
Understanding Finiteness Analysis Using AbstractInterpretation (Extended Abstract)1Peter A. BigotSaumya DebrayDepartment of Computer ScienceThe University of ArizonaTucson, AZ 85721fpab, debrayg@cs.arizona.eduKim MarriottIBM T.J. Watson Research CenterP.O.Box 704Yorktown Heights, NY 10598kimbal@watson.ibm.comAbstractFiniteness analyses are compile-time techniques to determine (su�cient) conditionsfor the �niteness of relations computed during the bottom-up execution of a logicprogram. We examine �niteness analyses from the perspective of abstract interpre-tation. However, problems arise when trying to use standard abstract interpretationtheory for �niteness analysis. They occur because �niteness is not an admissibleproperty and so naive application of abstract interpretation leads to incorrect anal-yses. Here we develop three simple techniques based on abstract interpretationtheory which allow inadmissible properties to be handled. Existing approaches to�niteness analysis may be explained and compared in terms of our extension toabstract interpretation theory, and we claim that their correctness is more easilyargued in it. To support our claim we use our techniques to develop and provecorrect a �niteness analysis which is more accurate than any that we are aware of.1 IntroductionRecently a great deal of attention has been devoted to the study of bottom-upexecution models for logic programs in which programs are executed by evaluatingentire relations and then \joining" them. In implementations of such systems, it isnecessary to ensure that the relations computed during any evaluation are �nite.In this paper, we are concerned with compile-time analysis techniques to determine(su�cient) conditions for the �niteness of relations computed during the bottom-upexecution of a logic program. We examine �niteness analyses from the perspectiveof abstract interpretation [2, 3]. Abstract interpretation provides a simple semanticbasis for data
ow analysis of logic programs. Early work in this area focussed on top-down execution models, as exempli�ed by Prolog (e.g., see [5, 13, 19]); more recently,researchers have considered abstracting from the bottom-up TP semantics [11, 12].However, problems arise when trying to use standard abstract interpretation theoryfor �niteness analysis. They occur because �niteness is not an admissible property(i.e., the union of a chain of �nite sets may not be �nite), and so naive application ofabstract interpretation leads to incorrect analyses. This is because Scott-induction,1The second author was supported in part by the National Science Foundation under grantnumber CCR-8901283.

the cornerstone of proving correctness of an abstract interpretation, is not valid forinadmissible properties.Here we develop three simple techniques based on abstract interpretation theorywhich allow inadmissible properties to be handled. For each technique we illustrateits use in �niteness analysis. The �rst technique is based on the idea of not de-veloping an analysis for the inadmissible property itself, but rather an analysis foran admissible property which implies the inadmissible. The second technique isto approximate the greatest �xpoint, rather than the least. The third approach isto combine the �rst two, giving rise to an approach somewhat akin to the widen-ing/ narrowing technique of Cousot & Cousot [3, 4].This paper has two main technical contributions. The �rst is the developmentof generic methods for developing and understanding the data
ow analysis of in-admissible program properties. These methods are interesting theoretically as anextension of abstract interpretation theory and are also important practically assome pragmatically interesting program properties, such as �niteness or fairness,are inadmissible. The second main technical contribution is a framework for thebetter understanding and development of �niteness analysis. Existing approachesto �niteness analysis may be explained and compared in terms of our extension toabstract interpretation theory, and we claim that their correctness is more easilyargued in it. To support our claim we use our techniques to develop and provecorrect a �niteness analysis which is more accurate than any that we are aware of.2 Preliminaries2.1 Basic De�nitionsWe assume that the reader is familiar with the basic concepts of latice theory. Asubset Y of a complete partial order (cpo) X is a lower set i� 8y 2 Y : 8x 2 X :x �y) x 2 Y . Upper set is de�ned dually. A lower set is a principal ideal i� ithas a maximum element and an upper set is a principal �lter i� it has a minimumelement. A function F is monotonic i� for all x; x0 2 X, x � x0) F x � F x0.Dually F is co-monotonic i� x � x0) F x0 � F x). Unless stated to the contrary,all functions will be assumed to be monotonic. The powers of a function F : X ! Xon a complete lattice X are de�ned byF"�x = (xtF (F"(��1)x) if � is a successor ordinalxtFfF "�0x j�0 < �g otherwise.F#�x = (xuF (F#(��1)x) if � is a successor ordinalxuufF #�0x j�0 < �g otherwise.We let F"� denote F"�? and F#� denote F#�>. Note that by de�nition F"0x =F#0x = x. Let X be a cpo and F : X ! X be monotonic. It is well known that Fhas a least �xpoint, denoted by lfp F , such that lfp F = F"� for some ordinal �; ifX is a complete lattice then F also has a greatest �xpoint, denoted by gfp F , suchthat gfp F = F#� for some ordinal �. We call the sequence F"0; F"1; :::; F"� theKleene sequence of F .

2.2 Abstract InterpretationAbstract interpretation provides the basis for a semantic approach to the devel-opment of data
ow analyzers. Abstract interpretation formalizes the idea of \ap-proximate computation" in which computation is performed with descriptions ofdata rather than the data itself. Correctness of the analysis with respect to thestandard interpretation is argued by providing an \approximation relation" whichholds whenever an element in a non-standard domain describes an element in thecorresponding standard domain. Equivalently, an approximation relation may bede�ned in terms of a \concretization function" which maps elements in a non-standard domain to those elements in the standard domain which they describe,or an \abstraction function" which maps standard elements to the elements whichdescribe them. Note that these de�nitions are non-standard because both the con-cretization and abstraction function map to sets of objects rather than a singleobject. This generalization is necessary because in the standard framework it isimpossible to express an inadmissible approximation relation. The approximationrelation can be viewed as a logical relation and so it can be lifted from the \base"or \primitive" domains to functions.De�nition. A description Desc = hD;/; Ei consists of a description domain(a complete lattice) D, a data domain (a cpo) E, and an approximation relation/ � D �E. The function
 : D ! }E de�ned by (
 d) = fe j d / eg is called theconcretization function, and the function � : E ! }D de�ned by (� e) = fd jd / egis called the abstraction function. We require
 to be monotonic and � to be co-monotonic. Let hD1;/1; E1i and hD2;/2; E2i be descriptions, and F : D1 ! D2and F 0 : E1 ! E2 be functions. Then the approximation relation is lifted tofunctions by de�ning F / F 0 i� 8d 2 D1: 8e 2 E1: d /1 e) F (d) /2 F 0(e). By anabuse of notation we will let Desc denote both the description and the descriptiondomain.De�nition. A function F : X ! }Y is downwards closed i� for all x 2 X, F (x) isa lower set. Dually de�ne upwards closed.It follows from Lemma 4.7 in [10] that:Lemma 2.1 The abstraction and concretization functions associated with a de-scription are respectively upwards and downwards closed.In this paper our example descriptions will have the desirable property thatevery object and function has a best or most precise description. This occurs whenthe description is \singular".De�nition. A description hD;/; Ei is singular i� the associated abstraction func-tion � : E ! }D maps to principal �lters. In this case we de�ne an associatedinducement function b� : E ! D by b� e = u(� e):We lift the inducement function to function spaces as follows. Let hD1;/1; E1ibe a description, hD2;/2; E2i a singular description with inducement function b�2,and F : E1 ! E2 a function. We de�ne b� F to be the function F 0 : D1 ! D2 givenby F 0 d =Gfb�2 (F e) j d /1 eg:We say that F 0 is the function induced from F .In traditional abstract interpretation additional requirements are placed on de-scriptions so as to ensure that the approximation relation is admissible. Common

restrictions to ensure admissibility are that the abstraction function maps to prin-cipal �lters and is continuous as in Nielson [16], or that the concretization functionmaps to principal ideals as in Marriott & S�ndergaard [12], or the combination ofthese two restrictions yielding the Galois connection approach of Cousot & Cousot[2, 3]. See Marriott [10] for more details on the relationships between these restric-tions.De�nition. A predicate Q on cpo D is admissible i� for all chains C � D, (8c 2C : Q c)) Q (tC): Dually, Q is co-admissible i� for all chains C � D, (8c 2C : Q c)) Q (uC)). A description is (co-)admissible i� its approximation relationis (co-)admissible.The reason for this is so that Scott induction can be used to prove:Proposition 2.2 Let D be an admissible description for E and let FD : D ! Dapproximate FE : E ! E. Then lfp FD / lfp FE :This result is the basis for proving an abstract interpretation is correct. How-ever the proposition does not hold if the admissibility requirement is dropped, andso when the approximation relation is inadmissible there is no guarantee that ananalysis developed using the traditional techniques of abstract interpretation willbe correct.However, even though admissibility of the approximation relation is an implicitrequirement of existing abstract interpretation theory, approximation relations thatare not admissible do occur in practice. These arise whenever we are interestedin �nding a property P of a program or database which is itself not admissible,as any natural description domain for the analysis will contain an element whichdescribes exactly those objects with property P , and the approximation relationfor such descriptions will therefore be inadmissible. As we shall see, �niteness is anexample of such a property.2.3 Finiteness AnalysisThe language we consider is that of Horn logic. We assume that there is some�xed set of intensional predicate symbols, IP , and some disjoint set of extensionalpredicate symbols, EP . Given a set of predicate symbols S, HBS denotes the setof ground atoms that can be constructed from S. Note that we allow an in�nitenumber of constant symbols. In the case S is the set of all predicate symbols wesimply write HB. A program P is a set of de�nite clauses (or rules) in which onlyintensional predicates appear in the heads of the clauses. A relation for predicateset S is a subset of HBS . The projection of relation R onto predicate Q, writtenRQ, is the set fQ(~t) j Q(~t) 2 Rg. The projection of relation R onto argument i,written Ri, is the set f~ti j Q(~t) 2 Rg where ~ti denotes the ith element of the tuple~t. We will only project relations onto arguments after projecting the relation ontoa predicate.The input to a program P is a relation for EP. This is called the extensionaldatabase (EDB). The extensional predicates may have integrity constraints asso-ciated with them, in which case the input relation is required to satisfy such con-straints. The output of P is a relation for all of the predicates. The output restrictedto the intensional predicates is called the intensional database (IDB). The output iscomputed as the least �xpoint of the \immediate consequence" operator TEP where

E is the EDB. The operator TEP :}HB ! }HB is de�ned by:TEP (R) = E [�A ���� A :� A1; : : : ; An is a ground instance of a clause in P , andfA1; : : : ; Ang � R �The �niteness analysis problem for a program P , intensional predicate Q, and in-tegrity constraints E is to determine whether the relation for Q in lfp(TEP) is guaran-teed to be �nite for every set of input relations E satisfying the integrity constraints.Finiteness analysis is clearly decidable for Datalog programs, i.e., programswhere all function symbols have arity 0, if the EDB relations are always �nite. Theproblem becomes undecidable if programs contain function symbols with nonzeroarity. The latter problem can be simpli�ed somewhat by approximating the e�ectof each function symbol of arity n > 0 using an in�nite EDB relation of arity n+ 1with certain associated �niteness constraints. The language where programs containno function symbol of nonzero arity, but where EDB relations may sometimes bein�nite, is referred to as extended Datalog. As far as we know, the �niteness analysisproblem for extended Datalog is not known to be either decidable or undecidable(see, for example, [18]). In this paper, we primarily consider extended Datalog pro-grams. However the analyses are still correct in the presence of arbitrary functionsymbols.Before presenting analyses for �niteness, we must de�ne the basic domains whichcomprise the descriptions on which the analyses are based and how integrity con-straints are speci�ed. The idea is to describe each RQ by a propositional formuladescribing the �niteness dependencies between the arguments of predicate Q. Forinstance, the description p(x; y) : x ! y is read as \for any �nite assignment ofvalues to the �rst argument of predicate p, there are only �nitely many assignmentsto the second argument which satisfy the relation assigned to p".De�nition. Let Prop denote the subset of propositional formula constructed fromthe constants true and false, and a suitably large but �nite propositional variableset using the propositional connectives ^;_;$;!.A predicate description for predicate Q has the form Q(~x) : � where � 2 Propand vars(�) � vars(~x). Predicate descriptions for predicate Q are pre-ordered by �where (Q(~x) : �) � (Q(~x0) : �0) i� �) �00 where (Q(~x) : �00) is a variable renamingof (Q(~x0) : �0).A relation description is a set of predicate descriptions in which a predicateoccurs at most once. If there is no predicate description for Q in relation description< we implicitly include the description Q(~x) : false. We de�ne <Q to be thepredicate description of Q in relation description <. We let RDesc denote the setof relation descriptions. Relation descriptions are pre-ordered by � where < � <0i� 8Q :<Q � <0Q.By an abuse of notation we will treat relation and predicate descriptions modulothe equivalence induced by � and order them by the partial order induced from �.Thus RDesc is a �nite lattice.Relation descriptions will be used both to specify integrity constraints and asdescriptions in our �niteness analyses. Usually, we will only allow relation descrip-tions without disjunction to specify the integrity constraints involving �niteness forthe EDB.De�nition. Relation R for predicate Q satis�es predicate description Q(~x) : � i�8R0 � R : R0 6= ;) �R0 satisfies �

where the truth assignment �R0 to the variables ~x is given by (�R0 ~xi) i� R0i is �nite.Relation R satis�es relation description <, written R ` < (or < a R), i� for allpredicates Q, RQ satis�es <Q.The �niteness description FDesc is the description hRDesc;a; }HBi.Other descriptions for �niteness analysis may be naturally obtained by restrict-ing the type of propositional formula in the predicate descriptions. Natural restric-tions are to disallow disjunction, to disallow implication, or to disallow both.Example 2.1 Consider the in�nite relation p representing the immediate successorrelation. Given a �nite restriction on the �rst argument position, the set of satisfyingtuples has only �nitely many values appearing in the second argument position andvice versa. Thus p satis�es p(x; y) : x $ y. As another example, the only relationfor q to satisfy q(x) : false is the empty relation.Lemma 2.3 FDesc is singular.Ignoring admissibility can lead to the naive development of an incorrect data
owanalysis.De�nition. Let P be a program. De�ne UP : RDesc! RDesc ! RDesc to be thefunction induced from TP : }HB ! }HB ! }HB using the description FDesc.That is, for an EDB E 2 }HB described by E 2 RDesc, UEP F = tfba(TEP S) j < `R ^ E ` Eg.In more concrete terms, soundness of the propositional logic and the decompo-sition of relations induced by P permits us to show that:UEP F = E [fp(~x):� j � = _p(~x) :� qi;1(~vi;1);:::;qi;ni (~vi;ni)2P 9~yi: igwhere i = ^qi;j (~vi;j):�i;j2�F �i;j and ~yi = vars(i) n vars(~x). 2� indicates that somealphabetic variant of the constraint appears in F , and � in this case is taken tobe the propositional equivalent of the existentially quanti�ed formula; this removesthe e�ect of the variables that do not appear in the head of the rule.By de�nition UP / TP , so naively we would expect that lfp UEP / lfp TEPwhenever E / E, and so a �niteness analysis may be performed by computinglfp UEP . However we shall see that lfp UEP 6/ lfp TEP for the program Pp(0).p(X) :- s(X,Y), p(Y).in which s is a extensive predicate intended to be the successor relation. Theassociated integrity constraint is E = fs(x; y) : x$ yg. NowUEP " 0 = fp(x) : false; s(x; y) : falsegUEP " 1 = fp(x) : false; s(x; y) : x$ ygUEP " 2 = fp(x) : x; s(x; y) : x$ ygUEP " 3 = UEP " 2So (p(x) : x) 2 lfp UEP , which leads to the incorrect conclusion that p is �nite forP and E .The problem arises because:

Proposition 2.4 FDesc is not admissible.Proof: Let a1; a2; ::: be di�erent constant symbols. De�ne relation R� to be fp(ai) ji � �g where � is either �nite or the �rst in�nite ordinal !. Let < be fp(x) : xgindicating that p is a �nite relation. Let C be the chain Si�!hRi;<i. ClearlytC = hR!;<i. Now, for all i � !, < / Ri, but < 6/ R!, so / is not admissible.3 Inadmissible Predicates and Abstract Interpre-tationWe have seen that the traditional abstract interpretation approach for developingdata
ow analyses does not apply when the description is inadmissible. In thissection we suggest three simple techniques to develop analyses in this case. Thetechniques are illustrated by using them to develop �niteness analyses.3.1 Using a Stronger Admissible PropertyThe �rst approach is based on a simple idea: rather than �nding an analysis todirectly show that an inadmissible property P 0 holds, develop an analysis for anadmissible property P which implies P 0. The approach is strengthened by theobservation that we do not require admissibility for all chains in the cpo, only thosethat will be encountered when computing the least �xpoint. That is, we need onlyshow that the description is admissible for chains based on the Kleene sequence ofthe operator to be approximated.We �rst clarify how we can use the result of one analysis on some descriptiondomain to tell us something about the program in another description domain.De�nition. LetD,D0 be descriptions forE. Function � : D ! D0 is approximationpreserving if 8d 2 D : 8e 2 E : d /D e) (� d) /D0 e:Given an approximation preserving mapping from description domain D to D0we can use it to map the results of an analysis on D to the descriptions in D0. IfD0 is singular, then there is a best (in the sense of most precise) approximationpreserving function. We call this the \induced approximation preserving function".De�nition. Let hD;/; Ei be a description and hD0;/0; Ei a singular descriptionwith inducement function b�0. The induced approximation preserving function � :D ! D0 is de�ned by � d = tfb�0 e j d / eg:The following de�nition makes precise what it means for a description to beadmissible for a particular operator.De�nition. The description hD;/; Ei is admissible for F : E ! E if / is admis-sible on D �E0 where E0 � E is the Kleene sequence of F .Correctness of this technique is captured by the following theorem:Theorem 3.1 Let D, D0 be descriptions for E and � : D ! D0 be approximationpreserving. Let FD : D ! D approximate FE : E ! E. If D is admissible for FE ,then � (lfp FD) /D0 lfp FE :

Proof: It follows from Proposition 2.2 that lfp FD /D lfp FE . Thus the resultfollows from the de�nition of approximation preserving.One might hope that for a given inadmissible property P there is a \best" or\strongest" admissible property implying P . Unfortunately this is not necessarilytrue as the property of being admissible is itself an inadmissible property.We now give two �niteness analyses which illustrate this technique. The �rstexample relies on the simple observation that for operators with a �nite Kleenesequence, all descriptions are admissible.Finiteness Analysis 1: Weakly-bounded programsIf we can guarantee that the program P being analyzed is weakly-bounded in thesense that for all E satisfying the integrity constraints, TEP has a �nite Kleenesequence, then any description is admissible for TEP , and in particular FDesc is.Thus we can analyze whether Q is �nite for P by computing lfp UEP and checkingthat this implies �niteness. More formally:Theorem 3.2 Let P be weakly-bounded for the integrity constraint E . Then pred-icate Q is �nite for P and E if (Q(~x) : V~x) 2 lfp UEP :This idea is essentially the same as that behind �niteness analyses based on\weak �niteness", which was introduced by Sagiv and Vardi [18]. The hard part inthis type of analysis is showing that a program is weakly-bounded. Many analysesto detect sub-cases of weak-boundedness are found in the database literature. Thereare various notions of boundedness (e.g., see [6, 7, 8, 14, 15]), and Naughton andSagiv give a decision procedure for a class of bounded recursions [15]. Clearlyboundedness implies weak boundedness.Finiteness Analysis 2: ContainmentThe second example is more complex. The underlying idea is that given a �xed�nite set S say, the property of being contained in S is admissible, and clearlycontainment in a �nite set implies �niteness. Descriptions of containment can besimply captured using propositional variables and formulas much as we used theseto capture �niteness. Thus the description p(x; y) : x _ y is read as \the values inthe �rst argument of the relation assigned to p are contained in S or the values inthe second argument of the relation are contained in S". However the key problemis how to choose the set S so that it gives good results for all programs and EDBs.Our solution is to make the choice of S dependent on the current relation assignedto the extensional predicates. We choose S to be the set of all arguments whichcome from an attribute in the EDB which has a �nite number of values. Moreformally,De�nition. Relation R for predicate Q C-satis�es predicate description Q(~x) : �for set B i� 8R0 � R : R0 6= ;) �R0 satisfies �where the truth assignment �R0 to the variables ~x is given by (�R0 ~xi) i� R0i � B.Relation R C-satis�es relation description <, written R c̀ < (or < ca R), i� for allpredicates Q, RQ satis�es <Q for BR whereBR = [fRQ;i jQ 2 EP and RQ;i is �niteg:The �nite containment description CDesc is the description hRDesc; ca; }HBi.

Lemma 3.3 CDesc is singular.The descriptions CDesc are admissible for any TEP as the choice of the boundingset RB essentially does not change in the Kleene sequence. Of course makingthe choice of RB dependent on the current relations assigned to the intensionalpredicates leads to an inadmissible description for TEP .Lemma 3.4 CDesc is admissible for TEP .De�nition. Let P be a program. De�ne VP : RDesc ! RDesc ! RDesc tobe the function induced from TP : }HB ! }HB ! }HB using the descriptionCDesc.As CDesc is admissible for TEP , we can analyze whether Q is �nite for P bycomputing lfp V EP and checking that this implies �niteness. More formally:De�nition. �FC : RDesc ! RDesc is the induced approximation preserving func-tion from FDesc to CDesc.Theorem 3.5 Predicate Q is �nite for program P and integrity constraints E if(Q(~x) :^ ~x) 2 lfp V (�FC E)P :While this de�nition speci�es VP non-constructively in terms of TP , it is notdi�cult to see that it gives rise to a terminating data
ow analysis, since VP isde�ned on the �nite domain RDesc.Example 3.1 Consider the following program taken from Example 7 in [9]:p(X1,Y1) :- d(X1), f(Y1)p(X2,Y2) :- f(X2), d(Y2)p(X3,Y3) :- p(X3,Y3)q(X4) :- p(X4,X4)Let E be the integrity constraint fd(x) : xg stating that EDB d is �nite. Now�FC E = E . From this, the reader may verify that (q(x) : x) 2 lfp V (�FC E)P . Thus,the analysis concludes that q is �nite. Note that this example is not handled by themethods in [9] nor any other �niteness analysis that we know of.We conjecture that the containment analysis when restricted so that only con-junctions of propositional variables are allowed in the descriptions is equivalent tothe graph based analysis given in Section 9 of [9].3.2 Approximate From AboveThe second technique is also quite simple. Rather than computing an approximationto the least �xpoint we instead compute an approximation to the greatest �xpoint.Soundness of this approach does not require that the approximation be admissible,since we are already starting from above the least �xpoint. Formal correctness ofthe technique is captured as a corollary of the following somewhat stronger result.Theorem 3.6 Let D be a (possibly inadmissible) description of E, and let FD :D ! D approximate FE : E ! E. Let e be any �xpoint of FE and let d / e, then:(i) For any �nite k � 0, FD#kd / e; and (ii) If D is co-admissible, then for anyordinal �, FD#�d / e.

Proof: (Sketch) By hypothesis, d / e, so since FD approximates FE we have FD d /FE e = e: Using �nite induction (1) holds. Co-admissibility of / allows us to usetrans�nite induction to prove (2).Corollary 3.7 Let D be a co-admissible description of E, and let FD : D ! Dapproximate FE : E ! E. Then gfp FD / e where e is any �xpoint of FE.Interesting cases of this corollary are when e is the least �xpoint or when it isthe greatest �xpoint. A related technique was suggested by Codish et al. [1] foranalyses in which the Kleene sequence for the approximating operator is too long.However, they did not consider inadmissible descriptions.Finiteness Analysis 3: Approximation of the GFPThus we can analyze whether Q is �nite for P by computing gfp UEP and checkingthat this implies �niteness.Lemma 3.8 FDesc is co-admissible.Theorem 3.9 Predicate Q is �nite for program P and integrity constraint E if(Q(~x) : V~x) 2 gfp UEP :Example 3.2 Consider the following program P taken from [9]p(X1,X1) :- f(X1).p(X2,Y2) :- f(Y2), g(X2,V2), h(X2,W2), p(V2,W2).p(X3,Y3) :- f(X3), g(Y3,V3), h(Y3,W3), p(V3,W3).with integrity constraints E = ff(x) : x; h(x; y) : y ! x; g(x; y) : y ! xg statingthat f represents a �nite set, and both h and g are �nite in the �rst argument forsubrelations with a �nite set of second arguments. NowUEP # 0 = ff(x) : true; g(x; y) : true; h(x; y) : true; p(x; y) : truegUEP # 1 = E [fp(x; y) : truegUEP # 2 = E [fp(x; y) : x _ ygUEP # 3 = E [fp(x; y) : x ^ ygUEP # 4 = UEP # 3Thus (p(x; y) : x ^ y) 2 gfp UEP , and the analysis determines that p is �nite.It is interesting to note that the UEP operator, when used in approximation fromabove, is equivalent to the axiomatic super�niteness analysis given by Kifer et al.in [9]. The authors present four sets of axioms which form a sound and completesystem for �nding �niteness constraints that hold in all �xpoints of the program:PC-rules Each PC (partial constraint) corresponds to a disjunction of propositionsencoding �niteness information for the described decomposition of a relation.The PC rules follow directly from the axioms of propositional logic.PRD-rules Projection dependencies correspond to a restriction of �niteness con-straints to certain columns in a relation's tuples. This is exactly what is doneby the existential quanti�cation of UEP .

IND-rules An inclusion dependency indicates that one relation is a subrelation ofanother. The IND rule, which associates with the subrelation the constraintsof the containing relation, is captured by UEP when the IDB rule which speci�esthe subrelationship is evaluated.DD-rules The decomposition dependencies simply gather the dependencies of el-ements of a decomposition of a relation. This gathering is done in UEP byforming the disjunction of the FCs derived by considering the rules for a re-lation separately.Now �niteness in all �xpoints holds i� �niteness holds in the greatest �xpoint.Further, using UEP starting with the top of the description domain corresponds tomaking inferences based only on tautologies, and thus is equivalent to the methodpresented in [9].3.3 CombinationOur �nal technique is to combine the two previous techniques. First an admissibledescription is used to �nd an approximation to the least �xpoint, then we use thisapproximation as the start value in the second method and iterate downwards, whilestill staying above the least �xpoint. FromTheorems Theorem 3.1 and Theorem 3.6,we have:Theorem 3.10 Let D, D0 be descriptions for E and � : D ! D0 be approximationpreserving. Let FD : D ! D and FD0 : D0 ! D0 approximate FE : E ! E. LetD be admissible for FE and d = (� (lfp FD)). Then: (i) for all �nite ordinals k,FD0#kd /D0 lfp FE ; and (ii) if D is co-admissible, for all ordinals �, FD0#�d /D0lfp FE .The combination approach given here is somewhat related to the widening/ nar-rowing approach to abstract interpretation introduced by Cousot and Cousot [2].The widening/narrowing approach was developed to handle the case when the de-scription domain has in�nite ascending chains, and so it is not possible to computethe least �xpoint of the approximating operator using a �nite Kleene sequence. Anextreme use of this technique is when the description domain is just the originaldomain. The idea is to use a widening operator to jump above the least �xpointand then a narrowing operator to move downwards from this point.It is implicit in the widening/narrowing approach of Cousot and Cousot thatthere is an Galois connection between the original domain and the domain on whichthe widening and narrowing operator are de�ned. This ensures that the approxi-mation relation is admissible. Thus our combination approach is, in some senses, arelaxation of widening/narrowing in which the widening and narrowing operatorsare allowed to work on di�erent domains and the approximation relation for thenarrowing operator's domain is not required to be admissible. It is also a special-ization, as when couched in these terms we are using the trivial widening operator\lub" and the trivial narrowing operator \glb". However it should be emphasizedthat the two techniques were developed to handle very di�erent problems.Finiteness Analysis 4: CombinationThus we can analyze whether Q is �nite for P by combining Finiteness Analysis 2with Finiteness Analysis 3.De�nition. �CF : RDesc ! RDesc is the induced approximation preserving func-tion from CDesc to FDesc.

Theorem 3.11 Predicate Q is �nite for program P and integrity constraints E if(Q(~x) : V~x) 2 gfp W EP , where W EP is de�ned by W EP < = (�CF <V)uUEP < and<V = lfp V (�FC E)P .Note that glb on RDesc is essentially component-wise conjunction of the propo-sitional formula. This analysis, to our knowledge, is the most precise �nitenessanalysis known.4 ConclusionsWe have systematically investigated the development of data
ow analyses for inad-missible program properties. This is important as some practical program proper-ties, such as �niteness, are inadmissible, and blindly applying traditional techniquesfrom abstract interpretation leads to incorrect analyses. We have illustrated thesetechniques by means of four �niteness analyses, the last of which is the most precise�niteness analysis that we are aware of.The advantage of developing �niteness analyses in the framework given here isthat it simpli�es their description and proof of correctness. Essentially a data
owanalysis is given by simply specifying the description domain and choosing one ofthe techniques given here. Another advantage is that the analyses can be lifted tothe case of non-constant function symbols.Acknowledgements Discussions with Raghu Ramakrishnan were very helpful inclarifying the relationships between the various �niteness analyses proposed in thedeductive database literature.References[1] M. Codish, J. Gallagher and E. Shapiro, \Using Safe Approximations of FixedPoints for Analysis of Logic Programs", Proc. META88, Workshop on Meta-programming in Logic Programming, Bristol, June 1988.[2] P. Cousot and R. Cousot, \Abstract Interpretation: A Uni�ed Lattice Modelfor Static Analysis of Programs by Construction or Approximation of Fix-points", Proc. Fourth ACM Symp. on Principles of Programming Languages,1977.[3] P. Cousot and R. Cousot, \Systematic Design of Program Analysis Frame-works", Proc. Sixth ACM Symp. on Principles of Programming Languages,1979.[4] P. Cousot and R. Cousot, \Comparing the Galois Connection and Widen-ing/Narrowing Approaches to Abstract Interpretation", Manuscript, 1991.[5] S. K. Debray, \Static Inference of Modes and Data Dependencies in LogicPrograms", ACM Transactions on Programming Languages and Systems vol.11, no. 3, June 1989, pp. 419-450.[6] H. Gaifman, H. Mairson, Y. Sagiv, and M. Vardi, \Undecidable OptimizationProblems for Database Logic Programs", Proc. Second IEEE Symposium onLogic in Computer Science, Ithaca, 1987.

[7] Y. Ioannidis, \Bounded Recursion in Deductive Databases", Technical Report,UCB/ERL M85.6, University of California, Berkeley, Feb. 1985.[8] P. Kanellakis, \Logic Programming and Parallel Complexity", Technical Re-port CS-86-23, Dept. of Computer Science, Brown University, Oct. 1986.[9] M. Kifer, R. Ramakrishnan, and A. Silberschatz, \An Axiomatic Approach toDeciding Finiteness of Queries in Deductive Databases", manuscript (Prelimi-nary version appeared in Proc. Seventh ACM Symp. on Principles of DeductiveDatabases, Austin, TX, March 1988).[10] K. Marriott. Frameworks for abstract interpretation. To appear Acta Infor-matica.[11] K. Marriott and H. S�ndergaard. Bottom-up abstract interpretation of logicprograms. In R. Kowalski and K. Bowen, editors, Logic Programming: Proc.Fifth Int. Conf. Symp., pages 733{748. MIT Press, 1988.[12] K. Marriott and H. S�ndergaard. Bottom-up data
ow analysis of normal logicprograms. To appear The Journal of Logic Programming.[13] C. S. Mellish, \Abstract Interpretation of Prolog Programs", Proc. Third In-ternational Conference on Logic Programming, London, July 1986. Springer-Verlag LNCS vol. 225.[14] J. Naughton, \Data Independent Recursion in Deductive Databases", Proc.Fifth ACM Symp. on Principles of Database Systems, March 1986.[15] J. Naughton and Y. Sagiv, \A Decidable Class of Bounded Recursions", Proc.Sixth ACM Symp. on Principles of Database Systems, San Diego, CA, March1987.[16] F. Nielson. Strictness analysis and denotational abstract interpretation. Infor-mation and Computation 76 (1) : 29{92, 1988.[17] R. Ramakrishnan, F. Bancilhon, and A. Silberschatz, \Safety of Recursive HornClauses with In�nite Relations", Proc. ACM Symp. on Principles of DatabaseSystems, 1987.[18] Y. Sagiv and M. Y. Vardi, \Safety of Datalog Queries over In�nite Databases",Proc. Eighth ACM Symposium on Principles of Database Systems, Philadel-phia, PA, March 1989.[19] H. S�ndergaard. An application of abstract interpretation of logic programs:Occur check reduction. In B. Robinet and R. Wilhelm, editors, Proc. ESOP86 (Lecture Notes in Computer Science 213), pages 327{338. Springer-Verlag,1986.

