustrates, the
order in which the tests are generated influences the
amount of unnecessary code that can be bypassed at
runtime, and therefore the performance of the program.

In general, functions and procedures in dynamically
typed languages contain a set of (idempotent) “entry
actions,” such as type tests, initialization actions (espe-
cially for variadic procedures), etc., that are executed
at entry to the procedure. Moreover, these actions can
typically be carried out in any of a number of differ-
ent “legal” orders (in general, not all orderings of entry
actions may be legal, since some actions may depend
on the outcomes of others—for example, the type of an
expression head(x) cannot be checked until x has been
verified to be of type list). The code generated for a
procedure therefore consists of a set of entry actions in
some order, followed by code for its body. There are a
number of different call sites for each procedure, and at
each call site we have some information about the actual
parameters at that call site, allowing that call to skip
some of these entry actions. Moreover, each call site has
a different execution frequency (estimated, for example,
from profile information or from the structure of the
call graph). In general, different call sites have different
information available about their actual parameters, so
that an order for the entry actions of a procedure that
is good for one call site, in terms of the number of un-
necessary entry actions that can be skipped, may not be
as good for another call site. A good compiler should
therefore attempt to find an ordering on the entry ac-
tions that maximizes the benefits, over all call sites, due
to bypassing unnecessary code. We refer to determining
such an order for the entry actions and then “forward-
ing” the branch instructions at different call sites so as
to bypass unnecessary code as “call forwarding.”

While many systems compile functions with multi-
ple entry points, we do not know of any that attempt
to order the entry actions carefully in order to exploit
this to the fullest. In this paper, we address the prob-
lem of determining a “good” order for the set of tests a
function or procedure has to carry out. We show that
generating an optimal order is NP-complete in general,
and give an efficient algorithm for selecting an ordering
using a greedy heuristic. The result generalizes a num-
ber of optimizations for traditional compilers, such as
jump chain collapsing and invariant code motion out of

loops. Experimental results indicate that (¢) the heuris-
tic is good, in that the orderings it generates are usually
not far from the optimal; and (¢%) the resulting optimiza-
tion is effective, in the sense that it typically leads to
significant speed improvements.

The issues and optimizations discussed in this pa-
per are primarily at the intermediate code level: for
this reason, we do not make many assumptions about
the source language, except that a call to a procedure
typically involves executing a set of idempotent “en-
try actions.” This covers a wide variety of dynami-
cally typed languages, e.g., functional programming lan-
guages such as Lisp and Scheme (e.g., see [15]), logic
programming languages such as Prolog [4], GHC [17]
and Janus [11, 13], imperative languages such as SETL
[14], and object-oriented languages such as Smalltalk
[10] and SELF [6]. The optimization we discuss is
likely to be most beneficial for languages and pro-
grams where procedure calls are common, and which
are therefore liable to benefit significantly from reduc-
ing the cost of procedure calls. However—the title of
the paper notwithstanding—the optimization is not lim-
ited, a priori, to dynamically typed languages: it is
also applicable, in principle, to idempotent entry ac-
tions, such as initialization and array bound checks,
in statically typed languages, and some optimizations
used in statically typed languages, such as inverse eta-
reduction/uncurrying/argument flattening in Standard
ML of New Jersey [1], can also be thought of as instances
of call forwarding (see Section 6).

2 The Call Forwarding Problem

As discussed in the previous section, the code gener-
ated for a procedure consists of a set of entry actions,
which can be carried out in a number of different legal
orders, followed by the code for its body. Each proce-
dure has a number of call sites, and at each call site
there 1s some information about the actual parameters
for calls issued from that site, specifying which entry
actions must be executed and which may be skipped.?
This 1s modelled by associating, with each call site, a
set of entry actions that must be executed by that call
site. Moreover, each call site has associated with it an
estimate of its execution frequency: such estimates can
be obtained from profile information, or from the struc-
ture of the call graph of the program (see, for example,
[3, 19]). Finally, different entry actions may require a
different number of machine instructions to execute, and
therefore have different “sizes.”

Our objective is to order the entry actions of the
procedures in a program, and redirect calls so as to by-

2The precise mechanism by which this information is obtained,
e.g., dataflow analysis, user declarations, etc., is orthogonal to the
issues discussed in this paper, and so is not addressed here.

pass unnecessary actions where possible, in such a way
that the total number of instructions that are skipped,
over the entire execution of the program, is as large as
possible. However, it is not difficult to see that for any
procedure p in a program, the code to set up and exe-
cute procedure calls in the body of p is separate from
the entry actions of p. Because of this, the order of
p’s entry actions—and therefore, the number of instruc-
tions that are skipped by calls to p in an execution of the
program—neither influence nor are influenced by the or-
der of the entry actions for any other procedure in the
program. The problem of maximizing the total number
of instructions skipped by call forwarding for the entire
program, then, reduces to the problem of maximizing,
for each procedure, the number of instructions skipped
by calls to that procedure. For our purposes, therefore,
the call forwarding problem is the problem of determin-
ing a “good” order for the entry actions of a procedure
so that the savings accruing from bypassing unneces-
sary entry actions over all call sites for that procedure,
weighted by execution frequency, is as large as possible.

The problem can be generalized by allowing code to
be copied from a procedure to the call sites for that pro-
cedure. As an example, suppose we have a procedure
with entry actions a and b, and two call sites: A, which
can skip @ but must execute b; and B, which can skip
b but must execute a. Suppose the entry actions are
generated in the order {a,b), then call site A can skip a,
but B cannot skip b and therefore executes unnecessary
code (a symmetric problem arises if the other possible
order is chosen). A solution is to copy the entry ac-
tion a at the call site B, i.e., execute the entry action
at B before jumping to the callee. If we allow arbi-
trarily many entry actions to be copied to call sites in
this manner, it is trivial to generate an optimal solution
to any call forwarding problem: simply copy to each
call site the entry actions that call site must execute,
then branch into the callee bypassing all entry actions
at the callee. This obviously produces an optimal so-
lution, since each call site executes exactly those entry
actions that it must execute, and can be done efficiently
in polynomial time. However, it has the problem that
such unrestricted copying can lead to significant code
bloat, since there may be many call sites for a proce-
dure, each of them getting a copy of most of the entry
actions for that procedure (we have observed this phe-
nomenon in a number of application programs).

The best solution to this problem is to impose a
global bound on the total number of entry actions that
may be copied, across all the call sites occurring in a pro-
gram, but this turns out to be complicated to implement
because when performing call forwarding on any partic-
ular procedure, we have to keep track of the number of
entry actions copied for all the procedures in the pro-

gram, including those that have not yet been processed
by the optimizer! A simple and effective approxima-
tion to this approach is to assign, for each procedure,
a bound on the number of entry actions that can be
copied to each call site for that procedure. If we start
with a global bound on the total number of entry ac-
tions that can be copied, such per-procedure bounds can
be obtained by “dividing up” the global bound among
the procedures (possibly taking into account, for each
procedure, the number of call sites for it and their execu-
tion frequencies, so that procedures with deeply nested
call sites can copy more entry actions and thereby ef-
fect greater optimization). A discussion of heuristics
for establishing such per-procedure bounds i1s beyond
the scope of this abstract: we simply assume, in the
discussion that follows, that for each procedure there is
a bound on the number of its entry actions that can be
copied to any call site.

The call forwarding problem can therefore be formu-

lated in the abstract as follows:

Definition 2.1 A call forwarding problem is a 5-tuple
(E,C,w, s, k), where:

E is a finite set (representing the entry actions of
the procedure concerned);

— (' is a multiset of subsets of E (representing the
entry actions that each call site must execute);

— w:C — N, where N is the set of natural num-
bers, is a function that maps each call site to its
“weight” | 1.e., execution frequency;

- s : F — N represents the “size” of each ele-
ment of E (representing the number of machine
instructions needed to realize the corresponding
entry action); and

— k > 0 represents a bound on the number of entry
actions that can be copied to call sites.

A solution to a call forwarding problem (F,C,w,s, k)
is a permutation w of E, i.e., a 1-1 function 7 : £ —
{1,...,|E|}. The cost of a solution = is, intuitively,
the total number of machine instructions executed, over
all call sites, given that the entry actions are gener-
ated in the order m. Given a call forwarding problem
(E,C,w, s, k), the cost of a solution 7 for it is defined
as follows. First, let copied(c,m,i) denote (the indices
of) those entry actions in 7 that have to be copied to a
call site ¢ if the entry point for ¢ is to bypass the first ¢
elements of m:

copied(c,m, i) ={j|j<i A 7 (j) € c}.

Here, 771(j) denotes the element of E that is the j*
element of the permutation 7. For any call site ¢ € (',
given the bound & on the number of actions that can be
copied to ¢, the maximum number of entry actions that
can be skipped by c—either because ¢ does not have to
execute that action, or because it has been copied from
the callee to the call site—is given by
Skip(c,) = max{i : |copied(c,m,i)| < k}.

The cost of a solution 7 can then be expressed as the
weighted sum, over all call sites, of (the sizes of) the
instructions that cannot be skipped by the call sites:

cost(m) =

2cectw(e)
Skip(c,m)}.

sy | 1T € E A w(]) >

3 Algorithmic Issues

We first consider the complexity of determining optimal
solutions to call forwarding problems. The following
result shows that the existence of efficient algorithms
for this is unlikely:

Theorem 3.1 The determination of an optimal solu-
tion to a call forwarding problem is NP-complete. It re-
mains NP-complete even if all entry actions have equal
size.

Proof By reduction from the Optimal Linear Arrange-
ment problem, which is known to be NP-complete [8, 9].
See the Appendix for details. g

This result might very well be of only academic in-
terest if the number of entry actions encountered in typ-
ical programs could be guaranteed to be small. How-
ever, our experience has been that this is not the case
in many actual applications. The reason for this is that,
even if the number of arguments to procedures is small
for most programs encountered in practice, it 1s not
unusual to have a number of entry actions associated
with a single argument (e.g., see Section 4), involving
type and range checks, pattern matching and indexing
code, pointer chain dereferencing (a common operation
in logic programming languages), and so on. Because
of this, the total number of entry actions in a proce-
dure can be quite large, making exhaustive search for
an optimal solution impractical. We therefore seek effi-
cient polynomial time heuristics for call forwarding that
produce good solutions for common cases.

3.1 A Greedy Algorithm

While the problem of computing optimal solutions for
arbitrary call forwarding problems is NP-complete in
general, a greedy algorithm appears to work quite well

in practice (see Table 1). Given a call forwarding prob-
lem for a procedure with a bound of & on the number
of actions that can be copied from the callee to the call
sites, the general idea is to pick actions one at a time, at
each step choosing an action that minimizes the cost to
be paid at that step. The algorithm maintains a list of
call sites that do not need to execute more than % of the
actions chosen upto that point, and therefore can still
have some actions copied to them—such call sites are
said to be active. Each active call site ¢ has associated
with it a counter, denoted by count[c] in Figure 1, that
keeps track of how many more actions can be copied to
that call site. The weight of an action, at any point in
the algorithm, is computed as the sum of the weights of
the active call sites that need to execute that action, di-
vided by the “size” of that action (recall that the size of
an action represents the number of machine instructions
needed to implement it)—thus, everything else being
equal, an action that is more expensive in terms of the
number of machine instructions it requires will have a
smaller weight than one with smaller size, and hence be
picked earlier, thereby allowing more call sites to bypass
it. Since in general there may be dependencies between
instructions that restrict the set of legal orderings (e.g.,
see the example in Section 4), the algorithm first con-
structs a dependency graph whose nodes are the entry
actions under consideration, and where there is an edge
from a node e; to a node ey if e must precede e5 in
any legal execution; the set of predecessors of a node z
in this graph is denoted by preds(z). The algorithm is
simple: it repeatedly picks an “available” action (i.e.,
an action whose predecessors in the dependency graph
(i have already been picked) of least weight, then up-
dates the counters of the appropriate call sites as well
as the list of active call sites, deleting from this list any
call site that has reached its limit of the number of ac-
tions that can be copied from the callee. This process
continues until all actions have been enumerated. The
algorithm is described in Figure 1.

4 An Example

In this section we consider in more detail the ave func-
tion from Section 1 to see the effect of call forwarding
on the code generated. To illustrate the fact that this
optimization is not limited to code for type checking,
we consider here a realization of this function in Prolog.
As in other logic programming languages, unification
between variables in Prolog can set up chains of point-
ers, and loading the value of a variable requires deref-
erencing such chains. A number of authors have shown
that significant performance improvements are possible
if the lengths of these pointer chains can be predicted via
compile-time analysis, so that unnecessary dereferenc-
ing code can be deleted [7, 12, 16]; however, the analyses
involved are fairly complex. Here we show how, in many

cases, unnecessary dereference operations can be elim-
inated using call forwarding. The procedure is defined
as follows:

ave([], Sum, Count, Avg) :-
Avg is Sum/Count.

ave([H|L], Sum, Count, Avg) :-
Suml is Sum+H, Countl is Count+i1,
ave(L, Suml, Countl, Avg).

Assume that, as in many modern Lisp and Prolog imple-
mentations, parameters are passed in (virtual machine)
registers, so that the first parameter is in register Argi,
the second parameter in register Arg2, and so on. Figure
2(a) gives the intermediate code that might be gener-
ated in a straightforward way. (In reality, the generated
code would distinguish between the numeric types int
and float, e.g., using “message splitting” techniques as
in [5, 6]—the distinction is not important here, and we
assume a single numeric type for simplicity of exposi-
tion.) The first six instructions of ave are entry actions
that can be executed in any order where the derefer-
encing of a register precedes its use. Moreover, at the
(recursive) call site for ave, we know from the seman-
tics of the add instruction that Argl and Arg2 are both
numbers, and that there is no need for either derefer-
encing or type checking of these registers. The entry
actions corresponding to dereferencing and type check-
ing of these registers can therefore be bypassed by the
recursive call site. Assume that apart from the recursive
call, there is another call site (the “initial” call) for the
procedure ave. For notational brevity in the discussion
that follows, denote the instructions above as follows:

Argl := deref(Argl)

Arg2 := deref(Arg2)

Arg3 := deref(Arg3)

if —-List(Argl) goto Err
if —Number (Arg2) goto Err
if —Number(Arg3) goto Err

111111
- A0 oQ

Finally, assume that no copying of code to call sites
is allowed. Then, we can formulate this as a call for-
warding problem (E, C,w, s, k) as follows:

.E:{a’b’c’d’e’f};
o C = {c1,ca}, where ¢; = {a,b,c,d e, f} is the

initial call site, and ¢s = {a,d} is the recursive
call site;

o w={c; — 1,es— 10}, i.e., we assume that loops
iterate about 10 times on the average;

e the “size function” s maps each entry action in £
to 1 (for simplicity); and

e k=0, 1.e., no copying of code to call sites is al-
lowed.

Initially, the set of available actions is {a, b, ¢}, and both
call sites are active, so the weights computed for these
actions are: a : 11; b : 1; ¢ : 1. There are two actions,
b and ¢, that have lowest weight, and one of them—
say, b—is picked by the algorithm. As a result, the
call site ¢; becomes inactive. The set of available ac-
tions at this point is {a, ¢, e}, with weights 10, 0, 0 re-
spectively. There are two actions, ¢ and e, with lowest
weight, and one of them—say, ¢—is picked. The algo-
rithm proceeds in this manner, eventually producing the
sequence (b, ¢, e, f, a, d) as a solution to this call forward-
ing problem. In other words, call forwarding orders the
entry actions so that the dereferencing and type tests
on Arg2 and Arg3 come first, and can be skipped by
the recursive call to ave. The resulting code is shown in
Figure 2(b). Notice that the code for dereferencing and
type checking the second and third arguments have ef-
fectively been “hoisted” out of the loop. Moreover, this
has been accomplished, not by recognizing and dealing
with loops in some special way, but simply by using
the information available at call sites. It is applicable,
therefore, even to computations that are not iterative
(i.e., tail recursive), including procedures that involve
arbitrary linear, nonlinear, and mutual recursion.

5 Experimental Results

We ran experiments on a number of small benchmarks
to gauge (¢) the efficacy of greedy algorithm, i.e., the
quality of its solutions compared to the optimal; and (#7)
the efficacy of the optimization, i.e., the performance
improvements resulting from it. The numbers presented
reflect the performance of jc [11], an implementation of
a logic programming language called Janus [13] on a
Sparcstation-1.2 This system is currently available by
anonymous FTP from cs.arizona.edu.

Table 1 gives, for each benchmark, the number of
machine instructions that would be executed over all
call sites for the entry actions in the procedures only,
using () no call forwarding; (¢) call forwarding using
the greedy algorithm; and (4i¢) optimal call forwarding.
The weights for the call sites were estimated using the
structure of the call graph: we assumed that on the aver-
age, each loop iterates about 10 times, and the branches
of a conditional are taken with equal frequency. While
the optimizations were carried out at the intermediate
code level, we used counts of the number of Sparc assem-
bly instructions for each intermediate code instruction,
together with the execution frequencies estimated from
the call graph structure, to estimate the runtime cost

30ur implementation uses a variant of call forwarding where
entry actions are copied from the callee to the call sites as long
as this will allow a later action to be skipped.

of the different solutions. The results indicate that the
greedy heuristic has uniformly good performance: on
the benchmarks, it attains the optimal solution in each
case.

Table 2 gives the improvements in speed resulting
from our optimizations, and serves to evaluate the ef-
ficacy of call forwarding. The time reported for each
benchmark, in milliseconds, is the time taken to ex-
ecute the program once. This time was obtained by
iterating the program long enough to eliminate most ef-
fects due to multiprogramming and clock granularity,
then dividing the total time taken by the number of it-
erations. The experiments were repeated 20 times for
each benchmark, and the average time taken in each
case. Call forwarding accounts for improvements rang-
ing from about 12% to over 45%. Most of this improve-
ment comes from code motion out of inner loops: the
vast majority of type tests etc. in a procedure appear as
entry actions that are bypassed in recursive calls due to
call forwarding, effectively “hoisting” such tests out of
inner loops. As a result, much of the runtime overhead
from dynamic type checking is optimized away.

Table 3 puts these numbers in perspective by com-
paring the performance of jc to Quintus and Sicstus
Prologs, two widely used commercial Prolog systems.
On comparing the performance numbers from Table 2
for jc before and after optimization, it can be seen that
the performance of jc i1s competitive with these sys-
tems even before the application of the optimizations
discussed in this paper. It is easy to take a poorly en-
gineered system with a lot of inefficiencies and get huge
performance improvements by eliminating some of these
inefficiencies. The point of this table 1s that when eval-
uating the efficacy of our optimizations, we were careful
to begin with a system with good performance, so as to
avoid drawing overly optimistic conclusions.

Finally, Table 4 compares the performance of our
Janus system with C code for some small benchmarks.*
Again, these were run on a Sparcstation 1, with cc as
the C compiler. The programs were written in the style
one would expect of a competent C programmer: no
recursion (except in tak and nrev—an O(n?) “naive
reverse” program for reversing a linked list of integers—
where it is hard to avoid), destructive updates, and the
use of arrays rather than linked lists (except in nrev,
which by definition traverses a list). The source code
for these benchmarks is given in Appendix B. It can be
seen that the performance of jc is not very far from that

4The Janus version of gsort used in this table is slightly dif-
ferent from that of Table 3: in this case there are explicit integer
type tests in the program source, to be consistent with int dec-
larations in the C program and allow a fair comparison between
the two programs. The presence of these tests provides addi-
tional information to the jc compiler and allows some additional
optimizations.

of C, attaining approximately the same performance as
unoptimized C code, and being only about a factor of
2, on the average, slower than C code optimized at level
-04. On some benchmarks, such as nrev, jc outper-
forms unoptimized C and is not much slower than op-
timized C, even though the C program uses destruc-
tive assignment and does not allocate new cons cells,
while Janus is a single assignment language where the
program allocates new cons cells at each iteration—its
performance can be attributed at least in part to the
benefits of call forwarding.

6 Related Work

The optimizations described here can be seen as gen-
eralizing some optimizations for traditional imperative
languages [2]. In the special case of a (conditional or
unconditional) jump whose target is a (conditional or
unconditional) jump instruction, call forwarding gen-
eralizes the flow-of-control optimization that collapses
chains of jump instructions. Call forwarding is able to
deal with conditional jumps to conditional jumps (this
turns out to be an important source of performance im-
provement in practice), while traditional compilers for
imperative languages such as C and Fortran typically
deal only with jump chains where there is at most one
conditional jump (see, for example, [2], p. 556).

When we consider call forwarding for the last call
in a recursive procedure, what we get is essentially a
generalization of code motion out of loops, in the sense
that the code that is bypassed due to call forwarding at
a particular call site need not be invariant with respect
to the entire loop. The point is best illustrated by an
example: consider a function

f(x) = if x = O then 1
else if p(x) then f(g(x-1))
else £(h(x-1))

/* 1%/
/* 2 %/

Assume that the entry actions for this function include
a test that its argument 1s an integer, and suppose that
we know, from dataflow analysis, that g() returns an in-
teger, but do not know anything about the return type
of h(). From the conventional definition of a “loop” in
a flow graph (see, for example, [2]), there is one loop
in the flow graph of this function that includes both
the tail recursive call sites for £(). Because of our lack
of knowledge about the return type of h(), we cannot
claim that “the argument to £() is an integer” is an in-
variant for the entire loop. However, using call forward-
ing, the integer test in the portion of the loop arising
from call site 1 can be bypassed. Effectively, this moves
some code out of “part of” a loop. Moreover, our algo-
rithm implements interprocedural optimization and can
deal with both direct and mutual recursion, as well as
non-tail-recursive code, without having to do anything

special, while traditional code motion algorithms handle
only the intra-procedural case.

The idea of compiling functions with multiple entry
points is not new: many Lisp systems do this, Stan-
dard ML of New Jersey and Yale Haskell generate dual
entry points for functions, and Aquarius Prolog gener-
ates multiple entry points for primitive operations [18§].
However, we do not know of any system that attempts
to order the entry actions carefully in order to maximize
the savings from bypassing entry actions.

Some optimizations used in statically typed lan-
guages can also be thought of in terms of call forwarding.
For example, Standard ML of New Jersey uses a combi-
nation of three transformations—inverse eta-reduction,
uncurrying, and argument flattening—to optimize func-
tions where all of the known call sites pass tuples of the
same size as arguments, but where the function may
“escape,” 1.e., not all of call sites are known at com-
pile time [1]. The idea is to have the known call sites
pass arguments in registers instead of constructing and
deconstructing tuples on the heap, while call sites that
are unknown at compile time execute additional code
to correctly deconstruct the tuples they pass. This op-
timization can be thought of in terms of call forwarding
as follows: suppose that each known call site for a func-
tion constructs and passes an n-tuple as the argument,
which is then deconstructed with n select operations
at the callee. We can copy the n select operations
from the callee to each known call site, and forward the
calls to enter the callee bypassing these operations. At
each of these call sites, the construction of the argu-
ment n-tuple followed by n selects on 1t can easily be
recognized as inverse operations that can be optimized
to avoid having to actually build tuples on the heap.
Thus, known call sites can be executed efficiently, while
call sites that are not known at compile time enter at
the original entry point and execute the select opera-
tions in the expected way. Indeed, the whole point of
inverse eta-reduction is to generate two entry points for
a function so that known call sites can bypass unnec-
essary code: call forwarding can be seen as a way of
extending this idea to get more than two entry points
where necessary.

Chambers and Ungar consider compile-time opti-
mization techniques to reduce runtime type checking
in dynamically typed object-oriented languages [5, 6].
Their approach uses type analysis to generate multiple
copies of program fragments, in particular loop bod-
ies, where each copy is specialized to a particular type
and therefore can omit some type tests. Some of the
effects of the optimization we discuss, e.g., “hoisting”
type tests out of loops (see Section 4), are similar to
effects achieved by the optimization of Chambers and
Ungar. In general, however, it is essentially orthogo-

nal to the work described here, in that it is concerned
primarily with type inference and code specialization
rather than with code ordering. Because of this, the
two optimizations are complementary: even if the body
of a procedure has been optimized using the techniques
of Chambers and Ungar, it may contain type tests etc.
at the entry, which are candidates for the optimization
we discuss; conversely, the “message splitting” optimiza-
tion of Chambers and Ungar can enhance the effects of
call forwarding considerably.

7 Conclusions

This paper discusses call forwarding, a simple interpro-
cedural optimization technique for dynamically typed
languages. The basic idea behind the optimization is ex-
tremely straightforward: find an ordering for the “entry
actions” of a procedure such that the savings realized
from different call sites bypassing different sets of entry
actions, weighted by their estimated execution frequen-
cies, is as large as possible. It turns out, however, to be
quite effective for improving program performance. We
show that the problem of computing optimal solutions
to arbitrary call forwarding problems is NP-complete,
and describe an efficient heuristic for the problems. Ex-
perimental results indicate that the solutions produced
are generally optimal or close to optimal, and lead to
significant performance improvements for a number of
benchmarks tested. A variant of these ideas has been
implemented in jc, a logic programming system that is
available by anonymous FTP from cs.arizona.edu.

References

[1] A. Appel, Compiling with Continuations, Cam-
bridge University Press, 1992.

[2] A.V. Aho, R. Sethi and J. D. Ullman, Compilers -
Principles, Techniques and Tools, Addison-Wesley,
1986.

[3] T. Ball and J. Larus, “Optimally Profiling and
Tracing Programs”, Proc. 19th. ACM Symp.
on Principles of Programming Languages, Albu-
querque, NM, Jan. 1992, pp. 59-70.

[4] M. Carlsson and J. Widen, SICStus Prolog User’s
Manual, Swedish Institute of Computer Science,

Oct. 1988.

[6] C. Chambers and D. Ungar, “Iterative Type
Analysis and Extended Message Splitting: Opti-
mizing Dynamically Typed Object-Oriented Pro-
grams”, Proc. SIGPLAN ’90 Conference on Pro-
grammang Language Design and Implementation,
White Plains, NY, June 1990, pp. 150-164. SIG-
PLAN Notices vol. 25 no. 6.

[6] C. Chambers, D. Ungar and E. Lee, “An Efficient
Implementation of SELF, A Dynamically Typed

Object-Oriented Language Based on Prototypes”,
Proc. OOPSLA ’89, New Orleans, LA, 1989, pp.
49-70.

S. K. Debray, “A Simple Code Improvement
Scheme for Prolog”, J. Logic Programming, vol. 13
no. 1, May 1992, pp. 57-88.

M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guwide to the Theory of NP-
Completeness, Freeman, New York, 1979.

M. R. Garey, D. S. Johnson, and L. Stockmeyer,
“Some Simplified NP-complete Graph Problems”,
Theoretical Computer Science vol. 1, pp. 237267,
1976.

A. Goldberg and D. Robson, Smalltalk-80: The
Language and its Implementation, Addison-Wesley,
1983.

D. Gudeman, K. De Bosschere, and S. K. Debray,
“jc : An Efficient and Portable Implementation
of Janus”, Proc. Joint International Conference

and Symposium on Logic Programming, Washing-
ton DC, Nov. 1992. MIT Press.

A. Marien, G. Janssens, A. Mulkers, and M.
Bruynooghe, “The Impact of Abstract Interpreta-
tion: An Experiment in Code Generation”, Proc.

Swxth International Conference on Logic Program-
ming, Lisbon, June 1989, pp. 33-47. MIT Press.

V. Saraswat, K. Kahn, and J. Levy, “Janus: A
step towards distributed constraint programming”,
in Proc. 1990 North American Conference on Logic
Programming, Austin, TX, Oct. 1990, pp. 431-446.
MIT Press.

J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and
E. Schonberg, Programming with Sets: An Intro-
duction to SETL, Springer-Verlag, 1986.

G. L. Steele Jr., Common Lisp: The Language,
Digital Press, 1984.

A. Taylor, “Removal of Dereferencing and Trailing
in Prolog Compilation”, Proc. Sizth International
Conference on Logic Programming, Lisbon, June

1989, pp. 48-60. MIT Press.

K. Ueda, “Guarded Horn Clauses”, in Concurrent
Prolog: Collected Papers, vol. 1, ed. E. Shapiro, pp.
140-156, 1987. MIT Press.

P. Van Roy, Can Logic Programming FErxecute as
Fast as Imperative Programming?, PhD Disserta-
tion, University of California, Berkeley, Nov. 1990.

[19] D. W. Wall, “Predicting Program Behavior Using
Real or Estimated Profiles”, Proc. SIGPLAN-91
Conf. on Programming Language Design and Im-
plementation, June 1991, pp. 59-70.

A Appendix: Proof of NP Complete-

ness

The following problem is useful in discussing the com-
plexity of optimal call forwarding:

Definition A.1 The Optimal Linear Arrangement
problem (OLA) is defined as follows: Given a graph
G = (V,E) and an integer k, find a permutation, f,
from the vertices in V to 1, ..., n such that defining the
length of edge (i, j) to be |f(i) — f(j)|, the total length
of all edges is less than or equal to k. 1

The following result is due to Garey, Johnson, and
Stockmeyer [8, 9]:

Theorem A.1 The Optimal Linear Arrangement prob-
lem is NP-complete.

The following result gives the complexity of optimal call
forwarding:

Theorem 3.1 The determination of an optimal solution
to a call forwarding problem is NP-complete. It remains
NP-complete even if every entry action has equal size.

Proof: We first formulate optimal call forwarding as a
decision problem, as follows: “Given a call forwarding
problem I and an integer K > 0, is there a solution to 7
with cost no greater than K77 We refer to this problem
as CF. The proof is by reduction from Optimal Lin-
ear Arrangement problem, which, from Theorem A.1,
is NP-complete. Let G = (V, E), k be a particular in-
stance of OLA. We make the following transformation
to an instance (A, C,w, s, k) of CF, where:

— A is the set of vertices 1,...,n in V along with
two dummy vertices s and t;

— The elements of C' are all doubleton sets:

— corresponding to each edge (u,v) € E, there
is an element {u,v} in C' with weight 1:
for terminological simplicity in the discussion
that follows, we refer to these elements as
normal sets;

— let A be the maximum degree of any vertex
in G, then corresponding to each vertex: € G
of degree d;, there is an element {i,s} in C

with weight $(A — d;) (some of these sets

could have zero weight, in which case they
can effectively be removed): we refer to these
elements as special sets;

— finally, there is an element {s ¢} in C of
weight M, where M is large enough to ensure
that s and ¢ have to be the last two elements
in any optimal ordering of the vertices (M
can be chosen to be n® or greater): we refer
to this element as a heavy set.

- s(I) =1 for every I € A.
- k=0.

We also have to define the number K that is to bound
the cost of the call forwarding problem so constructed.
Let K = in(n+5)A + 3M + k/2. We claim that the
instance of CF so defined has a solution with cost no
greater than K if and only if the given instance of OLA
has a solution.

Consider any proposed order of elements in a solu-
tion to the instance of CF defined above. The cost of
this solution can be decomposed as follows:

As we march along the list of elements, at each point
we charge A/2 to each of the elements we have seen so
far but not to either of the special elements. If vertex
i € G is encountered, the charge of A/2 on vertex ¢ from
then on can be thought of as paying 1/2 towards each
of the normal sets that contain ¢ and paying the entire
cost of the special set that contains . Now if both ele-
ments of a normal set have been encountered, the total
cost of the set will from then on be picked up by these
charges to the vertices. For a normal set {i,j}, after ¢
has been encountered and before j has been encountered
the extra charge of 1/2 at each stage will be charged to
the edge (4,7). Breaking up the charges as above, one
finds that for any order in which s and ¢ finish last, the
charge to the vertices is a constant independent of the
order and is equal to £(n(n + 5)A) and the charge for
the heavy set is fixed at 3M. The only variable is the
charge to the edges and this charge will be exactly half
the total length of the edges, since an edge gets charged
only after one of its endpoints has been encountered and
before the other endpoint has been encountered, i.e. for
the “duration” of its length.

Thus there 138 a YES answer to the instance of CF
created if and only if the total length of all “normal”
edges 1s kept to k or less, or, in other words, if and only
if the instance of OLA is a YES-instance. (Note that
since the cost of the special sets is entirely picked up
by the vertices, the lengths of the special edges do not
matter.)

B Source Code for Some Benchmarks

The source code for the benchmarks used in the com-
parison between jc and C is given below. For space
reasons, only the code for the main functions is given.

nrev: C :

typedef struct s {
int head;
struct g *tail;
} cons_node;

cons_node *append (11, 12)

cons_node *11, *12;

{

cons_node *13;

if (11 == NULL) return 12;

else {
for (13=11; 13->tail != NULL; 13=13->tail)
13->tail = 12;
return 11;

¥

¥

cons_node *nrev(l)

cong_node *1;

{

cons_node *11;

if (1==NULL) return NULL;

else {
11 = 1->tail;
1->tail = NULL; /% reclaim head node */
return append (nrev(1l1), 1);

¥

¥

Janus:

nrev([], ~[1).
nrev([H|L1],"R) :-
nrev(L1,"R1), app(R1,[H],"R).

app([],L,"L).
app([HIL1]1,L2, [HIL3]) :- app(L1,L2,°L3).

binomial : C :

/* fact() as in the factorial benchmark */

int pow(x,i)
int x,i;
{ int prod;
for (prod=1; i>0; i--) prod *= x;
return prod;
¥
int choose(n,k)
int n, k;
{
return fact(n) / (fact(k) * fact(n-k));
¥

int binomial (x,y,n)

int x,y; dnf (In[B->In.W,W->In.B],R,W-1,B-1, 0ut).
{int i, prod=0;

for (i = 0; i <= n; i++) tak: O
prod += choose(n,i)*pow(x,1)*pow(y,n-1i); int tak(x,y,z)
return prod; int x,y,z;
} {

if (x <= y) return z;
return tak(tak(x-1,y,z),
/* fact() as in the factorial benchmark */ tak(y-1,z,x),

tak(z-1,x,y));

Janus :

pow (X,N,"P) :- int(X) | pow(X,N,"P,1). }
pow(X,0,°P,A) :- int(X), int(4) | P = A.
pow (X,N,"P,A) :- Janus :
int(X), int(N), int(A), N > 0 | tak (X, Y, Z, "A) :-
pow (X,N-1,"P,X*A). int (X), int(Y), int(Z), X > Y |
tak(X-1, Y, Z, "A1),
choose(ll,K,"C) :- int(N), int(K) | tak(Y-1, Z, X, ~A2),
fact (N, F1), fact(K, F2), fact(N-K,"F3), tak(Z-1, X, Y, ~A3),
C =F1// (F2 * F3). tak (A1, A2, A3, "A).
tak (X, Y, Z, "A) :-
binomial (X,Y,N,"Z) :- int (X), int(Y), int(Z), X =< Y |
int (X) ,int (Y) ,int (N) ,N >= 0 | A=7Z.
binomial (X,Y,N,"Z,N).
binomial(_,_,_,0,0). factorial: C :
binomial (X,Y,N,"Z,K) :- int fact (n)
int (X) ,int (Y) ,int (N) ,int (K) ,K > 0 | int n;
binomial (X,Y,N, Z1,K-1), {int prod;
choose (N,K,"C), for (prod = 1; n > 0; n--)
pow(X,K, Xp), prod *= n;
pow (Y,N-K,“Yp), return prod;
Z = Z1 + C*Xp*Yp. }
dnf : C: Janus :
dnf(In, R, W, B) fact(N,"X) :-

int In[l1, R, W, B;
{ int temp;
while (R <= W) {
if (In[W] == 0) {
temp=In[W]; In[W]=In[R]; In[R]=temp;

int (W), 0 >= 0 | fact(N,"X,1).

fact (N, F,A) :-
int(4), int(N), ¥ > 0 |
fact (-1, F,AxN).

, R o+=1; fact (0, F,A) :- int(A) | F = A.
else if (In[W] == 1)
W -=1;

else if (In[W] == 2) {
temp=In[W]; In[W]=In[B]; In[Bl=temp;
B-=1; W -=1;
¥
¥
¥

Janus :

dnf (In,R,W,B, "0ut) :-
int (R) ,int (W) ,R > W | Out = In.
dnf (In,R,W,B, "0ut) :-
int(R),int (W) ,R =< W,In.W = red |
dnf (In[R->In.W,W->In.R],R+1,W,B, 0ut).
dnf (In,R,W,B, "0ut) :-
int (R),int (W) ,R =< W,In.W = white
dnf (In,R,W-1,B, "0ut).
dnf (In,R,W,B, "0ut) :-
int (R),int (W) ,R =< W,In.W = blue |

Input: A call forwarding problem I = (E,C,w, s, k).

Output: A solution to 7, i.e., a permutation 7w of F.

Method:

begin

Active_Sites := ('

construct the dependency graph G for legal execution orders;
Avail_Instrs := the root nodes of G

Processed = {;

mi= (s

for each ¢ € C do count[c] := k od

while Avail_Instrs # () do

od;

for each I € Avail _Instrs do
compute the weight of I as (> {w(e) | ¢ € Active_Sites and I € ¢})/s(]);
od;
I := an element of Avail_Instrs with the least weight so computed;
7 := append [to the end of ; /* extend solution */

Processed := Processed U {I}; /* update list of available instructions */
Avail _Instrs == (Avail _Instrs \ {1}) U{J € E | preds(J) C Processed};

for each ¢ € Active_Sites s.t. I € ¢ do /* update list of active sites */
if count[c] = 0 then
delete ¢ from Active_Sites;
else
count[c] := count[c] — 1;
fi
od

bl

return 7;

end

Figure 1: A Greedy Algorithm for Call Forwarding

ave:

L1

Argl := deref(Argl) ave:
Arg2 := deref(Arg2)
Arg3 := deref(Arg3)

if —-List(Argl) goto Err

if —Number(Arg2) goto Err LO :

if —Number(Arg3) goto Err
if Argl == NIL goto L1

t1 := head(Argl)

Argl := tail(Argl)

t1 := deref(tl)

if —Number(tl) goto Err
Arg2 := add(Arg2, t1)
Arg3 := add(Arg3, 1)

goto ave

t1 := div(Arg2, Arg3) L1 :

Argd := deref(Arg4)
assign(Arg4, t1)

(a) Before Call Forwarding

Arg2 := deref(Arg2)

Arg3 := deref(Arg3)

if —Number (Arg2) goto Err
if —Number(Arg3) goto Err
Argl := deref(Argl)

if —List(Argl) goto Err
if Argl == NIL goto L1

t1 := head(Argl)

Argl := tail(Argl)

t1 := deref(tl)

if —Number(ti) goto Err
Arg2 := add(Arg2, t1)
Arg3 := add(Arg3, 1)

goto LO

t1 := div(Arg2, Arg3)
Arg4 := deref(Arg4)
assign(Arg4, t1)

(b) After Call Forwarding

Figure 2: The Effect of Call Forwarding on Intermediate Code for the ave procedure

|| Program no optimization greedy optimal ||
hanoi 492 225 225
tak 574 172 172
nrev 726 360 360
gsort 1776 450 450
factorial 129 24 24
merge 720 330 330
dnf 124 25 25
pi 306 30 30
binomial 5963 1304 1304

Table 1: Efficacy of the greedy Call Forwarding heuristic (in Sparc assembly instructions)

[Program | w/o forwarding (ms) | with forwarding (ms) | % improvement |
binomial 5.95 5.14 13.6
hanoi 186 163 12.4
tak 299 207 30.8
nrev 1.17 0.716 38.8
gsort 2.31 1.87 19.0
merge 0.745 0.613 17.7
dnf 0.356 0.191 46.3

Table 2: Performance Improvement due to Call Forwarding

| Program [jc (J) (ms) | Sicstus (S) (ms) | Quintus (Q) (ms) | S/J | Q/J |
hanoi 163 300 690 1.84 4.23
tak 207 730 2200 3.53 10.63
nrev 0.716 1.8 7.9 2.51 11.03
gsort 1.87 5.1 9.4 2.73 5.03
factorial 0.049 0.44 0.27 8.98 5.51

|| Geometric Mean : | 3.31 | 6.72 ||

Table 3: The Performance of jc, compared with Sicstus and Quintus Prolog

|| Program | je (J) (ms) | C (unopt) (ms) | C (opt: -04) | J/C-unopt | J/C-opt ||
nrev 0.716 0.89 0.52 0.80 1.38
binomial 5.14 4.76 3.7 1.08 1.62
dnf 0.191 0.191 0.061 1.00 3.13
gsort 1.33 1.25 0.34 1.06 3.91
tak 207 208 72 1.00 2.88
factorial 0.049 0.049 0.036 1.00 1.36

|| Geometric Mean : | 0.98 | 2.18 ||

Table 4: The performance of jc compared to C

