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2 � Saumya Debray et al.1. INTRODUCTIONIn reent years there has been an inreasing trend towards the inorporation ofomputers into a wide variety of devies, suh as palm-tops, telephones, embeddedontrollers, et. In many of these devies, the amount of memory available islimited due to onsiderations suh as spae, weight, power onsumption, or prie.At the same time, there is an inreasing desire to use more and more sophistiatedsoftware in suh devies, suh as enryption software in telephones, or speeh orimage proessing software in laptops and palm-tops. Unfortunately, an appliationthat requires more memory than is available on a partiular devie will not beable to run on that devie. This makes it desirable to try to redue the size ofappliations where possible. This artile explores the use of ompiler tehniques toaomplish this ode ompation.Previous work in reduing program size has explored the ompressiblity of a widerange of program representations: soure languages, intermediate representations,mahine odes, et. [van de Wiel 2000℄. The resulting ompressed form eithermust be deompressed (and perhaps ompiled) before exeution [Ernst et al. 1997;Franz 1997; Franz and Kistler 1997℄, or it an be exeuted (or interpreted [Fraserand Proebsting 1995; Proebsting 1995℄) without deompression [Cooper and MIn-tosh 1999; Fraser et al. 1984℄. The �rst method results in a smaller ompressedrepresentation than the seond, but requires the overhead of deompression beforeexeution. Deompression time may be negligible and, in fat, may be ompensatedfor by the savings in transmission or retrieval time [Franz and Kistler 1997℄. A moresevere problem is the spae required to plae the deompressed ode. This also hasbeen somewhat mitigated by tehniques of partial deompression or deompression-on-the-y [Bene�s et al. 1998; Ernst et al. 1997℄, but these tehniques require alteringthe run-time operation or the hardware of the omputer. In this artile, we explore\ompation," i.e., ompression to an exeutable form. The resulting form is largerthan the smallest ompressed representation of the program, but we do not payany deompression overhead or require more spae in order to exeute.Muh of the earlier work on ode ompation to yield smaller exeutables treatedan exeutable program as a simple linear sequene of instrutions, and used pro-edural abstration to eliminated repeated ode fragments. Early work by Fraseret al. [1984℄ used a suÆx tree onstrution to identify repeated sequenes within asequene of assembly instrutions, whih were then abstrated out into funtions.Applied to a range of Unix utilities on a Vax proessor, this tehnique managedto redue ode size by about 7% on the average. A shortoming of this approahis that sine it relies on a purely textual interpretation of a program, it is sensi-tive to super�ial di�erenes between ode fragments, e.g., due to di�erenes inregister names, that may not atually have any e�et on the behavior of the ode.This shortoming was addressed by Baker [1993℄ using parameterized suÆx trees,by Cooper and MIntosh [1999℄ using register renaming (Baker and Manber [1998℄disuss a similar approah), and by Zastre [1993℄ using parameterized proeduralabstrations. The main idea is to rewrite instrutions so that instead of usinghard-oded register names, the (register) operands of an instrution are expressed,if possible, in terms of a previous referene (within the same basi blok) to thatregister. Further, branh instrutions are rewritten, where possible, in PC-relative



Compiler Tehniques for Code Compation � 3form. These transformations allow the suÆx tree onstrution to detet the rep-etition of similar but not lexially idential instrution sequenes. Cooper andMIntosh obtain a ode size redution of about 5% on the average using thesetehniques on lassially optimized ode (in their implementation, lassial opti-mizations ahieve a ode size redution of about 18% ompared to unoptimizedode). These approahes nevertheless su�er from two weaknesses. The �rst is thatby fousing solely on eliminating repeated instrution sequenes, they ignore other,potentially more pro�table, soures of ode size redution. The seond is that anyapproah that treats a program as a simple linear sequene of instrutions, as inthe suÆx-tree-based approahes mentioned above, will su�er from the disadvan-tage of having to work with a partiular ordering of instrutions. The problem isthat two \equivalent" omputations may map to di�erent instrution sequenes indi�erent parts of a program, due to di�erenes in register usage and branh la-bels, instrution sheduling, and pro�le-direted ode layout to improve instrutionahe utilization [Pettis and Hansen 1990℄.This artile desribes a somewhat di�erent approah to ode ompation, basedon a \whole-system" approah to the problem. Its main ontribution is to showthat by using aggressive interproedural optimization together with proedural ab-stration of repeated ode fragments, it is possible to obtain signi�antly greaterredutions in ode size than have been ahieved to date. For the identi�ation andabstration of repeated ode fragments, moreover, it shows how \equivalent" odefragments an be deteted and fatored out without having to resort to purely lin-ear treatments of ode sequenes as in suÆx-tree-based approahes. Thus, insteadof treating a program as a simple linear sequene of instrutions, we work with its(interproedural) ontrol ow graph. Instead of using a suÆx tree onstrution toidentify repeated instrution sequenes, we use a �ngerprinting sheme to identify\similar" basi bloks. This sets up a framework for ode ompation that an bemore exible in its treatment of what ode fragments are onsidered \equivalent."We use the notions of dominators and postdominators to detet idential subgraphsof the ontrol ow graph, larger than a single basi blok, that an be abstrated outinto a proedure. Finally, we identify and take advantage of arhiteture-spei�ode idioms, e.g., for saving and restoring spei� sets of registers at the entry to andreturn from funtions. Among the bene�ts of suh an approah is that it simpli�esthe development of ode ompation systems by using information already availablein most ompilers, suh as the ontrol ow graph and dominator/postdominatortrees, thereby making it unneessary to resort to extraneous strutures suh assuÆx trees.Our ideas have been implemented in the form of a binary-rewriting tool basedon alto, a post-link-time ode optimizer [Muth et al. 1998℄. The resulting sys-tem, alled squeeze, is able to ahieve signi�antly better ompation than previousapproahes, reduing the size of lassially optimized ode by about 30%. Ourideas an be inorporated fairly easily into ompilers apable of interproeduralode transformations. The ode size redutions we ahieve ome from two soures:aggressive interproedural appliation of lassial ompiler analyses and optimiza-tions; and ode fatoring, whih refers to a variety of tehniques to identify and\fator out" repeated instrution sequenes. Setion 2 disusses those lassial op-timizations, and their supporting analyses, that are useful for reduing ode size.



4 � Saumya Debray et al.This is followed, in Setion 3, by a disussion of the ode fatoring tehniques usedwithin squeeze. In Setion 4, we disuss interations between lassial optimizationsand fatoring transformations. Setion 5 ontains our experimental results.A prototype of our system is available at www.s.arizona.edu/alto/squeeze.2. CLASSICAL ANALYSES AND OPTIMIZATIONS FOR CODE COMPACTIONIn the ontext of ode ompation via binary rewriting, it makes little sense toallow the ompiler to inate the size of the program, via transformations suhas proedure inlining or loop unrolling, or to keep obviously unneessary ode byfailing to perform, for example, ommon-subexpression elimination and registeralloation. We assume therefore that before ode ompation is arried out atlink time, the ompiler has already been invoked with the appropriate options togenerate reasonably ompat ode. Nevertheless, many opportunities exist for link-time ode transformations to redue program size. This setion disusses lassialprogram analyses and optimizations that are most useful for ode size redution.In general, the optimizations implemented within squeeze have been engineered soas to avoid inreases in ode size. For example, proedure inlining is limited tothose proedures that have a single all site, and no alignment no-ops are insertedduring instrution sheduling and instrution ahe optimization.2.1 Optimizations for Code CompationClassial optimizations that are e�etive in reduing ode size inlude the elimina-tion of redundant, unreahable, and dead ode, as well as ertain kinds of strengthredution.2.1.1 Redundant-Code Elimination. A omputation in a program is redundantat a program point if it has been omputed previously and its result is guaranteedto be available at that point. If suh omputations an be identi�ed, they anobviously be eliminated without a�eting the behavior of the program.A large portion of ode size redutions at link time in squeeze omes from theappliation of this optimization to omputations of a hardware register alled theglobal pointer (gp) register whih points to a olletion of 64-bit onstants alled aglobal address table. The Alpha proessor, on whih squeeze is implemented, is a 64-bit arhiteture with 32-bit instrutions. When a 64-bit onstant must be loadedinto a register, the appropriate global address table is aessed via the gp regis-ter, together with a 16-bit displaement.1 Aessing a global objet, i.e., loadingfrom or storing to a global variable, or jumping to a proedure, therefore involvestwo steps: loading the address of the objet from the global address table, andthen aessing the objet via the loaded address. Eah proedure in an exeutableprogram has an assoiated global address table, though di�erent proedures mayshare the same table. Sine di�erent proedures|whih are generally ompiled1On a typial 32-bit arhiteture, with 32-bit instrution words and 32-bit registers, a (32-bit)onstant is loaded into a register via two instrutions, one to load the high 16 bits of the registerand one for the low 16 bits; in eah of these instrutions, the 16 bits to be loaded are enoded aspart of the instrution word. However, sine the Alpha has 32-bit instrutions but 64-bit registers,this mehanism is not adequate for loading a 64-bit onstant (e.g., the address of a proedure ora global variable) into a register.



Compiler Tehniques for Code Compation � 5independently|may need di�erent global pointer values, the value of the gp regis-ter is omputed whenever a funtion is entered, as well as whenever ontrol returnsafter a all to another funtion. At link time, it is possible to determine whether aset of funtions has the same gp value, and therefore whether the reomputation ofgp is neessary. It turns out that most funtions in a program are able to use thesame value of gp, making the reomputation of gp redundant in most ases. Eahsuh omputation of gp involves just one or two register operations, with no sig-ni�ant lateny. On a supersalar proessor suh as the Alpha, the orrespondinginstrutions an generally be issued simultaneously with those for other omputa-tions, and hene do not inur a signi�ant performane penalty. Beause of this,the elimination of gp omputations generally does not lead to any signi�ant im-provements in speed. However, beause there are so many reomputations of gpin a program, the elimination of redundant gp omputations an yield signi�antredutions in size.2.1.2 Unreahable-Code Elimination. A ode fragment is unreahable if there isno ontrol ow path to it from the rest of the program. Code that is unreahable annever be exeuted, and an therefore be eliminated without a�eting the behaviorof the program.At link time, unreahable ode arises primarily from the propagation of infor-mation aross proedure boundaries. In partiular, the propagation of the valuesof atual parameters in a funtion all into the body of the alled funtion anmake it possible to statially resolve the outomes of onditional branhes in theallee. Thus, if we �nd, as a result of interproedural onstant propagation, thata onditional branh within a funtion will always be taken, and there is no otherontrol ow path to the ode in the branh that is not taken, then the latter odebeomes unreahable and an be eliminated.Unreahable ode analysis involves a straightforward depth-�rst traversal of theontrol ow graph, and is performed as soon as the ontrol ow graph of the programhas been omputed. Initially, all basi bloks are marked as unreahable, exeptfor the entry blok for the whole program, and a dummy blok alled Bunknown ,whih has an edge to eah basi blok whose predeessors are not all known (seeSetion 2.2.1). The analysis then traverses the interproedural ontrol ow graphand identi�es reahable bloks: a basi blok is marked reahable if it an be reahedfrom another blok that is reahable. Funtion alls and the orresponding returnbloks are handled in a ontext-sensitive manner: the basi blok that follows afuntion all is marked reahable only if the orresponding all site is reahable.2.1.3 Dead-Code Elimination. Dead ode refers to omputations whose resultsare never used. The notion of \results not used" must be onsidered broadly. Forexample, if it is possible for a omputation to generate exeptions or raise signalswhose handling an a�et the behavior of the rest of the program, then we annotonsider that omputation to be dead. Code that is dead an be eliminated withouta�eting the behavior of the program.Link-time opportunities for dead-ode elimination arise primarily as a result ofunreahable-ode elimination that transforms partially dead omputations (om-putations whose results are used along some exeution paths from a program pointbut not others) into fully dead ones.



6 � Saumya Debray et al.2.1.4 Strength Redution. Strength redution refers to the replaement of a se-quene of instrutions by an equivalent but heaper (typially, faster) sequene.In general, the heaper instrution sequene may not be shorter than the origi-nal sequene (e.g., multipliation or division operations where one of the operandsis a known onstant an be replaed by a heaper but longer sequene of bit-manipulation operations suh as shifts and adds). The bene�ts for ode ompationome from situations where the replaement sequene happens to be shorter thanthe original sequene.In squeeze, ode size improvements from strength redution ome primarily fromits appliation to funtion alls. Like many proessors, the Alpha has two di�erentfuntion all instrutions: the bsr (\branh subroutine") instrution, whih usesPC-relative addressing and is able to aess targets within a �xed displaement ofthe urrent loation; and the jsr (\jump subroutine") instrution, whih branhesindiretly through a register and an target any address. The ompiler typiallyproesses programs a funtion at a time and generates ode for funtion alls with-out knowledge of how far away in memory the allee is. Beause of this, funtionalls are translated to jsr instrutions. This, in turn, requires that the 64-bitaddress of the allee be loaded into a register prior to the jsr. As disussed inSetion 2.1.1, this is done by loading the address of the allee from a global addresstable. The ode generated for a funtion all onsists therefore of a load instrutionfollowed by a jsr instrution. If this an be strength-redued to a bsr instrution,we obtain a savings in ode size as well as an improvement in exeution speed.2.2 Program Analyses for Code CompationThree program analyses turn out to be of fundamental importane for the trans-formations disussed above, and are disussed in this setion.2.2.1 Control Flow Analysis. Control ow analysis is essential for all of the op-timizations disussed in Setion 2.1. It is neessary for redundant-ode elimination,sine, in order to identify a omputation as redundant at a program point, we haveto verify that it has been omputed along every exeution path up to that point.It is neessary for unreahable-ode elimination as well as dead-ode eliminationbeause the lassi�ation of ode as unreahable or dead relies fundamentally onknowing the ontrol ow behavior of the program. Finally, the strength redutiontransformation for funtion alls disussed in Setion 2.1.4 relies on the knowledgeof the targets of suh alls.Traditional ompilers generally onstrut ontrol ow graphs for individual fun-tions, based on some intermediate representation of the program, in a straightfor-ward way [Aho et al. 1985℄. Things are somewhat more omplex at link time beausemahine ode is harder to deompile. In squeeze, we onstrut the interproeduralontrol ow graph for a program as follows:(1) The start address of the program appears at a �xed loation within the headerof the �le (this loation may be di�erent for di�erent �le formats). Using this asa starting point, we use the \standard" algorithm [Aho et al. 1985℄ to identifyleaders and basi bloks, as well as funtion entry bloks. We use the reloationinformation of the exeutable to identify additional leaders, suh as jump tabletargets, whih might otherwise not be deteted, and we mark these basi bloks



Compiler Tehniques for Code Compation � 7as reloatable. At this stage, we make two assumptions: (1) that eah funtionhas a single entry blok and (2) that all of the basi bloks of a funtion arelaid out ontiguously. If the �rst assumption turns out to be inorret, we\repair" the ow graph at a later stage. If the seond assumption does nothold, the onstruted ontrol ow graph may ontain (safe) impreisions whihmay ause less e�etive (size) optimizations.(2) We add edges to the ow graph. If the exat target of a ontrol transferinstrution annot be resolved, we assume that the transfer is to a speial blokBunknown (in the ase of indiret jumps) or funtion Funknown (in the ase ofindiret funtion alls). We onservatively assume that Bunknown and Funknownde�ne and use all registers, et. Any basi blok whose start address is markedas reloatable may be the target of any unresolved indiret jump. Thus, weadd an edge from Bunknown to eah suh blok. Any funtion whose entry pointis marked as reloatable may be the target of any unresolved indiret funtionall. Thus, we add a all edge to it from Funknown . (This is safe, but overlyonservative. We disuss, below, how this an be improved.)(3) We arry out interproedural onstant propagation on the resulting ontrol owgraph, as desribed in Setion 2.2.2. We use the results to determine addressesthat are loaded into registers. This information is used, in turn, to resolvethe targets of indiret jumps and funtion alls. If we an resolve suh targetsunambiguously, we replae the edge to Funknown or Bunknown by an edge to theappropriate target.(4) Thus far, we have assumed that a funtion all returns to its aller at theinstrution immediately after the all instrution. At the level of exeutableode, this assumption an be violated in two ways.2 The �rst involves esap-ing branhes|ordinary (i.e., non-funtion-all) jumps from one funtion intoanother|that arise either due to tail all optimization, or beause of ode shar-ing in hand-written assembly ode (suh as is found in, for example, some nu-merial libraries). The seond involves nonloal ontrol transfers via funtionssuh as setjmp and longjmp. Both these ases are handled by the insertionof additional ontrol ow edges, whih we all ompensation edges, into theontrol ow graph. In the former ase, esaping branhes from a funtion fto a funtion g result in a single ompensation edge from the exit node of gto the exit node of f . In the latter ase, a funtion ontaining a setjmp hasan edge from Funknown to its exit node, while a funtion ontaining a longjmphas a ompensation edge from its exit node to Funknown . The e�et of theseompensation edges is to fore the various dataow analyses to approximatesafely the ontrol ow e�ets of these onstruts.(5) Finally, squeeze attempts to resolve indiret jumps through jump tables, whiharise from ase or swith statements. The essential idea is to use onstantpropagation to identify the start address of the jump table, and the bounds2In some arhitetures, the allee may expliitly manipulate the return address under some ir-umstanes. For example, the SPARC alling onvention allows an extra word to follow a allinstrution. In suh a ase, the allee inrements the return address to skip over this word. (Weare grateful to an anonymous referee for pointing this out to us.) Suh situations do not arise inthe Alpha arhiteture, and are not handled by squeeze.



8 � Saumya Debray et al.hek instrution(s) to determine the extent of the jump table. The edge fromthe indiret jump to Bunknown is then replaed by a set of edges, one for eahentry in the jump table. If all of the indiret jumps within a funtion an beresolved in this way, any remaining edges from Bunknown to basi bloks withinthat funtion are deleted.Potentially, any proedure whose entry-point address is stored in a data setionan have this (reloatable) address used somewhere in the program as the targetof an indiret funtion all. Beause of this, as mentioned in step (2) above, suhproedures must be assumed to be reahable via indiret alls as long as the pro-gram ontains any all whose target is unknown. While this is safe, it is overlyonservative. As disussed in Setion 2.1.4, the ode generated by the ompiler fora funtion all typially onsists of a load from a global address table followed by anindiret all. (A ompiler an, in priniple, optimize this to a diret all when thealler and allee are within the same module, but suh a sheme is still neessary forinter-module alls.) This means that any proedure that is aessible from outsideits own module has its reloatable address stored in the global address table (whihis in a data setion) and hene will be onsidered to be alled from Funknown . Asan indiation of how onservative this simple tehnique is, we note that for theprograms in the SPECint-95 benhmark suite, about 65% of all funtions, on theaverage, are onsidered to be alled from Funknown .Alpha exeutables ontain funtion reloation information that we use to improvethe preision of our ontrol ow analysis. The ompiler uses speial reloation en-tries, referred to as literal reloations, to tag every instrution that loads a funtionaddress from a global address table, and every instrution that uses this loadedaddress. (These reloation entries play a purely informational role, in that theyan be ignored by the linker without a�eting program behavior.) If every load of afuntion's address is used simply to jump to that address, we remove the edge fromFunknown to the funtion, and replae it with all edges from the basi bloks thatontain the jump instrutions. If a load of a funtion address is not followed by ajump, the address may be stored and, thus, may equal any unresolved target. Inthis ase, we preserve the edge from Funknown to the funtion. For the SPECint-95benhmarks, this results in fewer than 14% of the proedures having a all fromFunknown . The resulting improvement in ontrol ow information has a very sig-ni�ant e�et on the amount of ode that an be eliminated as unreahable, andleads to a signi�ant improvement in the amount of ode ompation that an berealized.2.2.2 Interproedural Constant Propagation. As mentioned above, we as-sume that standard ompiler analyses and optimizations|inluding onstantpropagation|have already been arried out prior to link-time ode ompation.Where do opportunities for link-time onstant propagation then arise? It turnsout, not surprisingly, that onstant values that are propagated at ompile time arethose that are present in soure-level ompilation units, while those propagated atlink time are either values that are not available at ompile time, e.g., addresses ofglobal names, or those that the ompiler is unable to propagate aross ompilationunit boundaries, e.g., from a aller to a allee. Link-time onstant propagationopportunities also arise from arhiteture-spei� omputations that are not visible



Compiler Tehniques for Code Compation � 9at the intermediate ode representation level typially used by ompilers for mostoptimizations. An example of this is the omputation of the gp register on theAlpha proessor.The analysis we use in squeeze is essentially standard iterative onstant prop-agation, limited to registers but arried out aross the ontrol ow graph of theentire program. This has the e�et of ommuniating information about onstantarguments from a alling proedure to the allee. To improve preision, squeeze at-tempts to determine the registers saved on entry to a funtion and restored at theexit from it. If a register r that is saved and restored by a funtion in this mannerontains a onstant  just before the funtion is alled, r is inferred to ontain thevalue  on return from the all.Constant propagation turns out to be of fundamental importane for the rest ofthe system, sine many ontrol and data ow analyses rely on the knowledge ofonstant addresses omputed in the program. For example, the ode generated bythe ompiler for a funtion all typially �rst loads the address of the alled funtioninto a register, then uses a jsr instrution to jump indiretly through that register.If onstant propagation determines that the address being loaded is a �xed valueand the allee is not too far away, the indiret funtion all an be replaed by adiret all using a bsr instrution, as disussed in Setion 2.1.4. This is not onlyheaper, but also vital for improving the preision of the interproedural ontrolow graph of the program, sine it lets us replae a pair of all/return edges toFunknown with a pair of suh edges to the (known) allee. Another example of theuse of onstant address information involves the identi�ation of possible targetsof indiret jumps through jump tables. Unless this an be done, we must assumethat the indiret jump is apable of jumping to any basi blok of a funtion,3and this an signi�antly hamper optimizations. Finally, knowledge of onstantaddresses is useful for optimizations suh as the removal of unneessary memoryreferenes. We �nd that on the average, link-time onstant propagation is able todetermine the values of the arguments and results for about 18% of the instrutionsof a program. (This does not mean that these \evaluated" instrutions an all beremoved, sine very often they represent address omputations for indexing intoarrays or strutures or for alling funtions.)2.2.3 Interproedural Register Liveness Analysis. Code fatoring, disussed inSetion 3, involves abstrating repeated instrution sequenes into proedures. Toall suh proedures it is neessary to �nd a register that an be used to hold thereturn address. Squeeze implements a relatively straightforward interproeduralliveness analysis, restrited to registers, to determine whih registers are live atany given program point. The analysis is ontext-sensitive in that it maintainsinformation about whih return edges orrespond to whih all sites, and propa-gates information only along realizable all/return paths. The \standard" dataowequations for liveness analysis are extended to deal with idiosynraies of the Alphainstrution set. For example, the all pal instrution, whih ats as the interfaewith the host operating system, has to be handled speially, sine the registers thatmay be used by this instrution are not visible as expliit operands of the instru-3More preisely, any basi blok that is marked as \reloatable," as disussed in Setion 2.2.1.



10 � Saumya Debray et al.tion. Our implementation urrently uses the node Bunknown as the target for suhalls. The onditional move instrution also requires speial attention, sine thedestination register must also be onsidered as a soure register.In order to propagate dataow information only along realizable all/returnpaths, squeeze omputes summary information for eah funtion, and models thee�et of funtion alls using these summaries. Given the site of a all to a funtionf , onsisting of a all node n and a return node nr, the e�ets of the funtion allon liveness information are summarized via two piees of information:(1) mayUse[f ℄ is the set of registers that may be used by f . A register r may beused by f if there is a realizable path from the entry node of f to a use of rwithout an intervening de�nition of r. Hene mayUse [f ℄ desribes the set ofregisters that are live at the entry to f independent of the alling ontext, andwhih are therefore neessarily live at the all node n.(2) byPass [f ℄ is the set of registers whose liveness depends on the alling ontextfor f . This onsists of those registers r suh that, if r is live at nr, then r isalso live at n.The analysis proeeds in three phases. The �rst two phases ompute summaryinformation for funtions, i.e., their mayUse and byPass sets. The third phase thenuses this information to do the atual liveness omputation.It turns out that even ontext-sensitive liveness analyses may be overly onser-vative if they are not areful in handling register saves and restores at funtion allboundaries. Consider a funtion that saves the ontents of a register, then restoresthe register before returning. A register r that is saved in this manner will appear asan operand of a store instrution, and therefore appear to be used by the funtion.In the subsequent restore operation, register r will appear as the destination of aload instrution, and therefore appear to be de�ned by the funtion. A straightfor-ward analysis will infer that r is used by the funtion before it is de�ned, and thiswill ause r to be inferred as live at every all site for f . To handle this problem,squeeze attempts to determine, for eah funtion, the set of registers it saves andrestores.4 If the set of allee-saved registers of funtion f an be determined, we anuse it to improve the preision of the analysis by removing this set from mayUse [f ℄and adding it to byPass[f ℄ whenever those values are updated during the �xpointomputation.3. CODE FACTORINGCode fatoring involves (1) �nding a multiply-ourring sequene of instrutions,(2) making one representative sequene that an be used in plae of all ourrenes,and (3) arranging, for eah ourrene, that the program exeutes the representativeinstead of the ourrene. The third step an be ahieved by expliit ontrol transfer(via a all or jump), or by moving the representative of several ourrenes to apoint that dominates every ourrene. We �rst exploit the latter form of odefatoring, sine it involves no added ontrol transfer instrutions.4We do not assume that a program will neessarily respet the alling onventions with regardto allee-saved registers, sine suh onventions are not always respeted in libraries ontaininghand-written assembly ode. This approah is safe, though sometimes overly onservative.
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B’ C’

E’

D’

A’

stq r7,4(r30)

sub r5,r6,r9
stq r9,8(r30)
ldq r9,12(r30)
xor r5,r6,r0

xor r19,r19,r19

cmp r2,r1,r0
add r5,r6,r8
beq r0

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

D

ldq r19,22(r22)
stq r9,16(23)

B

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

add r5,r6,r8
sub r5,r6,r9

C

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0
stq r9,16(r23)

add r5,r6,r8

A

cmp r2,r1,r0

beq r0

E Fig. 1. Loal ode fatoring.3.1 Loal Fatoring TransformationsInspired by an idea of Knoop et al. [1994℄, we try to merge idential ode fragmentsby moving them to a point that pre- or postdominates all the ourrenes of thefragments. We have implemented a loal variant of this sheme whih we desribeusing the example depited in Figure 1. The left hand side of the �gure shows anassembly ode owhart with a onditional branh (beq r0) in blok A. Bloks Band C ontain the same instrution add r5,r6,r8. Sine these instrutions do nothave bakward dependenies with any other instrution in B or C, we an safelymove them into blok A just before the beq instrution, as shown in the right-handside of Figure 1. Similarly, bloks B, C, and D share the same store instrutionstq r9,r16(r23), and sine these instrutions do not have forward dependenieswith any other instrution in B, C, and D, they an be safely moved into blok E.In this ase, it is not possible to move the store instrution from B and C into Abeause, due to the lak of aliasing information, there are bakward dependeniesto the load instrutions (ldq) in B and C. In general, however, it might be possibleto move an instrution either up or down. In this ase, we prefer to move it down,sine moving it up, over a two-way branh, will eliminate one opy while moving itdown to a blok that has many predeessors might eliminate several opies.Our sheme uses register realloation to make this transformation more e�etive.For example, the sub instrutions in B and C write to di�erent registers (r9 andr19). We an, however, rename r9 to r19 in B, thereby making the instrutionsidential. Another opportunity rests with the xor instrutions in B and C. Eventhough they are idential, we annot move them into A beause they write registerr0 whih is used by the onditional branh. Realloating r0 in A to another registerwhih is dead at the end of A will make the transformation possible.3.2 Proedural AbstrationGiven a single-entry, single-exit ode fragment C, proedural abstration of C in-volves (1) reating a proedure fC whose body is a opy of C and (2) replaingthe appropriate ourrenes of C in the program text by a funtion all to fC .While the �rst step is not very diÆult, the seond step, at the level of assembly



12 � Saumya Debray et al.or mahine ode, involves a little work.In order to reate a funtion all using some form of \jump-and-link" instrutionthat transfers ontrol to the allee and at the same time puts the return address intoa register, it is neessary to �nd a free register for that purpose. A simple methodis to alulate, for eah register r, the number of ourrenes of ode fragment Cthat ould use r as a return register. A register with the highest suh �gure ofmerit is hosen as the return register for fC . If a single instane of fC , using apartiular return register, is not enough to abstrat out all of the ourrenes of Cin the program, we may reate multiple instanes of fC that use di�erent returnregisters. We use a more ompliated sheme when abstrating funtion prologs(see Setion 3.5.1) and regions of multiple basi bloks (see Setion 3.4).3.3 Proedural Abstration for Individual Basi BloksCentral to our approah is the ability to apply proedural abstration to individualbasi bloks. In this setion, we disuss how andidate basi bloks for proeduralabstration are identi�ed.3.3.1 Fingerprinting. To redue the ost of omparing basi bloks to determinewhether they are idential (or similar), we use a �ngerprint funtion to ompute a�ngerprint for eah basi blok, suh that two bloks with di�erent �ngerprints areguaranteed to be di�erent. In general, suh �ngerprint funtions are de�ned withrespet to the notion of \equality" between basi bloks. For example, in our urrentimplementation, two bloks are onsidered to be equal if the instrution sequenesin them are the same. Thus, the �ngerprint funtion of a blok is based on thesequene of instrutions in the blok. On the other hand, if a ode ompationsheme de�nes equality of basi bloks with respet to de�nition-use hains thena �ngerprint based on the number of ourrenes of eah type of opode may beused.In our urrent implementation, a �ngerprint is a 64-bit value formed by onate-nating 4-bit enodings of the opodes of the �rst 16 instrutions in the blok. Sinemost \systems" appliations tend to have short basi bloks, haraterizing the �rst16 instrutions seems enough for most basi bloks. This means that two bloksthat are di�erent, but whih have the same sequene of opodes for their �rst 16instrutions, will have the same �ngerprint: we will disover them to be di�erentlater, when we atually ompare them instrution by instrution.With 4 bits per instrution, we an enode 15 di�erent opodes and reserve oneode for \other." We deide whih 15 will be expliitly represented by onsidering astati instrution ount of the program. The 15 most frequently ourring opodesare given distint 4-bit patterns. The remaining pattern, 0000, represents opodesthat are not in the top 15 in frequeny.To redue the number of pairwise omparisons of �ngerprints that must be arriedout, we use a hashing sheme suh that basi bloks in di�erent hash bukets areguaranteed to have di�erent �ngerprints, and so need not be ompared.3.3.2 Register Renaming within Basi Bloks. When we �nd two basi bloksthat are \similar," i.e., have the same �ngerprint and the same number of instru-tions, but whih are not idential, we attempt to rename the registers in one ofthem so as to make the two idential. The basi idea is very simple: we rename
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r5 = r4+1
r3 = r5+r2
r6 = r5*r3

B1

r4 = r6*2
r0 = r3-r6

{r1,r2} live

{r3,r4} live

r0 = r1+1

r5 = r0*r1
r3 = r1-r5
r4 = r5*2

r1 = r0+r2

B0

r4 = r1

B1
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

B0
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

r3 = r0(a) before (b) afterFig. 2. Example of basi-blok-level register renaming.registers \loally," i.e., within the basi blok; and if neessary, we insert register-to-register moves, in new basi bloks inserted immediately before and after theblok being renamed, so as to preserve program behavior. An example of this isshown in Figure 2, where blok B0 is renamed to be the same as blok B1.For soundness, we have to ensure that the renaming does not alter any use-de�nition relationships. We do this by keeping trak of the set of registers thatare live at eah point in the basi blok, as well as the set of registers that havealready been subjeted to renaming. These sets are then used to detet and dis-allow renamings that ould alter the program's behavior. The pseudoode for ourrenaming algorithm is given in Appendix A.The renaming algorithm keeps trak of the number of expliit register-to-registermoves that have to be inserted before and after a basi blok that is being renamed.The renaming is undone if, at the end of the renaming proess, the ost of renaming,i.e., the number of register moves required together with a funtion all instrution,exeeds the savings from the renaming, i.e., the number of instrutions in the blok.Cooper and MIntosh [1999℄ desribe a di�erent approah to register renaming.They arry out register renaming at the level of entire live ranges. That is, whenrenaming a register r0 to a di�erent register r1, the renaming is applied to anentire live range for r0. This has the advantage of not requiring additional registermoves before and after a renamed blok, as our approah does. However, it hasthe problem that register renaming to allow the abstration of a partiular pair ofbasi bloks may interfere with the abstration of a di�erent pair of bloks. Thisis illustrated in Figure 3, where solid double arrows indiate idential basi bloks,while dashed double arrows indiate bloks that are not idential but whih an bemade idential via register renaming. Bloks B0, B1, and B2 omprise a live rangefor register r0, while B3 and B5 omprise a live range for r1. We an rename r0to r5 in this live range, so as to make bloks B1 and B3 idential, but this willause bloks B2 and B4 to not be idential and therefore not abstratable into afuntion. We an also rename r5 to r0 in blok B3 so as to make it idential toB1, but this will interfere with the abstration of bloks B5 and B6. Beause ofsuh interferene e�ets, it is not lear whether live-range-level renaming produesresults that are neessarily superior to basi-blok-level renaming. Notie that the
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r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

r1 = r0+r1

r3 = r1+r2

r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

B4

r1 = r5+r1

r3 = r1+r2

B3

B5

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B0

B1

B2

r0 = load(...)

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B6

r0        r5

r0        r5

Live range for

Live range for

r0

r1

Fig. 3. Interferene e�ets in live-range-level register renaming.problem ould be addressed by judiiously splitting the live ranges. Indeed, theloal renaming we use an be seen as the limiting ase of live-range-level renamingif splitting is applied until no live range spans more than one basi blok.3.3.3 Control Flow Separation. The approah desribed above will typially notbe able to abstrat two basi bloks that are idential exept for an expliit ontroltransfer instrution at the end. The reason for this is that if the ontrol transfersare to di�erent targets, the bloks will be onsidered to be di�erent and so will notbe abstrated. Moreover, if the ontrol transfer instrution is a onditional branh,proedural abstration beomes ompliated by the fat that two possible returnaddresses have to be ommuniated.To avoid suh problems, basi bloks that end in an expliit ontrol transferinstrution are split into two bloks: one blok ontaining all the instrutions inthe blok exept for the ontrol transfer, and another blok that ontains only theontrol transfer instrution. The �rst of this pair of bloks an then be subjetedto renaming and/or proedural abstration in the usual way.The next setion desribes how ode fragments larger than a single basi blokan be subjeted to proedural abstration.3.4 Single-Entry/Single-Exit RegionsThe disussion thus far has foused on the proedural abstration of individualbasi bloks. In general, however, we may be able to �nd multiple ourrenes ofa ode fragment onsisting of more than one basi blok. In order to apply proe-dural abstration to suh a region R, at every ourrene of R in the program, wemust be able to identify a single program point at whih ontrol enters R, and asingle program point at whih ontrol leaves R. It isn't hard to see that any set ofbasi bloks R with a single entry point and a single exit point orresponds to apair of points (d; p) suh that d dominates every blok in R and p postdominatesevery blok in R. Conversely, a pair of program points (d; p), where d dominates pand p postdominates d, uniquely identi�es a set of basi bloks with a single entrypoint and single exit point. Two suh single-entry, single-exit regions R and R0 areonsidered to be idential if it is possible to set up a 1-1 orrespondene ' between



Compiler Tehniques for Code Compation � 15their members suh that B1 ' B01 if and only if (1) B1 is idential to B01, and (2) ifB2 is a (immediate) suessor of B1 under some ondition C, and B02 is a (imme-diate) suessor of B01 under the same ondition C, then B2 ' B02. The algorithmto determine whether two regions are idential works by reursively traversing thetwo regions, starting at the entry node, and verifying that orresponding bloks areidential.In squeeze, after we apply proedural abstration to individual basi bloks, weidentify pairs of basi bloks (d; p) suh that d dominates p and p postdominatesd. Eah suh pair de�nes a single-entry, single-exit set of basi bloks. We thenpartition these sets of basi bloks into groups of idential regions, whih thenbeome andidates for further proedural abstration.As in the ase of basi bloks, we ompute a �ngerprint for eah region so thatregions with di�erent �ngerprints will neessarily be di�erent. These �ngerprintsare, again, 64-bit values. There are 8 bits for the number of basi bloks in theregion and 8 bits for the total number of instrutions, with the bit pattern 11...1being used to represent values larger than 256. The remaining 48 bits are used toenode the �rst (aording to a partiular preorder traversal of the region) 8 basibloks in the region, with eah blok enoded using 6 bits: two bits for the typeof the blok,5 and four bits for the number of instrutions in the blok. Again, asin the ase of basi bloks, the number of pairwise omparisons of �ngerprints isredued by distributing the regions over a hash table.It turns out that applying proedural abstration to a set of basi bloks isnot as straightforward as for a single basi blok, espeially in a binary rewritingimplementation suh as ours. The reason is that, in general, when the proedureorresponding to suh a single-entry, single-exit region is alled, the return addresswill be put into a register whose value annot be guaranteed to be preserved throughthat entire proedure, e.g., beause the region may ontain funtion alls, or beausethe region may ontain paths along whih that register is overwritten. This meansthat the return address register has to be saved somewhere, e.g., on the stak.However, alloating an extra word on the stak, to hold the return address, anause problems unless we are areful. Alloating this spae at the top of the stakframe an ause hanges in the displaements of other variables in the stak frame,relative to the top-of-stak pointer, while alloating it at the bottom of the stakframe an hange the displaements of any arguments that have been passed on thestak. If there is any address arithmeti involving the stak pointer, e.g., for addressomputations for loal arrays, suh omputations may be a�eted by hanges indisplaements within the stak frame. These problems are somewhat easier tohandle if the proedural abstration is being arried out before ode generation,e.g., at the level of abstrat syntax trees [Franz 1997℄. At the level of assemblyode [Cooper and MIntosh 1999; Fraser et al. 1984℄ or mahine ode (as in ourwork), it beomes onsiderably more ompliated. There are, however, some simpleases where it is possible to avoid the ompliations assoiated with having to saveand restore the return address when introduing proedural abstrations. Here,we identify two suh situations. In both ases, let (d0; p0) and (d1; p1) de�ne two5In essene, the type of a blok desribes its ontrol ow behavior, i.e., whether it ontains aproedure all, a onditional branh, an indiret jump through a jump table, et.
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return

d0

p
0

d

p
1

1

return (a) before return

d0

p
0 (b) afterFig. 4. Merging regions ending in returns via ross-jumping.idential regions.The �rst ase involves situations where p0 and p1 are return bloks, i.e., bloksfrom whih ontrol returns to the aller. In this ase there is no need to useproedural abstration to reate a separate funtion for the two regions. Instead,we an use a transformation known as ross-jumping [Muhnik 1997℄, where theode in the region (d1; p1) is simply replaed by a branh to d0. The transformationis illustrated in Figure 4.In the seond ase, suppose that it is possible to �nd a register r that (1) is notlive at entry to either region, and (2) whose value an be guaranteed to be preservedup to the end of the regions (r may be a general-purpose register that is not de�nedwithin either region, or a allee-saved register that is already saved and restoredby the funtions in whih the regions our). In this ase, when abstrating theseregions into a proedure p, it is not neessary to add any ode to expliitly save andrestore the return address for p. The instrution to all p an simply put the returnaddress in r, and the return instrution(s) within p an simply jump indiretlythrough r to return to the aller.If neither of these onditions is satis�ed, squeeze tries to determine whether thereturn address register an be safely saved on the stak at entry to p, and restored atthe end. For this, it uses a onservative analysis to determine whether a funtionmay have arguments passed on the stak, and whih, if any, registers may bepointers into the stak frame. Given a set of andidate regions to be abstratedinto a representative proedure, it heks the following:(1) for eah funtion that ontains a andidate region, it must be safe, with respetto the problems mentioned above, to alloate a word on the stak frame of thefuntion;(2) a register r0 must be free at entry to eah of the regions under onsideration;(3) a register r1 must be free at the end of eah of the regions under onsideration;and(4) there should not be any alls to setjmp()-like funtions that an be a�etedby a hange in the struture of the stak frame.



Compiler Tehniques for Code Compation � 17If these onditions are satis�ed then, on entry, p alloates an additional word onthe stak and saves the return address (passed via r0) into this loation; and, onexit, loads the return address from this loation (using r1) and restores the stakframe. The urrent implementation of the safety hek desribed above is quiteonservative in its treatment of funtion alls within a region. In priniple, if we�nd that spae an be alloated on the stak but have no free registers for thereturn address at entry or exit from the abstrated funtion, it should be possibleto alloate an extra word on the stak in order to free up a register, but we havenot implemented this.3.5 Arhiteture-Spei� IdiomsApart from the general-purpose tehniques desribed earlier for deteting and ab-strating out repeated ode fragments, there are mahine-spei� idioms that anbe pro�tably exploited. In partiular, the instrutions to save and restore registers(the return address and allee-saved registers) in the prolog and epilog of eah fun-tion generally have a preditable struture and are saved at preditable loationswithin the stak frame. For example, the standard alling onvention for the Com-paq Alpha AXP arhiteture under Tru64 Unix6 treats register r26 as the returnaddress register (ra) and registers r9 through r15 as allee-saved registers. Theseare saved at loations 0x0(sp), 0x8(sp), 0x10(sp), and so on. Abstrating outsuh instrutions an yield onsiderable savings in ode size. Suh arhiteture-spei� save/restore sequenes are reognized and handled speially by squeeze, fortwo reasons: �rst, these instrutions often do not form a ontiguous sequene inthe ode stream; and seond, handling them speially allows us to abstrat themout of basi bloks that may not be idential to eah other.3.5.1 Abstrating Register Saves. In order to abstrat out the register save in-strutions in the prolog of a funtion f into a separate funtion g, it is neessary toidentify a register that an be used to hold the return address for the all from f tog. For eah register r, we �rst ompute the savings that would be obtained if r wereto be used for the return address for suh alls. This is done by totaling up, for eahfuntion f where r is free at entry to f , the number of registers saved in f 's prolog.We then hoose a register r with maximum savings (whih must exeed 0), andgenerate a family of funtions Saver15; : : : ;Saver9;Saverra that save the allee-savedregisters and the return address register, and then return via register r. The ideais that funtion Saveri saves register i and then falls through to funtion Saveri�1.As an example, suppose we have two funtions f0() and f1(), suh that f0()saves registers r9, . . . , r14, and f1() saves only register r9. Assume that registerr0 is free at entry to both these funtions and is hosen as the return addressregister. The ode resulting from the transformation desribed above is shown inFigure 5.It may turn out that the funtions subjeted to this transformation do not useall of the allee-saved registers. For example, in Figure 5, suppose that none of thefuntions using return address register r0 save register r15. In this ase, the odefor the funtion Save015 beomes unreahable and is subsequently eliminated.6Tru64 Unix was formerly known as Digital Unix.
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Save0
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Save0
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Save0
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Save0
ra

Save0
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sp = sp - 32
bsr  r0, Save0

9

. . .

f0:

bsr  r0, 
sp = sp - 40

f1:

stq  r15, 0x38(sp)

stq r14, 0x30(sp)

stq  r9, 0x8(sp)

stq  ra, 0x0(sp)
ret  (r0)Fig. 5. Example ode from abstration of register save ations from funtion prologs.A partiular hoie of return address register, as desribed above, may not a-ount for all of the funtions in a program. The proess is therefore repeated,using other hoies of return address registers, until either no further bene�t anbe obtained, or all funtions are aounted for.3.5.2 Abstrating Register Restores. The ode for abstrating out register re-store sequenes in funtion epilogs is oneptually analogous to that desribedabove, but with a few di�erenes. If we were simply to do the opposite of whatwas done for register saves in funtion prologs, the ode resulting from proeduralabstration at eah return blok for a funtion might have the following struture,with three instrutions to manage the ontrol transfers and stak pointer update:...bsr r1, Restore /* all funtion that restores registers */sp = sp + k /* dealloate stak frame */ret (ra) /* return */If we ould somehow move the instrution for dealloating the stak frame intothe funtion that restores saved registers, there would be no need to return to thefuntion f whose epilog we are abstrating: ontrol ould return diretly to f 'saller (in e�et realizing tail all optimization). The problem is that the ode torestore saved registers is used by many di�erent funtions, whih in general havestak frames of di�erent sizes, and hene need to adjust the stak pointer by di�erentamounts. The solution to this problem is to pass, as an argument to the funtionthat restores registers, the amount by whih the stak pointer must be adjusted.Sine the return address register ra is guaranteed to be free at this point|it isabout to be overwritten with f 's return address prior to returning ontrol to f 'saller|it an be used to pass this argument.7 Sine there is now no need for ontrolto return to f after the registers have been restored|it an return diretly to f 'saller|we an simply jump from funtion f to the funtion that restores registers,instead of using a funtion all. The resulting ode requires two instrutions insteadof three in eah funtion return blok:7In pratie not all funtions an be guaranteed to follow the standard alling onvention, so it isneessary to verify that register ra is, in fat, being used as the return address register by f .
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to f0’s caller(s) to ’s caller(s)f1
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ldq  r15, 0x38(sp)

ldq r14, 0x30(sp)

ldq  r9, 0x8(sp)
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ra = 32 ra = 40
f0: f1:

sp  =  sp + ra
stq ra, 0x8(sp)
ldq   ra, 0(sp)
ldq   sp, 0x8(sp)
ret    (ra)Fig. 6. Example ode from abstration of register restore ations from funtion epilogs.ra = k /* sp needs to be adjusted by k */br Restore /* jump to funtion that restores registers */The ode in the funtion that restores registers is pretty muh what one wouldexpet. Unlike the situation for register save sequenes disussed in Setion 3.5.1,we need only one funtion for restoring registers. The reason for this is that there isno need to all this funtion: ontrol an jump into it diretly, as disussed above.This means that we do not have to generate di�erent versions of the funtion withdi�erent return address registers. The overall struture of the ode is analogous tothat for saving registers: there is a hain of basi bloks, eah of whih restores aallee-saved register, with ontrol falling through into the next blok, whih savesthe next (lower-numbered) allee-saved register, and so on. The last member ofthis hain adjusts the stak pointer appropriately, loads the return address into aregister, and returns. There is, however, one minor twist at the end. The amountby whih the stak pointer must be adjusted is passed in register ra, so this registerannot be overwritten until after it has been used to adjust the stak pointer. Onthe other hand, sine the memory loation from whih f 's memory address is tobe restored is in f 's stak frame, we annot adjust the stak pointer until after thereturn address has been loaded into ra. At �rst glane, it seems that the probleman be addressed using something like the following instrution sequene:sp = sp + ra /* sp = sp + ra � new sp */ra = sp - ra /* ra = sp - ra � old sp */ra = load 0(ra) /* ra = return address */ret (ra)This ode is inorret, however, beause the stak pointer is updated|i.e., the stakframe is dealloated|before the return address is loaded from the stak frame. Asa result, if an interrupt ours between the end of the �rst instrution and thebeginning of the third instrution, the return address may be overwritten, resultingin inorret behavior. To avoid this, we have to ensure that the stak pointer updateis the last instrution before the ret instrution. We do this by �rst omputing thenew value of the stak pointer and storing it in the stak frame (in the slot where the�rst allee-saved register, was originally stored), then updating the return address



20 � Saumya Debray et al.register, and �nally loading the new value of the stak pointer from memory:8ra = sp + ra /* ra = sp + ra � new sp */8(sp) = store ra /* new sp saved at loation 8(sp) */ra = load 0(sp) /* ra = return address */sp = load 8(sp) /* sp = new sp */ret (ra)The resulting ode for restoring saved registers, for the funtions onsidered in theexample illustrated in Figure 5, is shown in Figure 6.We go through these ontortions in order to minimize the number of registersused. If we ould �nd another register that is free at the end of every funtion, weould load the return address into this register, resulting in somewhat simpler ode.However, in general it is not easy to �nd a register that is free at the end of everyfuntion. The reason we go to suh lengths to eliminate a single instrution fromeah return blok is that there are a lot of return bloks in the input programs,typially amounting to about 3%{7% of the basi bloks in a program, exludingreturn bloks for leaf routines that do not alloate/dealloate a stak frame (thereis usually at least one|and, very often, more than one|suh blok for eah fun-tion). The elimination of one instrution from eah suh blok translates to a odesize redution of about 1%{2% overall. (This may seem small, but to put it in per-spetive, onsider that Cooper and MIntosh report an overall ode size redutionof about 5% using suÆx-tree-based tehniques.)3.6 Abstrating Partially Mathed BloksAs disussed in the preeding setions, the smallest ode unit onsidered for pro-edural abstration by squeeze is the basi blok. In other words, squeeze will notattempt to arry out any form of proedural abstration on two bloks that arenot the same, even though there may be a signi�ant amount of \partial math"between them, i.e., the bloks may share ommon subsequenes of instrutions.This is illustrated by the pair of basi bloks shown in Figure 7(a), with mathedinstrutions indiated by lines drawn between them. Our experiments, desribed inthis setion, indiate that abstration of partially mathed bloks is omputation-ally quite expensive but adds very little additional savings in ode size. For thisreason we have hosen not to inlude partial mathing within squeeze.There are two issues that have to be addressed when onsidering proedural ab-stration of partially mathed bloks: �rst, how to identify partially mathed bloksto abstrat; and seond, how to transform the ode to e�et this abstration. Inour experiments, abstration of partially mathed bloks was arried out after pro-edural abstration of \fully mathed" bloks, disussed in Setion 3.3. In general,a partiular basi blok B0 may be partially mathed against many di�erent bloks,whih may math di�erent subsequenes of its instrutions. The savings obtainedfrom proedural abstration in this ase depends on the blok B1 that is hosen as amath. One a blok B1 is partially mathed with B0 and subjeted to proeduralabstration, B1 is not available for partial mathing against other basi bloks. This8We are indebted to Anders Lindgren for pointing out the problem in our original ode, as wellas suggesting the solution shown.



Compiler Tehniques for Code Compation � 21r1 = r2+1r1 = r1+r3ld r2, 0(r2)r3 = r1+8r4 = r0+4r1 = r4+r2st r1, 12(sp) r1 = r2+1r1 = r1+r3st r1, 16(r0)r3 = r1+8ld r7, 8(sp)r2 = r7*r3r1 = r4+r2st r1, 12(sp)hhhhhhhhhhhhhhh(a) A pair of partially mathed bloks.
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ld  r2, 0(r2)
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r3 = r1+8
r4 = r0+4
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r1 = r1+r3
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st  r1, 16(r0)
r3 = r1+8
ld  r7, 8(sp)
r2 = r7*r3

st  r1, 12(sp)
r1 = r4+r2

B6

return(b) Proedure obtained from the maximalmathing () Proedure obtained after unmathingunpro�table instrutionsFig. 7. Proedural abstration of partially mathed bloks.means that even though, from B0's perspetive, B1 may yield the largest savingswhen proedural abstration is arried out, this may not be the best hoie globally,sine we may have obtained greater savings by mathing B1 with some other blok.The problem of omputing a globally optimal set of partial mathes for a set ofbasi bloks, i.e., one that maximizes the savings obtained from their proeduralabstration, is omputationally diÆult (the related longest ommon subsequeneproblem is NP-omplete [Garey and Johnson 1979℄). We therefore take a greedyapproah, proessing basi bloks in dereasing order of size. When proessing ablok B0, we ompare it against all other bloks and hoose a blok B1 that yieldsmaximal savings (omputed as disussed below) when proedural abstration isarried out based on partial mathing of B0 and B1: B1 is then put into a partitionassoiated with B0. When all bloks have been proessed in this manner, all of thebloks in the same partition are abstrated into a single proedure.The bene�t obtained from the proedural abstration of two partially mathedbloks B0 and B1 is determined as follows. First, we use dynami programming todetermine the minimum edit distane between the two bloks, and thus the best



22 � Saumya Debray et al.math between them. Now onsider the seond issue mentioned above, namely,arrying out the program transformation. Sine we have a partial math betweenthese bloks, there will have to be multiple exeution paths through the resultingproedure, suh that the all from B0 will take one path while that from B1 willtake another. We an do this by passing an argument to the abstrated proedureindiating, for any all, whih all site it originated from, and therefore whihinstrutions it should exeute. When sanning down bloks B0 and B1, wheneverwe �nd a mismathed sequene of instrutions in either blok, we generate odein the abstrated proedure to test this argument and exeute the appropriateinstrution sequene based on the outome. Figure 7(b) shows the ontrol owgraph of the resulting proedure. In addition to the instrutions shown, we alsohave to manage ontrol ow. For this, we need a onditional branh at the end ofbloks B0 and B3 (in general, if there are more than two bloks in the partitionbeing abstrated, we may need expliit omparison operations to determine whihof a set of alternatives to exeute), and an unonditional branh for eah of thepairs of bloks fB1, B2g and fB4, B5g, for a total of 15 instrutions. Notiethat by designating the instrution in blok B3 as a \math" between the twooriginal bloks, and thereby having B3 be ommon to the exeution paths for bothof the all sites of the proedure, we save a single opy of this instrution, butpay a penalty of two branh instrutions for managing ontrol ow around it. Inthis ase, it turns out to be better, when determining the original partial math,to ignore the fat that the two r3 = r1+8 instrutions an be mathed. Thiswould yield the ode shown in Figure 7(), with a total of 14 instrutions. On theother hand, if instead of the single mathed instrution in B3 we had a sequeneof, say, 10 mathed instrutions, the savings inurred from ombining them intoa single blok within the abstrated proedure would outweigh the ost of theadditional instrutions needed to manage ontrol ow. As this example illustrates,the minimal edit distane between the two bloks does not neessarily yield thegreatest savings: sometimes we an do better by ignoring some mathes. It is notobvious that the dynami programming algorithm for omputing minimum editdistane an be modi�ed in a straightforward way to aommodate this. Insteadwe use a postproessing phase to \unmath" instrutions that inur too great aontrol ow penalty.Even with the improvement of unmathing instrutions where a math is notdeemed pro�table, the ost of ontrol ow management signi�antly lowers theoverall bene�ts of proedural abstration based on partial mathes. In the exampleshown in Figure 7, for example, at eah all site for the resulting proedure wewould need two additional instrutions|one to set the argument register identifyingthe all site, another to arry out the ontrol transfer|for an overall total of 18instrutions. By ontrast, the two original basi bloks shown in Figure 7(a) ontaina total of 15 instrutions. Thus, despite the signi�ant partial math between thesetwo bloks, it is not pro�table in this ase to abstrat them out into a proedure.In general, we found that proedural abstration based on partial mathes inurs alarge omputational ost, but yields overall ode size savings of around 0.4{0.6%.We obtained similar results with a number of other variations on this sheme,suh as fatoring out only ommon suÆxes or pre�xes of bloks. Beause of thehigh omputational ost of this transformation and the low bene�t it produes, we



Compiler Tehniques for Code Compation � 23deided not to inlude it within squeeze.4. INTERACTIONS BETWEEN CLASSICAL OPTIMIZATIONS AND CODE FAC-TORINGThere is onsiderable evidene that (appropriately ontrolled) optimization anyield signi�ant redutions in ode size. Compiler \folklore" has it that someamount of peephole optimization an speed up the overall ompilation proess be-ause of the resulting redution in the number of instrutions that have to be pro-essed by later phases.9 Cooper and MIntosh [1999℄ observe ode size redutionsof about 18% due to ompiler optimizations, while our own experiments, disussedin Setion 5, indiate that enabling optimizations that do not inrease ode sizeyield a ode size redution of about 20% on the average.However, sine lassial ompiler optimizations are aimed primarily at inreas-ing exeution speed, the redutions in size they produe are, in many ases, thehappy but oinidental outome of transformations whose primary goal is a redu-tion in exeution time. Examples of transformations that an, in some situations,lead to an inrease in ode size inlude mahine-independent optimizations suh aspartial-redundany elimination, proedure inlining, and shrink wrapping, as wellas mahine-dependent optimizations suh as instrution sheduling and instrutionahe optimization, both of whih an result in the insertion of no-ops for align-ment purposes. Even for transformations that lead to ode size redutions, usingexeution speed improvement as the primary goal of optimization an yield smallersize redutions than might be possible otherwise. For example, in the loal fator-ing transformation disussed in Setion 3.1, if an instrution an be hoisted eitherupward or downward, it is preferable to hoist it downward, sine this an yieldgreater size redutions. However, if our primary goal is inreasing exeution speed,we would prefer to hoist it upward instead, so as to hide latenies.This disussion does not take into aount interations between lassial opti-mizations, whose primary goal is a redution in exeution time, and ode-fatoringtransformations, whose primary goal is a redution in ode size. As a simple exam-ple, onsider the ode sequenes in the following two basi bloks:Blok B1 Blok B2load r1, 8(sp) load r1, 8(sp)add r1, r2, r3 add r1, r2, r3load r1, 12(sp) (*)add r4, r5, r6 add r4, r5, r6add r1, r4, r1 (*)mul r3, r6, r3 mul r3, r6, r3add r3, r5, r3 add r3, r5, r3store r3, 16(sp) store r3, 16(sp)As presented, these two bloks are di�erent, and annot be subjeted to proedu-ral abstration into the same proedure. If the ompiler determines that the twoinstrutions in blok B2 marked as (*) are dead (e.g., due to ode-eliminating op-timizations elsewhere that ause r1 to beome dead at the end of blok B2), andeliminates them, the two bloks then beome idential and an be fatored out into9We believe this observation is due to W. A. Wulf.



24 � Saumya Debray et al.a proedure. However, if the ompiler does an even better job of optimization,and is able to �nd a free register in blok B1 that allows it to eliminate the loadinstrution in that blok, the two bloks again beome di�erent and annot be ab-strated into a proedure. Notie that in the latter ase, the ompiler's deisionto eliminate the load instrution is a loally good deision|it redues ode size byone instrution and is likely to improve speed|but, from the standpoint of odeompation, not suh a good deision globally.Interations suh as these give rise to a phase-ordering problem between size-oriented and speed-oriented transformations. One possible way to deal with thiswould be to iterate the transformations to a �xpoint. However, this is not a sat-isfatory solution, beause transformations suh as ode fatoring require a lot ofode sequene omparisons to identify repeated instrution sequenes that an befatored out, and therefore are quite expensive; iterating over them is likely to beso expensive as to be impratial. We urrently do not do perform suh iteration.5. EXPERIMENTAL RESULTSTo evaluate our ideas, we used the eight SPEC-95 integer benhmarks, aswell as six embedded appliations, adpm, epi, gsm, mpeg2de, mpeg2en,and rasta, obtained from the MediaBenh benhmark suite from UCLA(http://www.s.ula.edu/~lee/mediabenh). We evaluated squeeze on odeobtained from two di�erent C ompilers: the vendor-supplied C ompiler  V5.2-036, invoked as  -O1, and the GNU C ompiler g version 2.7.2.2, at optimizationlevel -O2. The programs were ompiled with additional ags instruting the linkerto retain reloation information and to produe statially linked exeutables.10 Theoptimization level hosen for eah ompiler was seleted to allow \standard" op-timizations exept for those, suh as proedure inlining and loop unrolling, thatan inrease ode size. At optimization level -O1, the vendor-supplied ompiler arries out loal optimizations and reognition of ommon subexpressions; globaloptimizations inluding ode motion, strength redution, and test replaement; splitlifetime analysis; and ode sheduling; but not size-inreasing optimizations suh asinlining; integer multipliation and division expansion using shifts; loop unrolling;and ode repliation to eliminate branhes. Similarly, at the -O2 level of optimiza-tion, the g ompiler arries out most supported optimizations that do not involvea spae-speed trade-o�. In partiular, loop unrolling and funtion inlining are notarried out.The baseline for our measurements is ode optimized by the ompiler as dis-ussed above, but with unreahable ode and no-ops removed and pro�le-guidedode layout|whih an improve performane signi�antly, but is not arried outby either of the ompilers we used for our experiments|arried out. This elimi-nates library routines that are not referened by the program but whih get linkedinto the program beause of referenes to other routines in the library, and ex-ludes size redutions that ould be trivially obtained by a traditional ompiler.We inlude pro�le-direted ode layout in the baseline to allow a fair omparison:10The requirement for statially linked exeutables is a result of the fat that squeeze relies on thepresene of reloation information for its ontrol ow analysis. The Tru64 Unix linker ld refusesto retain reloation information for exeutables that are not statially linked.



Compiler Tehniques for Code Compation � 25Table I. Code Size Improvements Due To Di�erent TransformationsTransformation Savings (%)redundant omputation elimination 34.14Basi blok and region abstration 27.42Useless ode elimination 22.43Register save/restore abstration 9.95Other inter-proedural optimizations 6.06squeeze arries out this optimization, and we do not want the resulting performaneimprovements to unduly inate the exeution speed of the resulting exeutables.To obtain instrution ounts, we �rst disassemble the exeutable �les and disardunreahable ode and no-op instrutions. This eliminates library routines that arelinked in but are not atually alled, as well as any no-op instrutions that may havebeen inserted by the ompiler for instrution sheduling or alignment purposes. Toidentify unreahable ode, we onstrut a ontrol ow graph for the entire programand then arry out a reahability analysis. In the ourse of onstruting the ontrolow graph, we disard unonditional branhes. We reinsert those that are neessaryafter all the ode transformations have been arried out: during ode layout, justbefore the transformed ode is written out. To get aurate ounts, therefore, wegenerate the �nal ode layout in eah ase (i.e., with and without ompation) andount the total number of instrutions.5.1 Code SizeThe overall ode size redutions ahieved using our tehniques are summarized inFigure 8. The orresponding raw data are given in Debray et al. [2000℄. Figure8(a) shows the e�ets of squeeze on ode ompiled using the vendor-supplied Compiler , while Figure 8(b) shows the e�ets of squeeze on ode ompiled usingthe GNU C ompiler g. The olumns labeled \Unoptimized" refer to programsompiled at optimization level -O0, where no optimization is arried out, and serveas a referene point to indiate how muh ode size redution is realized using onlyoptimizations arried out by the ompiler, while the olumns labeled \Base" refer toode optimized at the appropriate level, as disussed above, with unreahable odeand no-ops removed. It an be seen from Figure 8 that by using lassial ompileroptimizations, eah of these ompilers is able to ahieve signi�ant improvementsin ode size ompared to the unoptimized ode:  obtains a size redution of justover 10% on the average, while g is able to ahieve an average size redutionof about 20%. More importantly, however, it an be seen that, even when giventhe already optimized exeutables as input, squeeze is able to ahieve signi�antfurther redutions in size. For the -ompiled programs it ahieves an average sizeredution of just over 30%, while for the g-ompiled programs the average sizeredution is a little over 28%. The greatest redution in size is about 40% for theadpm program, while the smallest is about 15{17% for the go program.Table I gives a breakdown of the average ontribution of di�erent kinds of odetransformations toward the ode size redutions we ahieve. Four lasses of transfor-mations aount for most of these savings. About a third of the savings omes from
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(b) Compiler: gFig. 8. E�ets of ompation on ode size (normalized).the elimination of redundant omputations of the global pointer register gp; about27% omes from \ordinary" proedural abstration; arhiteture-spei� abstra-tion of register save/restore sequenes aounts for another 10%; and useless-odeelimination aounts for about 22% of the savings. (Reall that our baseline pro-grams have already had unreahable ode and no-ops removed. The �gure givenhere refers to ode that subsequently beomes useless, due to interproedural opti-mization, as disussed in Setion 2.1.) The remainder of the savings arise due to avariety of interproedural optimizations.We also measured the extent to whih basi bloks of di�erent sizes ontributeto the overall savings due to proedural abstration. For small basi bloks, thesavings per blok abstrated tend to be small, but the likelihood of �nding othersimilar bloks, and thereby inreasing the total resulting savings, is large. The
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Basic block sizeFig. 9. Contribution to proedural abstration savings for basi bloks of di�erent sizes.opposite is true for large bloks: eah basi blok that is abstrated arues asigni�ant savings, but the likelihood of �nding similar or idential bloks that anbe abstrated is not as high. The distribution of the average savings we observedfor our benhmarks is shown in Figure 9. It an be seen that small bloks aountfor a signi�ant amount of the savings: about 7% of the savings omes from bloksontaining just two instrutions, while lose to 15% omes from bloks ontainingthree instrutions. Beyond this the savings generally drop o� as the number ofinstrutions inreases, exept for a large bump at basi bloks of size 10. The reasonfor this, it turns out, is that very often there is a large number of return bloks thatrestore all the allee-saved registers and the return address register from memory,dealloate the stak frame, and then return from the funtion. These ations require10 instrutions on the proessor we used. The ontribution of large basi bloks|those exeeding 12 instrutions in length|is, on the average, quite small, eventhough oasionally we are able to abstrat bloks that are quite long. (In the gand vortex benhmarks, basi bloks of up to 25 instrutions are abstrated. In therasta benhmark, suh bloks an be up to 44 instrutions long.)As mentioned earlier, our experiments use statially linked exeutables, wherethe ode for the library routines is linked into the exeutable by the linker prior toompation. It is possible that library ode is more (or less) ompressible than userode. This ould happen, for example, if the libraries are ompiled using di�erentompilers or ompiler optimization levels. It is desirable to identify, therefore, theextent to whih the presene of library ode inuenes our results. For example, ifit turns out that library ode is highly ompressible while user ode is not, then ourresults would not be readily appliable to exeutables that are not statially linked.To this end, we instrumented squeeze to reord, for eah addition or deletion of odeduring its run, the funtion(s) with whih the size hange should be assoiated. Forthe lassial optimizations implemented within squeeze, this is straightforward. Forproedural abstration, we use the following approah. Suppose that n di�erentinstanes of a partiular ode fragment were abstrated into a proedure, resultingin a net savings in ode size of m, then the funtion ontaining eah of these in-stanes is redited with a savings of m=n instrutions (not neessarily an integralquantity). We then use a list of funtions in the user ode, obtained using a modi-
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Fig. 10. Contributions to ode size redution: User ode versus libraries.�ed version of the l ompiler [Fraser and Hanson 1995℄, to estimate the total sizeof user ode and the ode savings attributable to it. These measurements do notaount for indiret e�ets of having the library ode available for inspetion, suhas improved preision of dataow analyses, whih may give rise to additional op-portunities for optimization. Nevertheless, this information is useful for obtainingqualitative estimates of the inuene of library ode on our overall numbers. Ourresults are shown in Figure 10. The bars labeled \User ode" represent the frationof instrutions in user ode, relative to the total number of user ode instrutions,that were deleted in the proess of ode ompation, while those labeled \Libraries"give the orresponding �gures for library ode. For both the user ode and libraries,the amount of redution in ode size typially ranges from around 25% to around30%, with an average redution of about 27% for user ode and about 26% forlibrary ode.11 There are a few programs (li, perl, vortex, adpm) where the userode is notieably more ompressible than the libraries, and a few others (go, gsm,rasta) where the libraries are more ompressible. In general, however, the user andlibrary ode are more or less omparable in their ontribution to the overall odesize redution measured.5.2 Code SpeedOne intuitively expets the programs resulting from the ode ompation tehniquesdesribed here to be slower than the original ode, primarily beause of the addi-tional funtion alls resulting from the proedural abstration that ours. A moreareful onsideration indiates that the situation may be murkier than this simpleanalysis suggests, for a number of reasons. First, muh of the ode size redution isdue to aggressive interproedural optimizations that also improve exeution speed.Seond, transformations suh as pro�le-direted ode layout, whih need not have alarge e�et on ode size, an nevertheless have a signi�ant positive e�et on speed.On the other hand, on a supersalar proessor suh as the Alpha 21164, slow-downsan our in the ompressed ode for reasons other than proedural abstration,e.g., due to the elimination of no-ops inserted by the instrution sheduler in order11These numbers refer to the ontrol ow graph prior to ode layout, i.e., before unonditionalbranhes are added while linearizing the graph.



Compiler Tehniques for Code Compation � 29to align the instrutions so as to inrease the number of instrutions issued peryle.To determine the atual e�et of our transformations on our benhmarks, weompared the exeution times of the original optimized exeutables with thoseresulting from the appliation of squeeze to these exeutables. Exeution pro�les,in the form of basi blok exeution ounts, were obtained for eah program usingpixie, and these were fed bak to squeeze during ode ompation. The SPECbenhmarks were pro�led using the SPEC training inputs and subsequently timedon the SPEC referene inputs. For eah of the remaining benhmarks, we used thesame input for both pro�ling and subsequent timing. The timings were obtained ona lightly loaded Compaq Alpha workstation with a 300-MHz Alpha 21164 proessorwith a split primary diret mapped ahe (8 KB eah of instrution and dataahe), 96 KB of on-hip seondary ahe, 2 MB of o�-hip seondary ahe, and512 Mbytes of main memory, running Tru64 Unix 4.0. Our results are shownin Figure 11. The orresponding raw data are given in Debray et al. [2000℄. Ineah ase, the exeution time was measured as the smallest time of 10 runs. Theolumns labeled \Original" refer to the exeution times of the inputs optimizedat the appropriate level for eah ompiler, as disussed earlier, but without theelimination of unreahable ode and no-ops. These are provided as a referenepoint. The olumns labeled \Base" refer to exeutables obtained by removingunreahable ode and no-ops from the original exeutables and then performingpro�le-direted ode layout. The exeution times of the exeutables produed bysqueeze orrespond to the olumns labeled \Squeezed."The results of our timing experiments indiate that it is by no means a foregoneonlusion that squeezed ode will be slower than original ode. For many of ourbenhmarks, the squeezed ode runs signi�antly faster than the original. Forexample, for the ompress benhmark ompiled using , the squeezed exeutableis about 11% faster than the base and original exeutables, and using g, it isabout 23% faster than the base and original exeutables. For m88ksim ompiledusing , the squeezed exeutable is about 35% faster than the base and about36% faster than the original, and using g, it is about 30% faster than both thebase and original. For perl ompiled using , it is about 28% faster than the baseand about 22% faster than the original, and using g, it is about 13% faster thanthe base and original. Only two programs su�er slow-downs as a result of odeompation: vortex and epi, both under the g ompiler. The former slows downby about 10%, the latter by about 23%. The reasons for these slow-downs aredisussed in Setion 5.3. Overall, for the set of benhmarks onsidered, the averagespeedup, ompared to both the base and original programs, is about 16% for the-ompiled exeutables and about 10% for the exeutables obtained using g. Inother words, ode ompation yields signi�ant speed improvements overall, andthe ompressed ode performs favorably even when the performane of the originalode is enhaned via pro�le-guided ode layout. The reasons for this, exploredin Setion 5.3, are generally that for most of our benhmarks, the squeezed odeexperienes signi�ant dereases in the number of instrution ahe misses and theaverage amount of instrution-level parallelism that an be sustained.
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(b) Compiler: gFig. 11. E�ets of ompation on exeution time (normalized).5.3 Low-Level Dynami BehaviorTo better understand the dynami behavior of programs subjeted to ode om-pation, we examined various aspets of their low-level exeution harateristis.Our results, whih are summarized in Figure 12, were obtained using hardwareounters on the proessor, in eah ase using the smallest of three runs of theprogram.5.3.1 Total Instrutions Exeuted. Code size redutions during ode ompationome from two soures: interproedural optimization and ode fatoring. Some in-terproedural optimizations redue the number of instrutions exeuted: for exam-ple, the elimination of unneessary gp register omputations, elimination of no-opsinserted for alignment and instrution sheduling, dead-ode elimination, and inlin-ing of proedures alled from a single all site. Other optimizations, in partiularthe elimination of unreahable ode, have no e�et on the number of instrutionsexeuted. Code fatoring, on the other hand, leads to the exeution of additional
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g {O2(b) Instrution ahe misses (normalized)
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Original Base SqueezedKey: Fig. 12. Low-level dynami behavior.branh instrutions for the proedure alls and returns, and so always results in aninrease in the number of instrutions exeuted.Figure 12(a) shows the relative number of instrutions exeuted by the originaland the squeezed programs, ompared to the base program. As one might ex-pet, sine the only di�erene between the original and base programs is that thebase program has had unreahable ode and no-ops eliminated, the base programalways exeutes fewer instrutions than the original. Moreover, the di�erene be-tween these|due entirely to eliminated no-ops|is typially not large, ranging fromabout 1% to 9% and averaging about 4%. More interestingly, when we onsider theode generated by squeeze, we �nd that for many programs, the squeezed version



32 � Saumya Debray et al.exeutes fewer instrutions than the base programs. For these programs, the re-dution in instrutions exeuted resulting from optimizations by squeeze o�set anydynami inreases due to fatoring. For other programs, the e�ets of ode fator-ing outweigh those due to optimizations, and result in a net inrease in the numberof instrutions exeuted. Overall, we �nd that for the benhmarks onsidered, thesqueezed versions of the ode obtained for  exeute about 3% fewer instrutionson the average than the base versions, while for the g-ompiled binaries theyexeute a little over 3% more instrutions, on the average.5.3.2 Instrution Cahe Misses. Sine modern CPUs are signi�antly fasterthan memory, delivering instrutions to them is a major bottlenek. A high instru-tion ahe hit-rate is therefore essential for good performane. Primary instrutionahes, in order to be fast, tend to be relatively small and have low assoiativity.This makes it advantageous to lay out the basi bloks in a program in suh a waythat frequently exeuted bloks are positioned lose to eah other, sine this is lesslikely to lead to ahe onits [Pettis and Hansen 1990℄. However, ode fatoringan undo the e�ets of pro�le-direted ode layout, by \pulling out" a ode frag-ment into a proedure that annot be positioned lose to its all site. The problemarises when, for example, we have two instanes of a repeated ode fragment thatare not lose to eah other but where both ode fragments are frequently exeuted.If these ode fragments are fatored out into a proedure, there will be two fre-quently exeuted all sites for the resulting proedure, and it may not be possibleto lay out the ode in a way that positions the body of the proedure lose to bothof these all sites. This an lead to an inrease in instrution ahe misses.Figure 12(b) shows the e�et of ode ompation on instrution ahe misses. Forthe -ompiled programs, the ompress benhmark experienes a large inrease inthe number of instrution ahe misses as a result of fatoring. For the binariesobtained from g, two programs|ijpeg and vortex|su�er large inreases in thenumber of ahe misses, while two others|g and go|experiene smaller butnevertheless notieable inreases. The number of instrution ahe misses goesdown for the remaining programs; in a few ases|notably, ompress, li, m88ksim,epi, and mpeg2de|quite dramatially. Overall, the squeezed programs inur 36%fewer instrution ahe misses, on the average, for the -ompiled binaries, and 40%fewer misses for the g-ompiled binaries, than the orresponding base programs.5.3.3 Instrution-Level Parallelism. The Alpha 21164 proessor, on whih ourexperiments were run, is a supersalar mahine that an exeute up to four in-strutions per yle, provided that various sheduling onstraints are satis�ed. Forexample, at most two integer and two oating-point instrutions an be issued in ayle; and no more than one instrution in a group of simultaneously issued instru-tions should try to aess memory or aess the same funtional unit. Instrutionsare fethed in groups of four, and eah suh group is then examined for opportuni-ties for multiple issues by evaluating to what extent they satisfy these onstraints.This means that it is possible for a plausible ode transformation, suh as the dele-tion of a no-op instrution, to alter the instrution sequene in suh a way thatopportunities for multiple instrution issues are redued dramatially, with a orre-sponding loss in performane (onversely, the judiious insertion of no-ops an leadto an inrease in the level of instrution-level parallelism that an be exploited).



Compiler Tehniques for Code Compation � 33To address this problem, squeeze arries out instrution sheduling after all othertransformations have been applied and the �nal ode layout has been determined.Sine squeeze eliminates no-ops inserted by the ompiler for sheduling and align-ment purposes, there is the potential for a signi�ant loss in instrution-level par-allelism in the ode it produes. To evaluate whether this is the ase, we measuredthe average number of instrutions issued per yle for the various exeutables. Theresults are shown in Figure 12(). It an be seen that the elimination of no-opsinurs a prie in the base program, where the average number of instrutions is-sued per yle is slightly smaller (by about 1% for  and 0.5% for g) than theoriginal program. However, the instrution sheduler in squeeze is able to overomethis problem and, for almost all of the programs tested, is able to attain a highernumber of instrutions per yle. On the average, the instrutions issued per ylein the squeezed programs, ompared to the base programs, improves by about 6%for the -ompiled binaries and about 8% for the g-ompiled binaries.5.3.4 Summary. As Figure 11 shows, two of the 14 benhmarks we used, vortexand epi ompiled under g, su�er a slowdown as a result of ode ompation.Their low-level exeution harateristis indiate the possible reasons for this. Likemany of the other programs, ode ompation auses an inrease in the total num-ber of instrutions exeuted for both of these programs. While the other programsare generally able to ompensate for this by improvements elsewhere, vortex su�ersan inrease in instrution ahe misses, and epi su�ers a redution in the averagenumber of instrutions issued per yle. Some of the other programs inur degrada-tions in some dynami exeution harateristis but are able to ompensate for thiswith improvements in other harateristis. For example, ompress under  andijpeg under g, both of whih su�er dramati inreases in the number of instrutionahe misses, are nevertheless able to eke out overall improvements in speed due toa ombination of a redution in the total number of instrutions exeuted and|forijpeg ompiled with g|an inrease in the average number of instrutions issuedper yle.5.4 The E�ets of Code FatoringFigure 13 shows the e�et of ode fatoring by itself on ode size and exeutiontime. The raw data are given in Debray et al. [2000℄. The graphs ompare squeezeperforming all ode transformations exept for ode fatoring, against squeeze withode fatoring enabled. It an be seen that fatoring redues the size of the programsby about 5{6%. An interesting aspet of this omparison is that the eliminationof ode due to various optimizations within squeeze has the e�et of reduing theapparent eÆay of ode fatoring, sine ode that might otherwise have beenfatored is eliminated as useless or unreahable. The result of this is that thegreater the ode-shrinking e�ets of lassial optimizations, the smaller we �nd thebene�ts due to fatoring.Sine the smallest ode unit we onsider for proedural abstration is the basiblok, our approah does not pik out and abstrat instrution sequenes that aresubparts of a blok. By omparison, suÆx-tree based approahes suh as those ofCooper and MIntosh [1999℄ are able to abstrat out repeated-instrution sequenesthat are subsequenes of a blok. Despite this limitation in our approah to ode
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without factoring with factoringKey:Fig. 13. Relative impat of ode fatoring on ode size and exeution time.fatoring, the relative size redutions we obtain via fatoring are essentially thesame as those of Cooper and MIntosh. A possible explanation for this is thatthe ability to abstrat out subsequenes within a basi blok is likely to make adi�erene only for large basi bloks, and the proportion of suh bloks generallytends to be small in most programs.As one would expet, fatoring auses an inrease in the number of instrutionsexeuted. On the average, this results in an inrease in exeution time of about 4%for the -ompiled binaries, and about 10% for the g-ompiled binaries. Someg-ompiled binaries experiene signi�ant slow-downs, with vortex slowing downby about 37%, epi by about 23%, and perl by about 18%.6. CONCLUSIONSThis artile fouses on the problem of ode ompation to yield smaller exeuta-bles. It desribes a \whole-system" approah to the problem, where the use ofaggressive interproedural optimization, together with proedural abstration ofrepeated-ode fragments, yields signi�antly greater redutions in ode size thanhave been ahieved to date. For the identi�ation and abstration of repeated ode



Compiler Tehniques for Code Compation � 35fragments, it departs from lassial suÆx-tree-based approahes. Instead, it usesinformation already available in most ompilers, suh as the ontrol ow graph anddominator/postdominator trees. Beause it does not treat the program as a simplelinear sequene of instrutions, it an be more exible in its treatment of what odefragments may be onsidered \equivalent." This simpli�es the implementation andsets up a framework for ode ompation that an be more exible in its treatmentof what ode fragments are onsidered \equivalent." This results in a system thatis able to obtain onsiderably greater ompation, even on optimized ode, thanprevious approahes, without inurring signi�ant performane penalties.APPENDIXA. THE LOCAL REGISTER-RENAMING ALGORITHMSuppose we want to rename the registers in a basi blok Bfrom , if possible, to makeit idential to a blok Bto . Pseudoode for the algorithm used by squeeze for this isshown in Figure 14. For simpliity of exposition, we assume that instrutions areof the form reg3 = reg1 op reg2. The ith operand of an instrution I is given byI:Op[i℄. We assume that operands 1 and 2 are the soure operands, and operand3 is the destination operand. In addition, eah instrution I has �elds I:oldOp[i℄that are used to keep trak of the operand register before renaming. These �eldsare used to undo the renaming if neessary, and are all initialized to ?. Thealgorithm maintains two global arrays, InSubst and OutSubst, that keep trak ofregister moves that have to be inserted at the entry to and exit from the blok,respetively, if the renaming is suessful. Eah element of these arrays is initializedto ?.The main routine that arries out the renaming is RenameBlok, illustrated inFigure 14. The basi idea is to work through eah instrution in Bfrom and tryto rename its operands to make it idential to the orresponding instrution inBto without violating any semanti onstraints. If this annot be done, or if thetotal number of move instrutions that must be inserted before and after the blokexeeds the savings that would be obtained from proedural abstration of theblok, the renaming is abandoned. In this ase, ontrol is transferred to the labelbailout, where the renaming of eah instrution in the blok is undone.The pseudoode for renaming individual operands is shown in Figure 15. The ideais to reord the original value of the operand in the appropriate oldOp �eld of theinstrution being renamed, rename the operand, and then propagate this renamingforward in the basi blok until the register that is being renamed beomes rede�nedor the end of the blok is reahed.ACKNOWLEDGEMENTSWe are grateful to Anders Lindgren and Johan Runeson (IAR Systems, Sweden)for pointing out some errors in an earlier version of this paper. Thanks are also dueto Nathaniel MIntosh for helpful disussions, and for pointing us to the UCLAMediabenh benhmark programs. Comments by the anonymous reviewers werevery helpful in improving the ontents of the artile.



36 � Saumya Debray et al.funtion RenameBlok(Bfrom , Bto)beginif NumInstr(Bfrom ) 6= NumInstr(Bto) return fail;n := NumInstr(Bfrom );LiveIn := fr j r is live at entry to Bfromg;LiveRegs := fr j r is live at entry to Bfromg;NumMoves := 0;SavedRegs := fr j r is a allee-saved register that is saved by the funtion ontaining Bfromg;Forbidden := LiveRegs [ fr j r is allee-saved and r 62 SavedRegsg;for i := 1 to n doinsfrom := Bfrom [i℄ � `reg from3 = reg from1 op reg from2 ';insto := Bto [i℄ � `reg to3 = reg to1 op reg to2 ';if (insfrom 6= insto) thenfor j 2 f1; 2g doif reg fromj 6= reg toj and reg fromj 2 LiveIn thenif (InSubst[reg fromj ℄ 6= ?) goto bailout;InSubst[reg fromj ℄ := reg toj ;NumMoves += 1;�if (ReplaeOp(j; insfrom ; insto ; LiveIn) = fail) goto bailout;odif the de�nition insfrom reahes the end of Bfrom thenif the de�nition insto does not reah the end of Bto goto bailout;OutSubst[regfrom3 ℄ := reg to3 ;NumMoves += 1;�if (ReplaeOp(3; insfrom ; insto ;Forbidden) = fail) goto bailout;if (insfrom 6= insto) goto bailout;LiveIn := LiveIn � freg from3 g;LiveRegs := (LiveRegs � freg from3 g) [ freg to3 g;�odif (NumMoves + 1 < n) then /* the `+1' is for the bsr that will be added */InsertMoves(Bfrom ; InSubst; OutSubst);return suess;�bailout:for i := 1 to n doinsfrom := Bfrom [i℄;if (insfrom :oldOp[1℄ 6= ?) then insfrom :Op[1℄ := insfrom :oldOp[1℄;if (insfrom :oldOp[2℄ 6= ?) then insfrom :Op[2℄ := insfrom :oldOp[2℄;if (insfrom :oldOp[3℄ 6= ?) then insfrom :Op[3℄ := insfrom :oldOp[3℄;odreturn fail;end Fig. 14. Algorithm for loal register renaming.



Compiler Tehniques for Code Compation � 37funtion ReplaeOp(k, insfrom , insto , Forbidden)beginrfrom := insfrom :Op[k℄;rto := insto :Op[k℄;if (rfrom = rto) return suess;if (rto 2 Forbidden) return fail;insfrom :oldOp[k℄ := rfrom ;insfrom :Op[k℄ := rto ;for eah instrution I after insfrom to the end of the blok dofor j 2 f1; 2g doif (I:Op[j℄ = rfrom ) thenif (I:oldOp[j℄ 6= ?) return fail;I:oldOp[j℄ := rfrom ;I:Op[j℄ := rto ;�odif (I:Op[3℄ = rfrom ) break;odreturn suess;endfuntion InsertMoves(Bfrom ; InSubst; OutSubst)beginif 9r : InSubst[r℄ 6= ? thenif Bfrom has multiple predeessors thenreate a new basi blok B0 and rediret all edges entering Bfrom to enter B0 instead;add an edge from B0 to Bfrom ;elseB0 := Bfrom ;�for eah r0 = InSubst[r℄ s.t. r0 6= ? doinsert an instrution `r0 := r' in B0;od�if 9r : OutSubst[r℄ 6= ? thenif Bfrom has multiple suessors thenreate a new basi blok B00 and rediret all edges out of Bfrom to be out of B00 instead;add an edge from Bfrom to B00 ;elseB00 := Bfrom ;�for eah r0 = OutSubst[r℄ s.t. r0 6= ? doinsert an instrution `r0 := r' in B00;od�end Fig. 15. Pseudoode for operand replaement and move insertion.
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