
APF : A Modular Language for Fast PacketClassi�cation �H. Dan Lambright Saumya K. DebrayDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, USAfhdlambri, debrayg@cs.arizona.eduAugust 30, 1996AbstractFast packet classi�cation|that is, the determination of the destinationof a network packet|is of fundamental importance in high-performancenetwork systems. Additionally, for exibility reasons, it is desirable toallow applications to use their own high-level protocols where appropriate.Taken together, this demands a mechanism that permits the speci�cationof protocols in a simple, exible, and modular way without sacri�cingperformance. This paper describes APF, a language for specifying packetclassi�ers. The simple declarative syntax of this language makes it easyto specify even fairly complex packet structures in a clean and modularway, thereby improving reliability and maintainability. It also e�ects aclean separation between the speci�cation of packet classi�ers and theirimplementations, thereby making it possible to choose from a variety ofimplementations with di�erent performance tradeo�s. In particular, as ourexperimental results illustrate, it can be compiled to e�cient code whosespeed can surpass that of well-known packet classi�ers such as Path�nderand BPF.�The work of S. Debray was supported in part by the National Science Foundation undergrant number CCR-9502826.

1 IntroductionA fundamental activity in any networked system is the identi�cation of the des-tination process for a network packet as it arrives o� the network interface. Thiscomponent of the network driver's critical path is referred to as packet classi-�cation. If this activity cannot be performed with a high degree of e�ciency,there is little hope that any network-oriented application program will be ableto accomplish acceptable performance. For this reason, packet classi�cationhas been targeted by numerous researchers as a potential performance bottle-neck that may be amenable to optimization in various forms (see, for example,[1, 3, 7, 9, 10]).Because of the rapid spread and evolution of networked applications in recentyears, the quest for high-performance packet classi�cation has been paralleled bya demand for the ability to specify and use exible application-speci�c protocols.The use of application-speci�c protocols, in turn, implies that packet classi�ers|also referred to in the literature as packet �lters|must be able to deal withpackets whose structures are de�ned in application-speci�c ways. In other words,an application must be able to (dynamically) communicate the structure of itspackets to the packet classi�er; and the packet classi�er must be prepared tohandle such speci�cations, and recognize the corresponding packets, correctlyand e�ciently. This requires a language that can be used to specify whichpackets to recognize. Such a language should satisfy the following criteria:Generality. The language must be general enough to specify arbitrary proto-cols whose packet formats may not be known ahead of time.Simplicity. The speci�cations should be relatively simple, to simplify testingand debugging and enhance readability and maintainability.E�ciency. The classi�ers should compile into machine code that can executeat network speeds; this becomes both increasingly important, and increas-ingly di�cult, with the introduction of gigabyte networks.Safety. It should be possible to deal with situations such as fragmentation andout of order packet delivery.Flexibility. It must be possible, at run-time, for new classi�ers to be added orold classi�ers to be deleted quickly, without interfering with the processingof incoming data. This requirement is especially important in today's highspeed servers, which may have hundreds of transient connections active atonce.An essential requirement for meeting the �rst two requirements is that of mod-ularity: if we want to be able to specify arbitrary protocols without sacri�cingclarity, it is essential to be able to write modular speci�cations and to compose1

such speci�cations in di�erent ways in order to achieve the desired e�ects. Onemight imagine that the third criterion listed above, namely, e�ciency, wouldbe di�cult to attain using a modular speci�cation language. In this paper, wedescribe a language for packet classi�ers that shows that this is not the case: in-deed, our results indicate that a declarative speci�cation language that supportsmodularity and separates the speci�cation from the implementation o�ers imple-mentors a way to choose from among a number of implementation alternatives,with di�erent tradeo�s between di�erent performance parameters. Thus, sucha language enhances the implementation exibility of network packet classi�ersconsiderably.Historically, packet classi�ers have typically been speci�ed using virtual ma-chine instruction sets: this is the case, for example, in the Berkeley Packet Filter(BPF) used in many Unix systems [9] and the Mach Packet Filter (MPF) usedin the Mach operating system [10]. This approach has the disadvantage thatthe speci�cation of a protocol in terms of a low-level instruction set can be te-dious and potentially error-prone, and the hand-translated code may or may notexploit all of the optimizations that are possible in a given context. Moreover,the virtual machine instructions are typically interpreted at run time, and thisincurs a performance penalty. Finally, since such virtual machine instructionsets are designed to abstract away from particular machine architectures, theymake it di�cult to take advantage of knowledge about a machine architecture(e.g., about caches or pipelines) or application mix (e.g., the frequency distribu-tion of di�erent kinds of packets) in a packet classi�er implementation. A moredeclarative approach to protocol classi�cation scheme is taken by the Path�ndersystem [1], where packet classi�ers are speci�ed using directed acyclic graphsthat specify, in essence, the transition diagram of a nondeterministic �nite au-tomaton. The speci�cation language for Path�nder focuses on performance,sacri�cing some expressive power in the process. Cytron et al. have describeda language for specifying protocols using context-free grammars: they proposeusing tools such as yacc to compile such speci�cations into executable code [4];however, they do not argue convincingly either for the need for the full generalityof context-free grammars, or for the practicality (with regards to speed) of thecode that might be generated from their speci�cations.We use an approach that is fundamentally di�erent from these. We start fromthe observation that packet classi�ers are, in essence, �nite automata. However,instead of requiring that the automata be speci�ed directly (e.g., as Path�nderdoes), we feel that a simpler and more natural speci�cation style is to use aregular grammar. Such grammars are compact and easy to read, understandand maintain, and are easy to compose with other grammars. Our compilertranslates such a speci�cation into a �nite automaton. This automaton can besubjected to a variety of equivalence-preserving optimizing transformations (e.g.,a sequence of transitions can be checked at once by using a word-compare in-2

struction instead of a sequence of byte-compares). Moreover, there are a numberof alternatives available for implementing a �nite automaton|at a high level, itis possible to simulate a nondeterministic automaton, or to translate to a deter-ministic automaton (which may or may not be subjected to state minimization);at a low level, there are a variety of choices for translating the transitions of a �-nite automaton into machine code, e.g., using a tree of conditional branches or anindirect jump through a jump table. Since none of the implementation decisionsare hard-wired to the speci�cation, the implementor has considerable freedomin choosing an implementation with the tradeo� between di�erent performanceparameters that is appropriate to a given situation.2 APF: Language Design ConsiderationsOur primary design goals for APF were to keep the set of language constructssmall and simple, while maximizing their expressive power, so as to be able torepresent the widest range of protocols possible. However, we were willing tosacri�ce the ability to represent exotic features of some of the more obscureprotocols rather then compromise our primary goal of simplicity.In order to design a language for describing communication protocol packets,it is necessary to categorize certain common protocol construction techniques.Broadly speaking, information in network packets is grouped together into �elds.Depending on the protocol, the length (in bytes) of these �elds can be either �xed,i.e., known at protocol speci�cation time, or variable, i.e., not known until runtime; in the latter case, the protocol must specify some mechanism to derive theactual length of the �elds at runtime. Correspondingly, the language describingsuch protocols should be able to specify the �rst situation in a simple way, whileproviding a means to handle the latter situation in a convenient and naturalway. The number of such �elds can also be unknown at protocol speci�cationtime: for example, many protocols allow for some number of optional �elds tobe speci�ed. As in the variable length �eld case, the packet classi�er languagemust somehow represent the decoding mechanism by which the number of �eldsis derived from the packet at run-time.There are four commonly-used methods by which such run-time values canbe encoded:1. The value may be explicitly given in some �eld in the packet whose locationis known at protocol speci�cation time.2. The length of the �eld may be encoded within a part of a �eld, and mustbe decoded using some transformation. This is the case, for example, withthe IP protocol.3. The length of the �eld may have been speci�ed explicitly or implicitly ina previous packet; thus, a state variable must be set and then kept livebetween packet arrivals. 3

4. Instead of specifying the length or number of �elds explicitly, the end of avariable-sized �eld (or sequence of �elds) may be marked by a sentinel.The �rst of these is straightforward to handle. The second and third cases canbe handled by extracting the relevant information from a packet and using itto guide the subsequent computation. A similar mechanism su�ces for the lastcase as well. This suggests that all but the most complex classi�ers can berepresented if the speci�cation language supports pattern-matching using �niteautomata, augmented with a mechanism by which data can be extracted froma packet at run-time, transformed via logical or arithmetic operations, and thenstored into a register. These registers can be used for the purposes of decodingthe protocol further along in the classi�er, or in a subsequent computation in anexpression.While �nite automata are conceptually straightforward, large automata maynot always be easy to describe directly (especially if we want to augment themto account for variable-length or optional �elds, as discussed above). Nor arethey especially modular: for example, determining the deterministic �nite au-tomaton obtained from composing two smaller �nite automata can involve anontrivial amount of work. Indeed, �nite automata are better thought of asan implementation of packet classi�ers than as a speci�cation. For these rea-sons, we decided to use a simpler and more declarative means for specifying�nite automata, namely, (right-linear) regular grammars. Such a grammar is acontext-free grammar, with variables V and terminals T , where each productionis of the formX �! a1 � � �ak ai 2 T; 1 � i � k; orX �! a1 � � �akY ai 2 T; 1 � i � k; Y 2 VFundamentally, a script in APF is simply a list of such productions, written inthe manner of yacc [8]: that is, a production `X �! a1 � � �akY ' is writtenX : a1 ... ak Y ;As a �rst approximation, a packet will satisfy a classi�er if a sequence of pro-ductions linking the start to the end states can be matched against the packet.As a matter of convenience, APF supports the naming of common patternsin a \header portion" of the speci�cation �le. For example, an 8-bit pattern tomask out the two most signi�cant bits of a byte could be de�ned asLow6Bits = 0x3f:8The value of this pattern can subsequently be obtained by writing `#Low6Bits'.It is also possible to specify a �xed number of repetitions of a pattern: thepattern `P*k' denotes k repetitions of the pattern P . For example, `bit' standsfor a \don't-care" bit, and `bit*4' represents 4 repetitions of `bit'|that is, fourdon't-care bits. 4

/** Constant definitions*/ETHERTYPE = 0x8:16;IPPROTO_TCP = 20:8;TCP_DEST_PORT = 0x2356:16;%%/** Protocol classifier specification*/S : byte*12 B;B : #ETHERTYPE C; /* check for ip protocol in ethernet header */C : bit*4 bit*4 {val=ptoint($2)*4-10);} D;/* load ip length into val */D : byte*8 E;E : #IPPROTO_TCP F; /* check for tcp protocol */F : byte*val;G : byte*2 H; /* skip past source port */H : #TCP_DEST_PORT {exit(1);}; /* check destination port */Figure 1: APF Classi�er for TCP Protocol packetsSemantic actions can be embedded within the bodies of productions. Suchactions are of the formf stmt1; � � � stmtk; gwhere stmti is either a simple assignment or a conditional statement. This allowsthe extraction and manipulation of run-time information, which is necessary forhandling variable-sized �elds and optional �elds. This is illustrated in Example 1,which shows the speci�cation for the TCP protocol. This speci�cation containsa productionC: bit*4 bit*4 {val = ptoint($2)*4-10);} D;Here, the $2 refers to the pattern that matched the second symbol in the bodyof the production, i.e., the second bit*4. By itself, this is just a bit sequence:the function ptoint converts this to a (signed) integer, and the statement `val =ptoint($2)*4-11' computes the displacement of the end of the variable-length�eld and stores the result in the variable val. We allow only a restricted classof statements within such semantic actions primarily for safety reasons.The width of a variable in APF may be a byte, a halfword, a word, or somenumber of bits. Due to performance considerations, we limit the exibility of5

bit-width variables: APF requires that these should occur in groups whose totalwidth is a multiple of 8 (i.e., an integral number of bytes). We know of noimportant protocol that does not group data into byte octets.The language features described above can be used in a straightforward wayto support data-driven iteration, using conditional statements within semanticactions to terminate the iteration. This is useful in searching for a token in alist of �elds when the �eld the token lies in is unknown. For example, optionalheaders in IPv4 may be speci�ed in any order, so a classi�er checking for justone of those headers must check each one. This is illustrated in Example 2,which speci�es a complex �lter that returns 1 if the packet is a TCP packetcontaining an optional timestamp header. A similar mechanism can be used forlength �elds in ASN.1, which may be constructed such that they are terminatedby a sentenial bit: each byte in the �eld must be checked for this.3 Implementation IssuesCorrectness of an APF implementation requires only that the code generatedfor any input speci�cation should correctly simulate the behavior of the corre-sponding �nite automaton. Since the language does not predetermine the actualoperational behavior of such an automaton, it is possible to have a wide varietyof di�erent implementations that o�er the same functionality, but di�er in thedetails of how the �nite automaton is simulated, and therefore in the perfor-mance parameter tradeo�s they o�er. Examples of high-level implementationalternatives include the following:1. In the simplest approach, it is possible to translate the input speci�cationto a nondeterministic �nite automaton, then simulate the possible execu-tions of this automaton at runtime. This approach o�ers quick installation,at the expense of increased runtime overheads.2. The initial nondeterministic automaton can be transformed to an equiva-lent deterministic automaton using the subset construction. This is some-what more expensive at compile time, with a concomitant improvement inruntime speed.3. We can carry out state minimization on the deterministic automaton. Thispotentially leads to a reduction in code size, which can lead to improvedcache utilization.An orthogonal set of low-level implementation alternatives also present them-selves:1. The �nite automatonmay be encoded as a data structure (e.g., a transitiontable or a graph) that is interpreted. Such an approach would closelyresemble that of Path�nder [1]. 6

/* IP version 4 classifier with optional headers *//* Return 1 if packet is TCP with optional timestamp header *//** Constant definitions*/ETHERTYPE = 0x8:16;IPPROTO_TCP = 20:8;END_OF_OP_LIST = 0:5;NO_OP = 1:5;TIMESTAMP = 4:5;%%/** Protocol classifier specification*/S : byte*12 B;B : #ETHERTYPE C;C : bit*4 bit*4 D {val=ptoint($2)*4;}/* length is specified in 32 bit words */D : byte*8 E;E : #IPPROTO_TCP F;F : byte*10 G {val=val-20; if (val<=0) exit(0);};/* no options specified */G : bit*3 H;H : #END_OF_OP_LIST; {exit(0);} /* end of option list */H : #NO_OP 1 I; {val=val-1; if (val<=0) exit(0);};/* no operation */H : #TIMESTAMP 4 {exit(1);}; /* internet timestamp */I : byte byte J {val2=ptoint($2);};J : byte*val2 G {val=val-val2; if (val<=0) exit(0);};Figure 2: APF Classi�er for IP version 4 packets with optional headers7

2. The automaton may be translated into an abstract machine instructionset that is then interpreted. The result would be similar, in principle, tothe Berkeley Packet Filter [9] and the Mach Packet Filter [10]. However,our approach retains some additional exibility: for example, a variety ofdi�erent strategies for implementing abstract machines, such as byte codeor threaded code, can be used.3. The �nite automaton may be compiled directly into executable machinecode. This is potentially more expensive at compile time, though it islikely to be faster at runtime. This is the approach taken in the currentprototype, though we plan to support other approaches in a more maturesystem. Here again, there are a host of further low-level alternatives toconsider, such as low-level representation issues (e.g., the use of binary de-cision trees vs. jump tables in implementing the transitions out of a state),code generation strategies to improve locality, and transformations on the�nite automaton to reduce memory tra�c. We omit a more completediscussion due to space limitations.4. The automaton may be compiled into abstract machine code that is thenincrementally compiled to native code at runtime (see, e.g., [2, 5, 6, 7]).Such an approach would o�er both quick installation and runtime e�-ciency.Indeed, such alternative implementation strategies can be supported within thesame compiler, and selected by the user, so as to o�er a great deal of overallexibility.In the current prototype implementation, an input speci�cation is �rst trans-lated into a nondeterministic �nite automaton, then converted to an equivalentdeterministic automaton. A situation that very commonly arises here is thatthere may be a (large) group of classi�ers that are identical except for at thevery end, where they accept by checking against di�erent constants [10]. Thismay be the case, for example, on a large server with many TCP connections:the classi�ers for the di�erent connections are identical except for the check atthe end for the unique session key that identi�es the particular connection. Thetransformation to a deterministic automaton e�ectively \coalesces" the individ-ual classi�ers into a single automaton that has a number of transitions basedon the session key out of a single state at the end. A general-purpose trans-formation thus accomplishes the same result as a special-purpose optimizationimplemented in the Mach Packet Filter [10].The resulting DFA can still have ine�ciencies with respect to the memorytra�c it induces. It is subjected to a tiling transformation aimed at minimizingthe number of memory accesses. The idea is to try and group nodes together insuch a way as to allow individual memory loads to access the largest chunk ofdata transferable at one time across the machine's bus (the word width of the8

machine can be speci�ed as a compile-time option). As an example, considerthe productionsA : byte*2 0x3f:8 0xff:8 ;A : byte*3 0x0:8 ;This speci�es two transitions out of the state A: the �rst matches two don't-carebytes, followed by a byte matching the bit pattern 00111111, followed by a bytecontaining only 1's; the second transition matches three don't-care bytes followedby a byte of 0's. A straightforward implementationmight skip the �rst two bytes,load the third byte and test it, then load and test the fourth byte: a total oftwo memory accesses. Our tiling algorithm will transform this to a single 4-bytememory load, followed by mask operations and tests on the register containingthe word just loaded. This can lead to signi�cant reductions in the total amountof memory tra�c. The subsequent masking operations that are necessary are,in many cases, essentially free, since most RISC architectures cannot operate onindividual bytes or half-words, but must expand them to word-sized values in anycase. However, this transformation can pose alignment problems: when thereare loops in the DFA, and when there are variable length �elds, it is impossibleto predict the subsequent node's data alignment at compile time. Our solutionto this problem is to construct di�erent versions of the relevant subautomatathat are specialized for the di�erent alignments that may be encountered at anode. We believe that the improvement in speed resulting from the reduction inmemory tra�c is worth the resulting increase in code size.The �nal aspect of code generation which needs to be considered is safety.An invalid length �eld loaded into the classi�er engine could cause accesses tobe made outside of the packet's memory bu�er. We used DPF's method tomitigate the costs of checking the legality of memory references [7]. Briey,Engler describes a scheme entitled "bounds-check aggregation" in which a checkcompares the most distant known o�set in the DFA before a branch is madeor a variable length �eld reached, rather then checking every memory referenceindividually.4 PerformanceFor this prototype implementation of APF, we measured two performance met-rics:1. latency : this is the time taken to classify a packet (measured for anincreasing number of classi�ers); and2. scalability : this measures how well APF scales as classi�ers grow in size,i.e., the time taken to classify a packet as the number of di�erent layers ofprotocols increases. 9

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

La
te

nc
y

(in
 s

ec
on

ds
)

No. of TCP sessions

APF: jump table
Pathfinder

BPF
APF: if-then-else

Figure 3: Experimental results: latencyAll of our tests were done on a 100Mhz SPARC workstation. We employed thesame testing code as had been used with Path�nder, and used this to comparethe performance of APF with that of Path�nder [1] and BPF [9] (due to arcaneimplementation reasons, we were unable to run these tests on MPF [10]; however,it has been shown elsewhere that Path�nder is faster than MPF [1]).Our latency test measured the time to identify TCP packets destined for aparticular session given an increasing number of active sessions. We timed howlong it took to run each classi�cation algorithm one million times, while testingwith 10, 20, 30, 40, and 50 sessions, and divided that time by one million to yieldthe latency. Note that we isolate our measurements from the overhead incurredby the rest of the software (such as the device and protocol drivers): our numbersonly show the time spent in the �lter engine. The results are shown in Figure3: two performance curves are given for APF, corresponding to two low-levelimplementation alternatives tested, where state transitions were implementedusing conditionals and jump tables respectively. These data show APF to bethe fastest of the three classi�cation engines, with a speed that is approximately�ve times as great as that of Path�nder.Our scalability test measured the time to classify a packet as the size of theprotocol stack is increased from 2 up to 6. Each layer appended to the stacke�ectively requires two additional comparisons per packet. This test shows thatAPF can be as much as six times faster then Path�nder. Furthermore, note thatthe rate of increase in the classi�cation overhead as the protocol stack lengthens10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6

La
te

nc
y

(in
 s

ec
on

ds
)

No. of Protocol Layers

APF
BPF

Pathfinder

Figure 4: Experimental results: scalabilityis smallest for APF.The main reason why APF is so much faster than Path�nder or BPF isthat it compiles the automata to native code, while the other systems eitherinterpret a representation of the automata [1] or use interpreted virtual machineinstructions [9, 10]. This illustrates one of the advantages of using a declarativespeci�cation language that allows the speci�cation of packet classi�ers to beseparated from their implementation, and thereby makes available a range ofpossible alternative implementation strategies.Our prototype implementation currently translates packet classi�er speci�ca-tions into C programs that are then compiled using the C compiler. Because ofthis, the insertion time|that is, the time taken to produce an executable packetclassi�er from a speci�cation|is fairly high. This issue can be addressed, forexample, by using incremental compilation to native code [2, 5, 6, 7]. We intendto incorporate this into a future version of the system.5 ConclusionFast classi�cation of packets is fundamental in any networked system. Previ-ous proposals for languages for specifying packet classi�ers tended to be non-modular, low-level, and implementation-oriented, with adverse e�ects on read-ability, maintainability, and performance. This paper introduces a declarativelanguage for the modular speci�cation of network packet classi�ers. It makes forenhanced readability and maintainability, and can compile into very fast code11

that is measurably superior to previous implementations.References[1] M. L. Baily, B. Gopal, L. L. Peterson, \Path�nder: A pattern-based packetclassi�er", in Proc. First Symposium on Operating System Design and Im-plementation, November 1994, pp. 241{256.[2] C. Chambers, The Design and Implementation of the SELF Compiler, anOptimizing Compiler for Object-Oriented Programming Languages, Ph.D.Dissertation, Stanford University, Stanford, CA, April 1992.[3] D. Clark, \An Analysis of TCP processing overhead", in IEEE Communi-cations, June 1989, 27(6):23-29 .[4] R. K. Cytron and M. Jayaram, \E�cient Demultiplexing of Network Pack-ets by Automatic Parsing", Proc. Workshop on Compiler Support for Sys-tems Software, August 1996.[5] L. P. Deutsch and A. Schi�man, \E�cient Implementation of the Smalltalk-80 System", Proc. 11th ACM Symposium on Principles of ProgrammingLanguages, Jan. 1984, pp. 297{302.[6] D. R. Engler, \VCODE: a Retargetable, Extensible, Very Fast DynamicCode Generation System", Proc. SIGPLAN '96 Conference on Program-ming Language Design and Implementation, May 1996.[7] D. R. Engler, DPF: Fast, Flexible Message Demultiplexing using DynamicCode Generation, Technical Report MIT/LCS/TM533, May 1996.[8] S. C. Johnson, \Yacc { yet another compiler compiler", Computing ScienceTechnical Report 32, AT&T Bell Laboratories, Murray Hill, N.J., 1975.[9] S. McCanne and V. Jacobson, \The BSD Packet Filter: A New Architecturefor User-Level Packet Capture", Proc. Winter 1993 USENIX conference,pp. 259-269, Jan. 1993.[10] M. Yuhara, B. N. Bershad, C. Maeda and J. E. B. Moss, \E�cient PacketDemultiplexing for Multiple Endpoints and Large Messages", Proc. Winter1994 USENIX Conference, Jan. 1994.12

