Understanding Finiteness Analysis Using Abstract
Interpretation (Extended Abstract)!

Peter A. Bigot

Saumya Debray

Department of Computer Science
The University of Arizona
Tucson, AZ 85721

{pab, debray}@cs.arizona.edu

Kim Marriott

IBM T.J. Watson Research Center
P.O.Box 704

Yorktown Heights, NY 10598
kimbal@watson.ibm.com

Abstract

Finiteness analyses are compile-time techniques to determine (sufficient) conditions
for the finiteness of relations computed during the bottom-up execution of a logic
program. We examine finiteness analyses from the perspective of abstract interpre-
tation. However, problems arise when trying to use standard abstract interpretation
theory for finiteness analysis. They occur because finiteness is not an admissible
property and so naive application of abstract interpretation leads to incorrect anal-
yses. Here we develop three simple techniques based on abstract interpretation
theory which allow inadmissible properties to be handled. Existing approaches to
finiteness analysis may be explained and compared in terms of our extension to
abstract interpretation theory, and we claim that their correctness is more easily
argued in it. To support our claim we use our techniques to develop and prove
correct a finiteness analysis which 1s more accurate than any that we are aware of.

1 Introduction

Recently a great deal of attention has been devoted to the study of bottom-up
execution models for logic programs in which programs are executed by evaluating
entire relations and then “joining” them. In implementations of such systems; it is
necessary to ensure that the relations computed during any evaluation are finite.
In this paper, we are concerned with compile-time analysis techniques to determine
(sufficient) conditions for the finiteness of relations computed during the bottom-up
execution of a logic program. We examine finiteness analyses from the perspective
of abstract interpretation [2, 3]. Abstract interpretation provides a simple semantic
basis for dataflow analysis of logic programs. Early work in this area focussed on top-
down execution models, as exemplified by Prolog (e.g., see [5, 13, 19]); more recently,
researchers have considered abstracting from the bottom-up Tp semantics [11, 12].
However, problems arise when trying to use standard abstract interpretation theory
for finiteness analysis. They occur because finiteness is not an admaissible property
(i.e., the union of a chain of finite sets may not be finite), and so naive application of
abstract interpretation leads to incorrect analyses. This is because Scott-induction,

IThe second author was supported in part by the National Science Foundation under grant
number CCR-8901283.

the cornerstone of proving correctness of an abstract interpretation, is not valid for
inadmissible properties.

Here we develop three simple techniques based on abstract interpretation theory
which allow inadmissible properties to be handled. For each technique we illustrate
its use in finiteness analysis. The first technique is based on the idea of not de-
veloping an analysis for the inadmissible property itself, but rather an analysis for
an admissible property which implies the inadmissible. The second technique is
to approximate the greatest fixpoint, rather than the least. The third approach is
to combine the first two, giving rise to an approach somewhat akin to the widen-
ing/ narrowing technique of Cousot & Cousot [3, 4].

This paper has two main technical contributions. The first is the development
of generic methods for developing and understanding the dataflow analysis of in-
admissible program properties. These methods are interesting theoretically as an
extension of abstract interpretation theory and are also important practically as
some pragmatically interesting program properties, such as finiteness or fairness,
are inadmissible. The second main technical contribution is a framework for the
better understanding and development of finiteness analysis. Existing approaches
to finiteness analysis may be explained and compared in terms of our extension to
abstract interpretation theory, and we claim that their correctness is more easily
argued in it. To support our claim we use our techniques to develop and prove
correct a finiteness analysis which 1s more accurate than any that we are aware of.

2 Preliminaries

2.1 Basic Definitions

We assume that the reader i1s familiar with the basic concepts of latice theory. A
subset Y of a complete partial order (cpo) X is a lower setiff Yy e YV.Ve € X .z <
y = x € Y. Upper set is defined dually. A lower set is a principal ideal iff 1t
has a maximum element and an upper set is a principal filter iff it has a minimum
element. A function F is monotonic iff forall z, 2’ € X,z <2’ = Fz < F z'.
Dually F' is co-monotonic iff # < 2’ = F #' < F x). Unless stated to the contrary,
all functions will be assumed to be monotonic. The powers of a function F: X — X
on a complete lattice X are defined by

PP = rUF (FT(xﬁ_l)) if 3 is a successor ordinal
T wU|{F Tf' |3 < B} otherwise.

. xMF (Fi(xﬁ_l)) if 3 is a successor ordinal
) enlHF ¢f' |3 < B} otherwise.

We let FTﬁ denote FT? and Fiﬁ denote Fig— Note that by definition FTg =
Fig = . Let X be acpo and F : X — X be monotonic. It is well known that F
has a least firpoint, denoted by {fp F', such that [fp F = FTﬁ for some ordinal 3; if
X 1s a complete lattice then F' also has a greatest firpoint, denoted by g fp F', such
that gfp I = F|° for some ordinal 3. We call the sequence F1°, F4t, ..., F1® the
Kleene sequence of F'.

2.2 Abstract Interpretation

Abstract interpretation provides the basis for a semantic approach to the devel-
opment of dataflow analyzers. Abstract interpretation formalizes the idea of “ap-
proximate computation” in which computation is performed with descriptions of
data rather than the data itself. Correctness of the analysis with respect to the
standard interpretation is argued by providing an “approximation relation” which
holds whenever an element in a non-standard domain describes an element in the
corresponding standard domain. Equivalently, an approximation relation may be
defined in terms of a “concretization function” which maps elements in a non-
standard domain to those elements in the standard domain which they describe,
or an “abstraction function” which maps standard elements to the elements which
describe them. Note that these definitions are non-standard because both the con-
cretization and abstraction function map to sets of objects rather than a single
object. This generalization is necessary because in the standard framework it is
impossible to express an inadmissible approximation relation. The approximation
relation can be viewed as a logical relation and so it can be lifted from the “base”
or “primitive” domains to functions.

Definition. A description Desc = (D, x, E) consists of a description domain
(a complete lattice) D, a data domain (a cpo) E, and an approzimation relation
x C D x E. The function v : D — ¢ F defined by (v d) = {e | d x e} is called the
concretization function, and the function o : E — § D defined by (o €) = {d|d x e}
is called the abstraction function. We require v to be monotonic and « to be co-
monotonic. Let (Dq, 1, F1) and (D2, xa, F2) be descriptions, and F' : Dy — Dy
and F’ : F1 — FE5 be functions. Then the approximation relation is lifted to
functions by defining F' o< F' iff Yd € Dy. Ve € F1. d 1 e = F(d) xa F'(e). By an
abuse of notation we will let Desc denote both the description and the description
domain. H

Definition. A function F': X — 9Y is downwards closed iff for all # € X, F(x) is
a lower set. Dually define upwards closed. M
It follows from Lemma 4.7 in [10] that:

Lemma 2.1 The abstraction and concretization functions associated with a de-
scription are respectively upwards and downwards closed. M

In this paper our example descriptions will have the desirable property that
every object and function has a best or most precise description. This occurs when
the description is “singular”.

Definition. A description (D, x, E) is singular iff the associated abstraction func-
tion o : ' — © D maps to principal filters. In this case we define an associated
inducement function & : E — D by & e = M« €).

We lift the inducement function to function spaces as follows. Let (Dy, 1, Fy)
be a description, (D, xa, F2) a singular description with inducement function aa,
and F' : 1 — F5 afunction. We define & F' to be the function F’ : Dy — D5 given
by

Frd=| [{as (Fe)ldo e}
We say that F’ is the function induced from F. ®

In traditional abstract interpretation additional requirements are placed on de-
scriptions so as to ensure that the approximation relation is admissible. Common

restrictions to ensure admissibility are that the abstraction function maps to prin-
cipal filters and is continuous as in Nielson [16], or that the concretization function
maps to principal ideals as in Marriott & Sgndergaard [12], or the combination of
these two restrictions yielding the Galois connection approach of Cousot & Cousot
[2, 3]. See Marriott [10] for more details on the relationships between these restric-
tions.

Definition. A predicate @ on cpo D is admissible iff for all chains C' C D, (Ve €
C.Q ¢) = Q (UC). Dually, Q is co-admissible iff for all chains C' C D, (Ye €
C.Qc)= Q (NC)). A description is (co-)admissible iff its approximation relation
is (co-)admissible. W

The reason for this 1s so that Scott induction can be used to prove:

Proposition 2.2 Let D be an admissible description for £ and let Fp : D — D
approximate Fg : £ — E. Then lfp Fp x{fp Fg. 1

This result is the basis for proving an abstract interpretation is correct. How-
ever the proposition does not hold if the admissibility requirement is dropped, and
so when the approximation relation 1s inadmissible there is no guarantee that an
analysis developed using the traditional techniques of abstract interpretation will
be correct.

However, even though admissibility of the approximation relation is an implicit
requirement of existing abstract interpretation theory, approximation relations that
are not admissible do occur in practice. These arise whenever we are interested
in finding a property P of a program or database which is itself not admissible,
as any natural description domain for the analysis will contain an element which
describes exactly those objects with property P, and the approximation relation
for such descriptions will therefore be inadmissible. As we shall see, finiteness is an
example of such a property.

2.3 Finiteness Analysis

The language we consider is that of Horn logic. We assume that there is some
fixed set of intensional predicate symbols, 1P, and some disjoint set of extenstonal
predicate symbols, EP. Given a set of predicate symbols S, H Bs denotes the set
of ground atoms that can be constructed from S. Note that we allow an infinite
number of constant symbols. In the case S 1s the set of all predicate symbols we
simply write HB. A program P is a set of definite clauses (or rules) in which only
intensional predicates appear in the heads of the clauses. A relation for predicate
set S 1s a subset of HBg. The projection of relation R onto predicate), written
Rg, is the set {Q(#) | Q(f) € R}. The projection of relation R onto argument i,
written R;, is the set {f; | Q(f) € R} where {; denotes the i element of the tuple
i. We will only project relations onto arguments after projecting the relation onto
a predicate.

The nput to a program P is a relation for EP. This is called the extensional
database (EDB). The extensional predicates may have integrity constraints asso-
ciated with them, in which case the input relation is required to satisfy such con-
straints. The output of P is a relation for all of the predicates. The output restricted
to the intensional predicates is called the intensional database (IDB). The output is
computed as the least fixpoint of the “immediate consequence” operator T where

E is the EDB. The operator Tg: o HB — © H B 1s defined by:

A :— Ay,... A, is a ground instance of a clause in P, and
TE(R):EU{A‘{Al,...,An}gR }
The finiteness analysis problem for a program P, intensional predicate @, and in-
tegrity constraints £ is to determine whether the relation for @ in lfp(Tg) is guaran-
teed to be finite for every set of input relations F satisfying the integrity constraints.

Finiteness analysis is clearly decidable for Datalog programs, i.e., programs
where all function symbols have arity 0, if the EDB relations are always finite. The
problem becomes undecidable if programs contain function symbols with nonzero
arity. The latter problem can be simplified somewhat by approximating the effect
of each function symbol of arity n > 0 using an infinite EDB relation of arity n+ 1
with certain associated finiteness constraints. The language where programs contain
no function symbol of nonzero arity, but where EDB relations may sometimes be
infinite, is referred to as extended Datalog. As far as we know, the finiteness analysis
problem for extended Datalog is not known to be either decidable or undecidable
(see, for example, [18]). In this paper, we primarily consider extended Datalog pro-
grams. However the analyses are still correct in the presence of arbitrary function
symbols.

Before presenting analyses for finiteness, we must define the basic domains which
comprise the descriptions on which the analyses are based and how integrity con-
straints are specified. The idea is to describe each Rg by a propositional formula
describing the finiteness dependencies between the arguments of predicate (). For
instance, the description p(z,y) : # — y is read as “for any finite assignment of
values to the first argument of predicate p, there are only finitely many assignments
to the second argument which satisfy the relation assigned to p”.

Definition. Let Prop denote the subset of propositional formula constructed from
the constants true and false, and a suitably large but finite propositional variable
set using the propositional connectives AV, ¢ —.

A predicate description for predicate @) has the form Q(%) : ¢ where ¢ € Prop
and vars(¢) C vars(Z). Predicate descriptions for predicate) are pre-ordered by <
where (Q(Z) : ¢) < (Q(l?/) :¢") iff ¢ = ¢ where (Q(Z) : ¢”) is a variable renaming
of (Q(2') : ¢').

A relation description is a set of predicate descriptions in which a predicate
occurs at most once. If there is no predicate description for @) in relation description
R we implicitly include the description Q(Z) : false. We define Rg to be the
predicate description of @ in relation description . We let RDesc denote the set
of relation descriptions. Relation descriptions are pre-ordered by < where it < R’
I vQ . Rg S%/Q' []

By an abuse of notation we will treat relation and predicate descriptions modulo
the equivalence induced by < and order them by the partial order induced from <.
Thus RDesc is a finite lattice.

Relation descriptions will be used both to specify integrity constraints and as
descriptions in our finiteness analyses. Usually, we will only allow relation descrip-
tions without disjunction to specify the integrity constraints involving finiteness for
the EDB.

Definition. Relation R for predicate Q) satisfies predicate description Q(%) : ¢ iff

VR' C R.R # 0= tp satisfies ¢

where the truth assignment 7 to the variables # is given by (rp &;) iff R} is finite.
Relation R satisfies relation description R, written R F R (or R - R), iff for all
predicates @, Rg satisfies Rg.
The finiteness description F Desc is the description (RDesc, 4, HB). R
Other descriptions for finiteness analysis may be naturally obtained by restrict-
ing the type of propositional formula in the predicate descriptions. Natural restric-
tions are to disallow disjunction, to disallow implication, or to disallow both.

Example 2.1 Consider the infinite relation p representing the immediate successor
relation. Given a finite restriction on the first argument position, the set of satisfying
tuples has only finitely many values appearing in the second argument position and
vice versa. Thus p satisfies p(z,y) : © ¢ y. As another example, the only relation
for ¢ to satisfy q(z) : false is the empty relation.

Lemma 2.3 F Desc is singular. H

Ignoring admissibility can lead to the naive development of an incorrect dataflow
analysis.

Definition. Let P be a program. Define Up : RDesc — RDesc — RDesc to be the
function induced from Tp : ¢ HB — © HB — © H B using the description F'Desc.
That is, for an EDB E € ¢ HB described by £ € RDesc, U5 F = U{A(TES) | R+
RAEFE}L 1

In more concrete terms, soundness of the propositional logic and the decompo-
sition of relations induced by P permits us to show that:

Up F=€ U {p(&):¢]¢= \ 3 i}
(&) = qi1(Ti1), - in, (Tijn,)JEP
where ¥; = /\ ¢i; and y; = vars(;) \ vars(Z). €, indicates that some

95,5 (Ti5):¢4, 5 €al’
alphabetic variant of the constraint appears in F', and ¢ in this case 1s taken to
be the propositional equivalent of the existentially quantified formula; this removes
the effect of the variables that do not appear in the head of the rule.
By definition Up o Tp, so naively we would expect that {fp U§ o Ifp TF
whenever £ «x FE, and so a finiteness analysis may be performed by computing
lfp Uﬁ. However we shall see that [fp Uﬁ ok lfp Tg for the program P

p(0).
p(X) :- s(X,Y), p(V).

in which s is a extensive predicate intended to be the successor relation. The
associated integrity constraint is £ = {s(x,y) : & y}. Now

US10 = {p(x): false,s(x,y) : false}
Ust1 = {p(z) : false,s(x,y) : v & y}
Us12 = {p(x):xs(z,y) zey)
Upt3 = Up12

So (p(x) : #) € Ifp US, which leads to the incorrect conclusion that p is finite for
P and &.

The problem arises because:

Proposition 2.4 F Desc is not admissible.

Proof: Let aq, as, ... be different constant symbols. Define relation Rg to be {p(a;) |
i < 3} where 3 is either finite or the first infinite ordinal w. Let R be {p(z) : z}
indicating that p is a finite relation. Let C be the chain (J,. (R;, ®). Clearly
UC = {R,,R). Now, for all i < w, ® o« R;, but & &k R, so x is not admissible.
|

3 Inadmissible Predicates and Abstract Interpre-
tation

We have seen that the traditional abstract interpretation approach for developing
dataflow analyses does not apply when the description is inadmissible. In this
section we suggest three simple techniques to develop analyses in this case. The
techniques are illustrated by using them to develop finiteness analyses.

3.1 Using a Stronger Admissible Property

The first approach is based on a simple idea: rather than finding an analysis to
directly show that an inadmissible property P’ holds, develop an analysis for an
admissible property P which implies P’. The approach is strengthened by the
observation that we do not require admissibility for all chains in the cpo, only those
that will be encountered when computing the least fixpoint. That is, we need only
show that the description is admissible for chains based on the Kleene sequence of
the operator to be approximated.

We first clarify how we can use the result of one analysis on some description
domain to tell us something about the program in another description domain.

Definition. Let D, D’ be descriptions for E. Function § : D — D’ is approzimation
preserving if
VdeD . VYeeE.dxpe=(0d)xp e N

Given an approximation preserving mapping from description domain D to D’
we can use it to map the results of an analysis on D to the descriptions in D'. If
D' is singular, then there is a best (in the sense of most precise) approximation
preserving function. We call this the “induced approximation preserving function”.

Definition. Let (D, x, E) be a description and (D', ', ') a singular description
with inducement function &’. The induced approzimation preserving function § :
D — D' isdefined by dd=U{a’e|dxe}. W

The following definition makes precise what it means for a description to be
admissible for a particular operator.

Definition. The description (D, x, E) is admissible for F : E — F if « is admis-
sible on D x E' where E' C F is the Kleene sequence of /. N
Correctness of this technique is captured by the following theorem:

Theorem 3.1 Let D, D’ be descriptions for £ and d : D — D’ be approximation
preserving. Let Fp : D — D approximate Fg : E — E. If D is admissible for Fg,
then 6 ({fp Fp) «xp lfp Fg.

Proof: 1t follows from Proposition 2.2 that {fp Fp xp {fp Fg. Thus the result
follows from the definition of approximation preserving. N

One might hope that for a given inadmissible property P there is a “best” or
“strongest” admissible property implying P. Unfortunately this is not necessarily
true as the property of being admissible is itself an inadmissible property.

We now give two finiteness analyses which illustrate this technique. The first
example relies on the simple observation that for operators with a finite Kleene
sequence, all descriptions are admissible.

FINITENESS ANALYSIS 1: WEAKLY-BOUNDED PROGRAMS

If we can guarantee that the program P being analyzed is weakly-bounded in the
sense that for all E satisfying the integrity constraints, 7% has a finite Kleene
sequence, then any description is admissible for 7%, and in particular F Desc is.
Thus we can analyze whether @ is finite for P by computing ! fp Uf, and checking
that this implies finiteness. More formally:

Theorem 3.2 Let P be weakly-bounded for the integrity constraint £. Then pred-
icate @ is finite for P and £ if (Q(%) : AZ) € lfpU5. m

This idea is essentially the same as that behind finiteness analyses based on
“weak finiteness”, which was introduced by Sagiv and Vardi [18]. The hard part in
this type of analysis 1s showing that a program is weakly-bounded. Many analyses
to detect sub-cases of weak-boundedness are found in the database literature. There
are various notions of boundedness (e.g., see [6, 7, 8, 14, 15]), and Naughton and
Sagiv give a decision procedure for a class of bounded recursions [15]. Clearly
boundedness implies weak boundedness.

FINITENESS ANALYSIS 2: CONTAINMENT

The second example is more complex. The underlying idea is that given a fixed
finite set S say, the property of being contained in S is admissible, and clearly
containment in a finite set implies finiteness. Descriptions of containment can be
simply captured using propositional variables and formulas much as we used these
to capture finiteness. Thus the description p(z,y) : « V y is read as “the values in
the first argument of the relation assigned to p are contained in S or the values in
the second argument of the relation are contained in S”. However the key problem
1s how to choose the set S so that it gives good results for all programs and EDBs.
Our solution is to make the choice of S dependent on the current relation assigned
to the extensional predicates. We choose S to be the set of all arguments which
come from an attribute in the EDB which has a finite number of values. More
formally,

Definition. Relation R for predicate) C-satisfies predicate description Q(Z) : ¢
for set B iff

VR' C R.R # 0 = tr satisfies ¢
where the truth assignment 7g/ to the variables & is given by (rr/ #;) iff R} C B.
Relation R C-satisfies relation description R, written R k& % (or & & R), iff for all
predicates @, Rq satisfies Rg for Br where

Br=U{Rg;|Q € EP and Rq, is finite}.

The finite containment description C' Desc is the description (RDesc, &, ¢ HB).
|

Lemma 3.3 CDesc is singular. MW

The descriptions C Dese are admissible for any T as the choice of the bounding
set Rp essentially does not change in the Kleene sequence. Of course making
the choice of Rp dependent on the current relations assigned to the intensional
predicates leads to an inadmissible description for Tg.

Lemma 3.4 ('Desc i1s admissible for Tg. |

Definition. Let P be a program. Define Vp : RDesc — RDesc — RDesc to
be the function induced from Tp : P HB — ¢ HB — © H B using the description
CDesc. 1

As CDesc is admissible for T¥, we can analyze whether @Q is finite for P by
computing [fp V1§ and checking that this implies finiteness. More formally:

Definition. dp¢ : RDesc — RDesc is the induced approximation preserving func-
tion from F' Desc to C'Desc. 1

Theorem 3.5 Predicate @ is finite for program P and integrity constraints & if
Q@) AE) elfpvired =

While this definition specifies Vp non-constructively in terms of Tp, it 1s not
difficult to see that it gives rise to a terminating dataflow analysis, since Vp is
defined on the finite domain RDesc.

Example 3.1 Consider the following program taken from Example 7 in [9]:

p(X1,Y1) :- d(X1), £(¥1)
p(X2,Y2) :- £(X2), d(¥2)
p(X3,Y3) :- p(X3,Y3)
q(X4) :- p(X4,X4)

Let & be the integrity constraint {d(z) : x} stating that EDB d is finite. Now
dpc € = €. TFrom this, the reader may verify that (¢(z) : z) € [fp V1§5Fc &), Thus,
the analysis concludes that ¢ is finite. Note that this example is not handled by the
methods in [9] nor any other finiteness analysis that we know of.

We conjecture that the containment analysis when restricted so that only con-
junctions of propositional variables are allowed in the descriptions is equivalent to
the graph based analysis given in Section 9 of [9].

3.2 Approximate From Above

The second technique is also quite simple. Rather than computing an approximation
to the least fixpoint we instead compute an approximation to the greatest fixpoint.
Soundness of this approach does not require that the approximation be admissible,
since we are already starting from above the least fixpoint. Formal correctness of
the technique is captured as a corollary of the following somewhat stronger result.

Theorem 3.6 Let D be a (possibly inadmissible) description of F, and let Fp :
D — D approximate Fg : EF — E. Let e be any fixpoint of Fg and let d o e, then:
(i) For any finite & > 0, FDﬂfl o ¢; and (if) If D is co-admissible, then for any
ordinal 3, FD\LZ x e.

Proof: (Sketch) By hypothesis, d « e, so since Fp approximates iy we have Fp d
Fr e = e. Using finite induction (1) holds. Co-admissibility of « allows us to use
transfinite induction to prove (2). ®

Corollary 3.7 Let D be a co-admissible description of £, and let Fp : D — D
approximate Fg : E — E. Then gfp Fp x e where e is any fixpoint of Fg.

Interesting cases of this corollary are when e is the least fixpoint or when it is
the greatest fixpoint. A related technique was suggested by Codish et al. [1] for
analyses in which the Kleene sequence for the approximating operator is too long.
However, they did not consider inadmissible descriptions.

FINITENESS ANALYSIS 3: APPROXIMATION OF THE GFP
Thus we can analyze whether @ is finite for P by computing g fp Uf, and checking
that this implies finiteness.

Lemma 3.8 FDesc is co-admissible. N

Theorem 3.9 Predicate @) is finite for program P and integrity constraint & if
Q@) :\¥)€gfpUp. ™

Example 3.2 Consider the following program P taken from [9]

p(X1,X1) :- £(X1).
p(X2,Y2) :- £(¥Y2), g(X2,V2), h(X2,W2), p(V2,W2).
p(X3,Y3) :- £(X3), g(¥3,V3), h(Y3,W3), p(V3,W3).

with integrity constraints & = {f(z) : «, h(z,y) : y = »,9(x,y) : y — z} stating
that f represents a finite set, and both h and g are finite in the first argument for
subrelations with a finite set of second arguments. Now

US1L0 = {f(x):true,g(x,y) : true, h(x,y) : true, p(z,y) : true}
USL1 = EU{p(x,y) : true}

Upl2 = EU{p(z,y) zVy}

Upl3 = &U{p(z,y) :z Ay}

Upl4 = Up43

Thus (p(x,y) : = Ay) € gfp US, and the analysis determines that p is finite.

It is interesting to note that the U$ operator, when used in approximation from
above, is equivalent to the axiomatic superfiniteness analysis given by Kifer et al.
in [9]. The authors present four sets of axioms which form a sound and complete
system for finding finiteness constraints that hold in all fixpoints of the program:

PC-rules Each PC (partial constraint) corresponds to a disjunction of propositions
encoding finiteness information for the described decomposition of a relation.
The PC rules follow directly from the axioms of propositional logic.

PRD-rules Projection dependencies correspond to a restriction of finiteness con-
straints to certain columns in a relation’s tuples. This is exactly what is done
by the existential quantification of U%.

IND-rules An inclusion dependency indicates that one relation is a subrelation of
another. The IND rule, which associates with the subrelation the constraints
of the containing relation, is captured by U§ when the IDB rule which specifies
the subrelationship is evaluated.

DD-rules The decomposition dependencies simply gather the dependencies of el-
ements of a decomposition of a relation. This gathering is done in U§ by
forming the disjunction of the FCs derived by considering the rules for a re-
lation separately.

Now finiteness in all fixpoints holds iff finiteness holds in the greatest fixpoint.
Further, using Uﬁ starting with the top of the description domain corresponds to
making inferences based only on tautologies, and thus is equivalent to the method
presented in [9].

3.3 Combination

Our final technique is to combine the two previous techniques. First an admissible
description 1s used to find an approximation to the least fixpoint, then we use this
approximation as the start value in the second method and iterate downwards, while
still staying above the least fixpoint. From Theorems Theorem 3.1 and Theorem 3.6,
we have:

Theorem 3.10 Let D, D’ be descriptions for E and § : D — D’ be approximation
preserving. Let Fp : D — D and Fp/ : D' — D' approximate Fg : F — F. Let
D be admissible for Fg and d = (6 ({fp Fp)). Then: (i) for all finite ordinals &,
FD’iZ xp' Ifp Fg; and (i) if D is co-admissible, for all ordinals g, FD’iZ xXp
lfp Fr. N

The combination approach given here is somewhat related to the widening/ nar-
rowing approach to abstract interpretation introduced by Cousot and Cousot [2].
The widening /narrowing approach was developed to handle the case when the de-
scription domain has infinite ascending chains; and so it is not possible to compute
the least fixpoint of the approximating operator using a finite Kleene sequence. An
extreme use of this technique is when the description domain is just the original
domain. The idea is to use a widening operator to jump above the least fixpoint
and then a narrowing operator to move downwards from this point.

It is implicit in the widening/narrowing approach of Cousot and Cousot that
there is an Galois connection between the original domain and the domain on which
the widening and narrowing operator are defined. This ensures that the approxi-
mation relation 1s admissible. Thus our combination approach is, in some senses, a
relaxation of widening/narrowing in which the widening and narrowing operators
are allowed to work on different domains and the approximation relation for the
narrowing operator’s domain is not required to be admissible. It is also a special-
ization, as when couched in these terms we are using the trivial widening operator
“lub” and the trivial narrowing operator “glb”. However it should be emphasized
that the two techniques were developed to handle very different problems.

FINITENESS ANALYSIS 4: COMBINATION
Thus we can analyze whether @) is finite for P by combining Finiteness Analysis 2
with Finiteness Analysis 3.

Definition. d¢p : RDesc — RDesc is the induced approximation preserving func-
tion from CDesc to FDesc. 1

Theorem 3.11 Predicate @ is finite for program P and integrity constraints & if
(Q(Z) : ANT) € gfp WE, where WE is defined by WE R = (dcr Ryv)MUS R and
Ry = lfp VETCY . m

Note that glb on RDesc 1s essentially component-wise conjunction of the propo-
sitional formula. This analysis, to our knowledge, 1s the most precise finiteness
analysis known.

4 Conclusions

We have systematically investigated the development of dataflow analyses for inad-
missible program properties. This is important as some practical program proper-
ties, such as finiteness, are inadmissible, and blindly applying traditional techniques
from abstract interpretation leads to incorrect analyses. We have illustrated these
techniques by means of four finiteness analyses, the last of which 1s the most precise
finiteness analysis that we are aware of.

The advantage of developing finiteness analyses in the framework given here is
that it simplifies their description and proof of correctness. Essentially a dataflow
analysis 1s given by simply specifying the description domain and choosing one of
the techniques given here. Another advantage is that the analyses can be lifted to
the case of non-constant function symbols.

Acknowledgements Discussions with Raghu Ramakrishnan were very helpful in
clarifying the relationships between the various finiteness analyses proposed in the
deductive database literature.

References

[1] M. Codish, J. Gallagher and E. Shapiro, “Using Safe Approximations of Fixed
Points for Analysis of Logic Programs”, Proc. METASS, Workshop on Meta-
programmang wn Logic Programming, Bristol, June 1988.

[2] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix-
points” |, Proc. Fourth ACM Symp. on Principles of Programming Languages,
1977.

[3] P. Cousot and R. Cousot, “Systematic Design of Program Analysis Frame-
works”, Proc. Swth ACM Symp. on Principles of Programming Languages,
1979.

[4] P. Cousot and R. Cousot, “Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation”, Manuscript, 1991.

[6] S. K. Debray, “Static Inference of Modes and Data Dependencies in Logic
Programs”, ACM Transactions on Programming Languages and Systems vol.

11, no. 3, June 1989, pp. 419-450.

[6] H. Gaifman, H. Mairson, Y. Sagiv, and M. Vardi, “Undecidable Optimization
Problems for Database Logic Programs”, Proc. Second IEEE Symposium on
Logic in Computer Science, Ithaca, 1987.

[7]

[18]

[19]

Y. Ioannidis, “Bounded Recursion in Deductive Databases” | Technical Report,

UCB/ERL M85.6, University of California, Berkeley, Feb. 1985.

P. Kanellakis, “Logic Programming and Parallel Complexity”, Technical Re-
port CS-86-23, Dept. of Computer Science, Brown University, Oct. 1986.

M. Kifer, R. Ramakrishnan, and A. Silberschatz, “An Axiomatic Approach to
Deciding Finiteness of Queries in Deductive Databases”, manuscript (Prelimi-
nary version appeared in Proc. Seventh ACM Symp. on Principles of Deductive
Databases, Austin, TX, March 1988).

K. Marriott. Frameworks for abstract interpretation. To appear Acta Infor-
matica.

K. Marriott and H. Sgndergaard. Bottom-up abstract interpretation of logic
programs. In R. Kowalski and K. Bowen, editors, Logic Programming: Proc.

Fifth Int. Conf. Symp., pages 733-748. MIT Press, 1988.

K. Marriott and H. Sgndergaard. Bottom-up dataflow analysis of normal logic
programs. To appear The Journal of Logic Programming.

C. 8. Mellish, “Abstract Interpretation of Prolog Programs”, Proc. Third In-
ternational Conference on Logic Programming, London, July 1986. Springer-

Verlag LNCS vol. 225.

J. Naughton, “Data Independent Recursion in Deductive Databases”, Proc.
Fifth ACM Symp. on Principles of Database Systems, March 1986.

J. Naughton and Y. Sagiv, “A Decidable Class of Bounded Recursions”; Proc.
Swzth ACM Symp. on Principles of Database Systems, San Diego, CA, March
1987.

F. Nielson. Strictness analysis and denotational abstract interpretation. Infor-
mation and Computation 76 (1) : 29-92, 1988.

R. Ramakrishnan, F. Bancilhon, and A. Silberschatz, “Safety of Recursive Horn
Clauses with Infinite Relations”, Proc. ACM Symp. on Principles of Database
Systems, 1987.

Y. Sagiv and M. Y. Vardi, “Safety of Datalog Queries over Infinite Databases”,
Proc. Eighth ACM Symposium on Principles of Database Systems, Philadel-
phia, PA, March 1989.

H. Sgndergaard. An application of abstract interpretation of logic programs:
Occur check reduction. In B. Robinet and R. Wilhelm, editors, Proc. ESOP
86 (Lecture Notes in Computer Science 213), pages 327-338. Springer-Verlag,
1986.

