jc: An Efficient and Portable Sequential
Implementation of Janus

David Gudeman'!, Koenraad De Bosschere?, Saumya K. Debray!

1. Department of Computer Science 2. Electronics Laboratory
The University of Arizona Rijksuniversiteit Gent
Tucson, AZ 85721, USA B-9000 Gent, Belgium

Abstract: Janus is a language designed for distributed constraint programming
[12]. This paper describes jc, an efficient and portable sequential implementation
of Janus, which compiles Janus programs down to C code. Careful attention to
the C code generated, together with some simple local optimizations, allows the
system to have fairly good performance despite the lack (at this time) of global flow
analysis and optimization.

1 Introduction

Janus [12] is an instance of a concurrent constraint programming language [11].
This report describes jc, an efficient and portable sequential implementation of
Janus that compiles down to C. A Janus program is a set of flat guarded clauses
defining its procedures. It is in many respects similar to Strand [6] and Flat GHC
[13]. There are, however, a number of differences: the most important of these is
the two-occurrence restriction of Janus. This restriction states, essentially, that in
any clause, a variable whose value cannot be inferred to be “fixed” (i.e., ground)
from the guard operations is allowed to have at most two occurrences: one of these
occurrences is annotated to be the “writable” occurrence, and the other is the
“readable” occurrence. Only the writable occurrence of a variable may be assigned
to. Thus, variables in effect serve as point-to-point communication channels; other
language constructs allow many-to-one and one-to-many communication.

The two-occurrence restriction is motivated strongly by a vision of distributed
constraint programming. A fundamental concern is that syntactically correct pro-
grams should not cause the store to become inconsistent at runtime: this is enforced
by the two-occurrence restriction, which ensures that any variable has exactly one
producer, thereby precluding any possibility of inconsistency. This has the desir-
able effect that programs become efficiently implementable (at least in principle).
It has been observed that while programs typically do not give rise to a great deal
of aliasing, this information is not available to compilers, which have to resort to
complicated and potentially expensive algorithms to recover it. The problem is
addressed in Janus by specifying the default to be that there is no aliasing, and re-
quiring the programmer to explicitly invoke certain language features when sharing
between structures is necessary. Rules for syntactic well-formedness then ensure
that the compile-time satisfaction of certain properties, local to a clause, regarding
the number of occurrences of a variable imply the run-time satisfaction of certain
global properties regarding lack of aliases.

Data objects in Janus consist of the following: askers, tellers, numbers (integers
and floats), constants, arrays, lists, and bags. An asker for a variable X is the
“read” occurrence of X: it denotes read capability on the communication channel X
(if we think of a variable as a communication point-to-point channel). A teller for a
variable X, written ~X, denotes the “write” occurrence of X, 1.e., write capability on
the channel X. An array of n objects aq, ..., a,_1, written <aq, ..., a,_1>, represents
a sequence of values indexed by {0,...,n—1}. A list is either the empty list [1, or a

pair [HIL]. A bag represents an unordered multiset of objects, and can be thought
of as many-to-one communication channels. Ask constraints in Janus consist of
various type tests and relational tests on objects (and, via selectors, to components
of objects). A tell constraint is restricted to be of the form X = E, where X is a
variable for which the agent has tell rights, and E can be any expression including
arithmetic, array, and bag expressions.

2 The Janus Virtual Machine
2.1 Values

Janus values are represented in a single word consisting of a tag and a data portion.
For integers, the data portion is the integer itself. For atoms (symbols, not atomic
clauses) the data portion is a unique integer that can be looked up in a table to
find the representation of the atom. For floats, the data portion is a pointer to
a memory block (on the SPARC, for example, this is a 32-bit word) containing a
floating point number. For lists, the data portion is a pointer to a pair of tagged
values. For arrays, the data portion is a pointer to an array block. The array block
contains the length of the array and a pointer to the sequence of tagged values that
make up the array. For tellers; the data portion is a pointer to the corresponding
asker. For askers, the data portion is a pointer to itself or to a lower value in the
reference chain.

2.2 Memory Management

The Janus runtime system has two memory regions, the stack and the heap. The
stack contains environments (also called stack frames), which contain a set of local
variables in the form of tagged values. The heap contains tagged values as well
as floating point numbers, suspension records, arrays and other sorts of data that
do not fit into stack allocation. Currently, there is no garbage collection for the
heap. The bottom of the stack begins at an address lower than the heap and grows
toward higher memory while the heap grows toward lower memory. This makes it
possible to check the allocation of stack and heap space at the same time with a
single comparison of the stack and heap pointers.

Environments are allocated only at commit points: guard operations are carried
out entirely in registers. When a clause commits, an environment of the appropriate
size (for that clause) is allocated if necessary. The allocation and deallocation of
environments is similar to the WAM, but with some important differences. First,
the test to see if there is enough space for a stack frame is separate from the actual
allocation of the stack frame. This allows us to combine the tests for adequate heap
and stack space in a clause, so that for most procedures there is only one test that
accounts for all the space that will be needed (for the stack as well as the heap)
in a clause. Another difference from the WAM is that that rather than saving
a “return address”—a pointer into the code of some other procedure—to which
control should be transferred when the current activation has finished execution,
an environment for a procedure contains a “resumption address”—a pointer into
its own code—where execution should resume when control returns to it. This
simplifies the management of control in the presence of arbitrary suspensions and
resumptions.

Another (minor) difference from the WAM is that jc uses a stack pointer sp
(to the top of the stack) rather than an environment pointer (to the base of the
topmost environment). Local variables are referenced by negative offsets from sp
and the resumption address is the top word on the stack. There is no pointer

to the previous stack frame, instead environment allocation and deallocation uses
a matched pair of instructions NewFrame(i), ..., FreeFrame(:) where 7 is the
number of variables in the stack frame. This scheme, like the WAM, leaves the
stack with no self-defining structure. In other words, there is no way to divide
the stack into frames by following pointers. This is not needed for allocating and
deallocating environments, but debugging and garbage collection procedures need
to know the structure of the stack so there has to be a way to re-create it. To allow
this, the resumption addresses are given special tags to distinguish them from other
tagged values. Since there is a resumption address at the top of each frame (except
possibly the topmost frame), it is possible to divide the stack into environments
by looking for tagged resumption addresses. Since currently resumption addresses
are arbitrary integers, there is no run-time overhead associated with tagging and
untagging them, the tagged value is just used all the time.

2.3 Registers

The virtual machine has a set of registers that are simply C variables, but many
of them are declared as “register” and mapped to hardware registers. The special-
purpose registers include the usual stack pointer and heap pointer. In addition, we
have a register cs that is used to reduce the overhead of suspension (see below): this
is a pointer to the current suspension record (or NULL if there is no such structure).
There are a number of special registers that handle suspension and resumption of
activations. Finally, there are several sets of general-purpose registers: tagged value
registers, used to hold tagged values and to pass parameters to procedures (the
parameter passing convention is similar to the WAM); address registers, used to
hold machine addresses; integer registers, used to hold untagged integer values; and
float registers, used to hold floating point values. There is no a prior: bound on
the number of general purpose registers: the Janus compiler generates a distinct
C variable for each register needed by a program (some subset of these are given
register declarations, based on usage counts, as discussed later).

2.4 Arithmetic

Integer values are represented as 32-bit words (30-bit value + 2-bit tag), while
floating point values are represented by a tagged pointer to an untagged floating-
point number, in the machine representation, allocated in the heap. The runtime
system has the usual complement of arithmetic instructions. These instructions
come in a number of different versions, for different types of operands and results
(tagged /untagged, integer/float).

Conditional instructions in the virtual machine contain the label as one of the
operands, and the jump is made immediately if the condition is met. There is a
pair of conditional instructions for each type of tag, one that jumps if the tag is
right, one that jumps if it is wrong.

There 1s also the complete set of arithmetic conditions: EQ, NE, LT, LE, GT,
and GE. Like the arithmetic operations, these instructions also come in a number
of different versions for comparing tagged values, tagged integers, tagged floats,
untagged integers, untagged floats, and addresses. The conditions on general tagged
values are all implemented as C functions to reduce code bloat.

2.5 Procedures

Parameters are all passed in tagged value registers (t0, t1, t2, ...). Before calling
an n-ary procedure, the first n tagged value registers must be set to the n actual
parameters. Then if the call is not a tail call, the stack frame must be updated to

contain the resumption address of the calling procedure. When a procedure exits
it just jumps to the resumption address of the top frame on the stack. The bottom
frame on the stack 1s always initialized with a resumption address that exits the
Janus portion of the program (returning to the top-level input mode).

Resumption addresses present a problem when compiling to C because in C,
labels are not first-class objects. They are not values that can be assigned to
variables; and 1t is not legal to write goto e where e is an expression other than a
label name. One possible way to solve this problem is to use separate C functions for
Janus procedures, since C does allow function-valued variables. But that solution is
unsatisfactory for several reasons. First, the overhead of C procedure calls is much
higher (for most compilers) than what is needed for Janus. Second, most C compilers
do not do tail-call optimization. Third, such a strategy would preclude several other
types of optimization such as call-forwarding and optimizations involving where a
resumed procedure starts.

A less unsatisfactory solution, the one currently used in jc, is to use the C
switch statement to give a form of “computed goto”. Any address that must be
stored in memory and calculated dynamically is implemented as a small integer
constant (tagged as an address), and the “label” for that address is a case label
with that value. However, addresses of procedures are known statically, so the
jump instructions in procedure calls can have the label “hard-wired” in.

The code for the clauses of a procedure are generated contiguously, in sequence.
Each guard test jumps to the next guard on failure.! If the last guard fails it jumps
to the suspension code. After the guard code for a clause, at the “commit” point, is
code to allocate an environment for that clause (if necessary). Also at the commit
point is code that checks whether there is adequate space in the heap to satisfy
all allocation requirements of the tell actions appearing in the body of the clause.
After these allocation checks is code for in-line tell actions. Only after all possible
in-line work is done are there any procedure calls.

2.6 Suspension and Resumption
In general, before a guard can test the value of a variable, it must make sure that
the variable is instantiated to a value. If not, then the flag register susp_flag is
set and there is a jump to the next guard or the suspension code. This action is all
handled by the single instruction CheckIfAsker(1bl,var). If the flag susp flag
1s set when control reaches the suspension code, then it is known that at least one
guard was unable to finish due to an uninstantiated variable, so the procedure must
suspend until that variable becomes known. Otherwise, all guards completed and
failed, so the procedure vanishes.

As a special case, a test on a parameter does not need to be proceeded by
a CheckIfAsker instruction. For parameters, the guard simply checks the type or
value of the the variable and jumps to the next guard if the variable does not satisfy
the test. Such tests will always fail if the variable is not instantiated. Then the
suspension code must check each such parameter to see if it is instantiated as well as
checking susp_flag. This strategy moves work out of the normal non-suspending
code and into the suspension code, so that procedures that do not suspend do not
have to pay a high performance cost for the language’s suspension feature.

But this strategy does not work for variables that are not parameters, because
there is no guarantee that the variable is available when the suspension code gets
executed. The reason is that any non-parameter variable must get assigned some-

IWe currently do not have decision tree compilation implemented: we are investigating decision
tree compilation in the presence of execution weights, see [5] for details.

where 1n the guard, and the assignment will never be made if a preceeding test in
the same guard fails. For example the guard of the clause

p(L) :- L = [HIT], int(H) |
(supposing it is the second guard) gets expanded into

G2_1bl:
JumpUnlessLcons(G31bl,t0)
GetCons(a0,t0)
Load(t1,a0[0])
JumpUnlessInt(t1)

G3_1bl:

Notice the use of t0 and t1, the tagged-value registers. The single formal parameter
is initially in t0. In the code above, it is clear that if p/1 is called with an asker
as its actual parameter, then the register t1 never gets assigned a value. So the
suspension code cannot test t1 to check whether it is an asker.

When a procedure needs to suspend, it copies its parameters to the heap, then
creates a suspension record in the heap, setting the special register cs (current
suspension) to point to it. The suspension record contains a continuation address,
a pointer to the parameters in the heap, a number telling how many parameters
there are, and a pointer to the next suspension in a list of suspensions. Then there
i1s a jump to suspension_label where cs is prepended to the list suspension list
of suspended activations.

When a suspension record is resumed, the register cs is set to point to the
suspension record. Then the parameters are copied into the registers, and execution
continues at the beginning of the procedure. If the procedure suspends again, the
cs register 1s already pointing to the correct suspension record, so it is not necessary
to create or initialize a new one. The suspension code of each procedure contains
a test at the beginning that jumps directly to suspension_label if cs is non-zero,
thereby avoiding the creation of a new suspension record. This greatly reduces the
overhead of a program that has procedures suspending and resuming many times
before they commit.

An early design decision in the jc system was that programs that did not need
to suspend should not, if at all possible, incur any overhead due to the fact that
the language allows suspension. One consequence of this decision was to abandon
any attempt at fair scheduling: our stance is that programs written by the user
should not rely on assumptions about the underlying scheduling strategy being
used in an implementation for their correctness. Thus, our strategy for resumption
of suspended goals makes no guarantee about when an awakened goal will actually
get to execute. This allows us to optimize the implementation considerably: a tell
action does not have to check whether it is awakening a suspended goal, and other
common primitive operations also do not have to contend with suspensions. Indeed,
there is no special tag indicating a “variable that has a procedure waiting for it to
be instantiated”.

When the stack is empty and there are no suspension records on rl, the
suspension_list is copied to the rl and execution proceeds at the scheduler. The
scheduler is simply a piece of code that checks if the register rl (the resume list)
i1s non-empty. If so, then a suspension record is removed from the list and resumed
as described above. If rl is empty, then execution continues at the resume address

of the top frame on the stack. If a list of suspended procedures is resumed in this
way and none of them makes any progress, it is not a good idea to repeat the pro-
cess since they will continue to make no progress and an infinite loop will result.
To detect this, there is another field in the suspension record, was_resumed that
is 0 when the the record is first created and gets set to 1 when it is resumed. If
any element in the suspension_list has a was_resumed field equal to 0, then that
resumption is new.

Searching the entire list of suspensions to see if there is a new one can get
expensive, so there are two more registers, num_suspensions, which counts the
number of suspensions that have occurred since the last batch resumption, and
num_resumptions which tells how many suspension records were resumed in the last
batch resumption. If num_suspensions is different from num resumptions, then
some progress was made since the last batch resumption, so it is safe to resume
again without traversing the list of suspensions to see if there is a new one. If
num_resumptions is equal to num_suspensions, then it is necessary to traverse the
list, because they may be equal either because no progress was made or because the
number of new suspensions happens to be the same as the number of commits. Since
these operations are carried out only on suspension and resumption, non-suspending
code incurs (almost) no overhead for the possibility of suspension.

3 The Janus Compiler

The Janus compiler has been built with standard tools: the scanner is generated
by lex, the parser by yacc. This is augmented by a phase that does some trans-
formations at the syntax tree level, a code generator that generates Janus virtual
machine code, and a code optimizer.

3.1 Program Transformations
The syntax tree transformations performed by the compiler can be subdivided into
three groups:

Suspension-Related Transformations: These are concerned with simplify-
ing the implementation of tell actions in the body of a clause that might suspend.
To simplify the implementation, we do not want a clause to suspend once it has
committed. Therefore, we create extra predicates for tell actions in the body of
a clause that might have to suspend. These new predicates are generated so that
they can only suspend in the guard, and not in the body: this allows all suspension
to be dealt with in a uniform way, and simplifies the implementation. For example,
in the factorial program

fact(N,"F) :- int(N), N > 0 | fact(N-1,"F1), F = F1i#N.
fact(0,"1).

the multiplication F1*N is only allowed when F1 is known, but that depends on
the condition that the recursive call to fact/3 does not suspend. Therefore, this
program 1s transformed to

fact(N,"F) :- int(N), N > 0 | fact(N-1,"F1), fact__1(F,F1,N).
fact(0,"1).
fact__1(F,F1,N) :- number(F1) | F := F1*N.

Note that the new program is not a legal user program: the operation :=, which
i1s an assignment directly to an asker rather than to the associated teller; is not
available to users, and the predicate fact__1 can be seen to be assigning to a
variable without checking whether it is allowed to do so (i.e., without checking for

a “teller” annotation). This works because the transformation is carried out on the
syntax tree of the program, after any syntax checking is carried out. The point
here is that the compiler knows that the variable F has been checked for a teller
annotation in the clause defining fact /2, so it is not necessary to repeat this check in
fact_1/3. In general, since such auxiliary predicates are automatically generated
by the compiler, they are generated in the most efficient way (maximal reuse of
already available argument registers, maximal use of the information available at
the call site, and omission of unneeded tests).

An alternative to this approach would be to implement virtual machine instruc-
tions operations, that can suspend if necessary—this is the approach taken in the
implementation of KL1 [2]. This approach has the advantage, compared to ours,
that it saves a (Janus) procedure call, but it requires a more complicated suspension
scheme. Also, unless special non-suspending versions of the body goals are provided,
this approach will add tests to every body goal that might suspend, which will slow
down the execution.

Expression Flattening and Common Subexpression Elimination: Com-
plex expressions are broken up into smaller pieces, which are assigned to new vari-
ables. These assignments are put immediately before the goal they are extracted
from. Common expressions are merged to avoid unnecessary computations.

Goal Reordering: In order to avoid unnecessary suspension, goals are re-
ordered, wherever possible, such that producers are generated before consumers.
This transformation also has the advantage that registers can be reused more fre-
quently because variables are only used during a short period. As part of this
transformation, tell actions are moved to the beginning of the body, if possible.
Having most of the tell actions at the beginning of the body goals makes regis-
ter allocation somewhat more difficult, but allows better reuse of partial results,
especially values in untagged registers (addresses, integer and floating point).

3.2 Code Generation

The code generator scans the syntax tree and generates code on a procedure by
procedure basis. Its register allocator that is somewhat different from the ones de-
scribed in literature (e.g., see [3, 8]). Tt uses four kinds of registers: ordinary tagged
registers, untagged address registers, untagged integer registers, and untagged float-
ing point registers. Once a variable has been untagged for any reason, its untagged
version is kept in an untagged register as long as the variable 1s in use. These un-
tagged registers are actually just local registers in a chunk: they are neither saved
on the stack nor used as arguments.

This feature turns out to be interesting, especially for addresses of structures and
the length of arrays. Since subexpressions are extracted and merged, they only have
to be computed once, but can be used many times. The fact that untagged values
are available for reuse contributes to the efficiency: for example, multiple references
to an array element, as in the quicksort benchmark, do not cause its address to be
repeatedly recomputed—instead, it is computed once into an untagged register and
reused subsequently. The code generator not only tries to minimize the number of
instructions, but also the number of registers. The number of hardware registers is
typically limited to about 10, and the code generator reuses registers as much as
possible. Tt keeps a static reference count of the Janus registers (tagged, as well as
untagged), and the n most frequently used registers (where n depends on the target
machine) are stored into hardware registers. In many Prolog implementations, by
contrast, a fixed set (typically the first six or eight) “general purpose” registers
are mapped to hardware registers regardless of their usage counts—an approach

that may very well be suboptimal, since in our experiments we often observed more
references to (untagged) address registers than to some of the first few general
purpose registers.

The register allocator uses a “lazy” allocation algorithm. This essentially means
that it tries to postpone the physical allocation of a register as long as possible.
Therefore, assignments to a variables are not generated, but recorded internally.
In case a bound expression was assigned, it can better immediately be used at the
second (and last) occurrence. For example, some variables that occur only once
are never generated or even assigned a register. Registers are only allocated ‘on
demand’.

For our current benchmark set, we end up with 90% of all the Janus register
references in hardware registers by using only 8 hardware registers. The use of 10
registers covers 95% of all the register references in the benchmark set. Of course,
this does not prove that 95% of the run-time register references will be covered too.
Actually, however, we expect the run-time reference coverage even higher because
the 5% non-covered registers occur predominantly in rarely used clauses or in the
body of a clause. Most of the variables used in guards such as arguments are
allocated to hardware registers. The number of hardware registers that is actually
used depends on the target architecture.

3.3 Code Optimization

The code optimizer uses a special optimization called Call Forwarding to remove
some redundant computation. The basic idea here 1s to generate procedures with
multiple entry points: at any call site for a procedure, information specific to that
call site (obtained, for example, from the guard tests preceding that call or the
operations that created the actual parameters) can be used to bypass some guard
tests at the callee and jump into the middle of the callee’s guard tests. In order
to do so, the compiler keeps track of information (mainly type information) about
the contents of the Janus registers at each call site. This information is used to
generate a call instruction that skips as many tests as possible at the called guard.
Since many guard operations just check the type of the arguments, and since this
information is often readily available at the call site, this optimization allows a call
site to avoid executing many guard tests. The performance improvements resulting
from this relatively simple local optimization turn out to be quite remarkable.? The
smaller the body of the clause w.r.t. the size of the guard, the higher the savings of
this optimization: the optimization is especially successful in case of small recursive
predicates such as naive reverse and factorial. It is interesting to note that the
optimization improves the performance of non-suspending code (in which case some
tests are skipped) as well as suspending code (in which case execution is sometimes
transferred directly into the suspension code).

The effects of call forwarding can be enhanced by another local optimization
called Jump Target Duplication. This optimization replaces an unconditional jump
by the target of the jump, followed by a jump to the instruction following the
target. This transformation does not, of itself, improve efficiency; however, it can
allow the call forwarding algorithm to skip some extra tests that could not have

2Initially, when we began the implementation, we expected that serious global dataflow analysis
would be necessary to get reasonable performance—particularly in light of the fact that extensive
suspension testing seemed necessary in an ask/tell language such as Janus. The improvements
from our local optimizations have so surpassed our expectations that the need for global flow
analysis and optimization, while not entirely eliminated, seems quite a bit less pressing at this
time.

been skipped otherwise. Jump target duplication is especially useful in the special
case where the jump target is a conditional jump. This situation arises due to
last goal optimization, a generalization of tail recursion optimization, since the call
to the last goal in a clause translates to a jump to the beginning of the code for
the corresponding predicate, and this code typically consists of conditional jumps
arising from guard tests. In such cases, an unconditional jump is replaced by a
conditional jump that jumps directly into a particular clause: this saves one jump
instruction. Repeated application can replace a procedure call by a partial decision
tree.

Repeated application of jump target duplication on body goals of the called
predicate will end up in an inline call of the predicate, so to prevent reduce code
bloat, (not to mention infinite expansion on recursive predicates), this feature must
be restricted to a limited number of instructions. In the current implementation,
there is one pass of jump target duplication, where duplication is carried out only
if it will allow further optimization from call forwarding.

As an important side effect, the information that is gathered about the vari-
ables is also used for other purposes. For example, specific type information (e.g.,
whether an operand is guaranteed to be an integer) about variables allows general
arithmetic instructions to be replaced by specialized integer and floating point in-
structions. Other optimizations that use this information include the removal of
redundant dereferencing instructions and globalizing (“put-unsafe”) instructions.
The net result is that the compiler consists of a small number of simple and effi-
cient (and reliable) components, and is able to carry out significant optimizations
and realize good performance, without having to deal with complicated, computa-
tionally expensive, and potentially fragile dataflow analyses.

The final optimization on intermediate code, called Instruction-Pair Motion in-
volves instructions that reverse or nullify the effect of a previous instruction. The
simplest case arises when there are two contiguous instructions that are comple-
mentary, e.g.:

., NewFrame(6), FreeFrame(8),

Here, these instructions are analogous to the allocate and deallocate instruc-
tions, respectively, of the WAM. Clearly, the first instruction can be eliminated
because the second instruction will immediately undo its effects. This optimization
can be generalized to situations where the instructions under consideration are sep-
arated by a nonempty instruction sequence, in some cases containing (conditional
or unconditional) jumps (see also the discussion in [4]). There are two main effects
of this optimization. First, it is often the case that variables are initialized, but this
action is wasted because the initialization value is subsequently overwritten without
ever being used. Such useless initialization of variables can be avoided using this
optimization. A similar optimization is described in [14], based on a global dataflow
analysis. Our approach, which relies on local (intra-procedural) analysis instead,
is simpler and more efficient, but does not work in as many cases. It is, however,
quite effective for loops, where such optimizations are likely to be most effective in
terms of performance improvement.

Second, in tail-recursive predicates (encoding iterative computations), most of
the execution time is usually spent in the recursive clauses. In most nontrivial cases,
such clauses require an environment to be allocated. Under the standard WAM
model of allocation, this causes an environment to be allocated and deallocated each
time around the loop, though it might be more efficient to allocate an environment
once, use 1t through the duration of the loop, and deallocate it at the end. This can

be realized using the instruction-pair motion optimization. The idea is similar to
that discussed in [4]: there are some subtleties regarding the checking of stack/heap
overflow, but a detailed discussion is omitted due to space constraints. A similar
optimization is described in [10]. The optimizations described here can be seen as
generalizing a number of optimizations for traditional imperative languages [1]:

e In the special case of a (conditional or unconditional) jump whose target is a
(conditional or unconditional) jump instruction, call forwarding generalizes a
flow-of-control optimization that collapses chains of jump instructions. Call
forwarding is able to deal with conditional jumps to conditional jumps (this
turns out to be an important source of performance improvement in practice),
while traditional compilers for imperative languages such as C and Fortran
deal only with the case where there is at most one conditional jump (see [1],
p. b56).

e When we consider call forwarding and instruction-pair motion for the last goal
in a recursive clause, what we get 1s essentially a generalization of code motion
out of loops. The reason it is a generalization is that the code that is bypassed
due to call forwarding at a particular goal need not be invariant with respect
to the entire loop, as is required in traditional algorithms for invariant code
motion out of loops. Moreover, our algorithm implements inter-procedural
optimization and can deal with both direct and mutual recursion without
having to do anything special, while traditional code motion algorithms handle
only the intra-procedural case.

e When call forwarding is combined with jump target duplication, we get a
generalization of subprogram inlining. The reason it is a generalization is that
the extent of inlining can be controlled by limiting the number of instructions
duplicated from the jump target, thus allowing “partial inlining.”

e Call forwarding very often skips type tests in the guard, such as teller tests,
integer tests, and floating point number tests. Usually 1t is possible to get
integer arithmetic nearly as fast as machine arithmetic just by “declaring”
the operands as integers in the guard, and depending on call forwarding to
skip the tests. This goes a long way toward overcoming the performance
problems of dynamic typing without requiring global type inference.

In addition, call forwarding is a useful addition to implementation techniques, such
as decision tree compilation, that have been studied for committed choice languages
[9], since it allows optimizations at call-sites rather than just at the callee. Thus,
in the code for the predicate fact/2 given earlier, the type of the first argument is
tested in each clause, and decision tree compilation would execute this just once;
however, this test would be repeated at each recursive call. Using call forward-
ing, the repeated tests at each recursive call would be avoided, because the code
generated for the recursive call would simply bypass this test.

4 An Example of the Code Generated

Figure 1 shows the code generated for the following Janus program:

app([HIL1],L2,"Z) :- 2=[HIL3], app(L1,L2,"L3).
app([1,L,"Z) :- Z=L.

The first column is the optimized Janus virtual machine (JVM) code, while the
second is the corresponding C code generated (some C macros have not been ex-
panded due to space constraints, but their effects are described below and their
implementation should be intuitively obvious). The jc virtual machine instructions

10

are finer-grained than those for the WAM; in fact most of them would have sim-
ple expansions directly into assembly language. The label L3 is the beginning of
the suspension code (not shown). The tag operation macros are left unexpanded
to make the C code easier to read, and in any case they are quite typical of such
operations. Fach is_fype() macro involves a single mask and comparison. Each
get type () and tagtype() for tellers, and integers involves a single mask or shift,
the other types require both a mask and a shift. Askers, tellers, and integers use
two-bit tags, the other types all use 5 bits. Askers have the tag 00, so they require
no work to either tag or untag. All get_asker(t:) macros in the code have been
expanded to ti but the tag_asker macros have been left in.

0Jump (FrameResume) jumps to the resumption address in the top stack frame.
What it actually does is set the value of nxt_1bl to a small integer constant then
jump to the top of a switch statement

top: switch (nxt_1bl) {...}

that contains the whole janus program. Each non-tail call is followed by a case
label on a unique integer. That integer is put on the top of the current frame before
a call.

The Move(cs,0) at the beginning of the body sets the current suspension cs
to a null value on commit. This must be done before the current procedure calls
another procedure, otherwise if ¢s 1s non-null and the called procedure suspends,
it will suspend on cs. The reason this instruction is at the beginning of the body
instead of just before a call is so that call forwarding can skip it. another

MemCheck(:,j) tests to see whether there is room for ¢ words of stace space plus
j words of heap space plus the extra word on the stack for storing the resumption
address. The reason the C code shows a check for 3 words instead of just 2 is that
the extra word on the stack frame is checked for even when no stack is allocated,
as in this example.

MakeTeller(t2,t2) is implemented as a special tag operation that converts an
asker to a teller with one addition. TELLER and ASKER are the teller and asker
tags respectively. They are static constants so the substraction is performed at C
compile-time. In the unoptimized code there is a teller made and then an asker 1s
extracted from it in the inner loop, but in the optimized code both operations are
moved out of the inner loop.

MakeSafe(t1) moves t1 to the heap if it is on the stack. This is necessary in
general to avoid having a lower frame in the stack point to a higher one. Because
of the strict directionality of assignment in Janus it is not possible to use the WAM
strategy of always just making the higher address point to the lower one. The
preceeding MemCheck() is needed to make sure there is space in case t1 needs to be
moved to the heap.

5 Performance
The tables below give some indication of the current level of performance of the
system. The host machine in all cases is a Sun 4/60 (SPARCstation-1) with 16 MB
of main memory. It should be emphasized that this is by no means a finished system:
there are a number of optimizations that we have not had time to implement.
Table 1 compares the speed of the code produced by the jc compiler with
the speed of the same program written in Prolog and executed on Sicstus Prolog
version 2.1 (compiling to native code) and Quintus Prolog version 3.1.1. In each
case, the time reported, in milliseconds, is the time taken to execute the program
once. This time was obtained by iterating the program long enough to eliminate

11

¢l

LO:

L4:

Optimized JVM code

%%% CODE FOR CLAUSE 1

FExpanded C Code

SIRULYDUQq 2542004 2aipu 9y ul ¢ /pusdde 10} pajelousd opoy) : 2In3Lg

umpUnlessTeller ,t » Is ar a teller” — ;
J PU 1 Teller(L2,t2) v T g 3 1ler? LO:if (:1s teller(t2)) gOtO 1.2
umpUnlessLcons(L5,t , Is ar a cons cell? (18- ;
JumpUnlessL (L5,t0) Y1 g 1 117 if E (J).s lcons(t0)) goto L5
Move(cs,0) Y% €s =95) _ o]
GetAsker (£2) % Remove teller tag .f'or (t2—*get:teller(t2),t2 !—'*t2,t2—*t2),
MemCheck(0,2) % Enough space for new cons? L4:if ESp + 3 >= hp) nllem_error(),
GetCons(a0,t0) % Get address of old cons a0 - get_l?ons(to),
Load(t3,a0[0]) % Get car of old cons t3 - aO[O]i
Load(t0,a0[1]) % Get cdr of old cons Eo :_ag!:ﬂ 5
HeapSpace(2) % Allocate space for cons *P2 - N (hp) ;
Assign(t2,tag_lcons(hp)) % Assign new cons to arg 3 t2 = Eag_.cons PJ;
Store(t3,hp[0]) % Set car of new cons hpl:O:l_— £3;)
MakeAsker (t2,hp[1]) % Make a reference to cdr t2 = tag_asker(&hp[.l]),'
Deref (t0) % Deref the cdr of old cons {register tagval *v; if (is_asker(t0))
Y do t0=*(v=t0); while(is_asker(t0)&&v!=t0);}
JumpIfLcons(L4,t0) % Loop if old cdr is a coms if (is_lcons(t0)) goto L4;
Store(t2,hp[1]) % Initialize new cdr }}P[ﬂ = t2;)
JumpIfEqual(L6,t0,C_nil) % Exit if old cdr is nil if (£0 == C_nil) goto L6;
MakeTeller(t2,t2) % Make a teller for new cdr t2 = t2 + (TELLER - ASKER);
Jump (L2) Y goto L2;
%A% CODE FOR CLAUSE 2 Li:if (!is teller(t2)) goto L2;
:JumpUnlessTeller(L2,t2) % Teller test for clause 2 L5:if (t0 != C_nil) goto L2;
:JumpUnlessEqual(L2,t0,C_nil) % Is arg 1 nil? for (t2=*get_teller(t2);t2 != #t2;t2=%t2);
GetAsker(t2) % Change arg 3 to an address L6:if (sp + 2 >= hp) mem_error();
:MemCheck(0,1) % Check space for MakeSafe if (t1 < sp && is_varptr(t1))
MakeSafe(t1) % Make sure arg 2 is safe {hp-=1;*hp=*get_varptr(ti)=hp;ti=hp|(t1&3);}
% *¥t2 = t1;
Assign(t2,t1) % Assign arg 2 to arg 3 nxt_1bl = ((frame)sp)->resume; goto top;
0Jump (FrameResume) % Return from procedure L2:if (!is_known(t0)) goto L3;
: JumpUnlessKnown(L3,t0) % Suspend if arg 1 unbound if (!is_known(t2)) goto L3;

JumpUnlessKnown(L3,t2) % Suspend if arg 3 unbound

Program je (J) (ms) | Sicstus (S) (ms) | S/J | Quintus (Q) (ms) | Q/J
hanoi 182 300 1.6 690 3.4
tak 267 730 2.7 2200 8.2
nrev 0.729 1.8 2.5 7.9 11
gsort 2.03 5.1 2.5 9.4 4.6
factorial 0.0494 0.44 8.9 0.27 5.5

Table 1: The Performance of jc, compared with Sicstus and Quintus Prolog

Program unoptimized (ms) | optimized (ms) | % improvement
hanoi 283 182 36
tak 487 138 72
nrev 2.07 0.729 65
gsort 3.57 2.03 43
factorial 0.0678 0.0494 27
merge 1.19 0.623 46
susp 43.5 26.8 38
dnf 0.628 0.217 65

Table 2: Speed Improvements due to the optimizations

most effects due to multiprogramming. The experiments were repeated 20 times
for each benchmark on each system and in each case, the average time was taken.
The benchmarks tested were the following:

nrev — naive reverse: 1000 iterations on a list of length 30.

gsort— quicksort: 100 iterations on a list of length 50.

tak— the “Takeuchi” benchmark: we timed the call tak(18, 12, 6, _).
hanoi — The Towers of Hanoi program: hanoi(13). Adapted from [7].
factorial — A program to compute the factorial of 12.

The Janus code is typically more than twice as fast as the Sicstus Prolog, and four
to eight times faster than Quintus Prolog. Table 2 gives the improvements in speed
resulting from the optimizations described at the end of the previous section. Here
we include three more benchmarks: susp, a program that suspends and resumes
repeatedly because the consumer 1s always scheduled ahead of the producer. The
merge benchmark is the usual nondeterministic “merge” program. The dnf bench-
mark is an array based implementation of the “Dutch national flag” problem (see
[12]). The combined optimizations (call forwarding, jump target duplication, and
instruction-pair motion), give rise to a speed improvements typically ranging from
30%—65%. For well written Janus clauses, the overhead of the guard tests that do
not play a role in committing a particular clause, but are just written as a kind
of sanity check for the arguments to have the proper type, is almost completely
optimized away.

Finally, Table 3 compares the performance of our Janus system with C code for
some small benchmarks. Again, these were run on a SPARCstation 1, with cc as
the C compiler. We tested only programs where we felt C could “compete fairly”
— 1.e., we did not test programs such as nrev or merge, where the cost of memory
allocation via malloc() would have crippled the performance of the C programs
and produced misleading results. The programs were written in the style one would

13

Program Janus (ms) | C (unopt) (ms) | C (opt: -04)
gsort? 1.33 1.25 0.34
tak 267 208 72
factorial 0.0494 0.049 0.036

Table 3: The performance of jc compared to C

expect of a competent C programmer: no recursion (except in tak, where it is hard
to avoid), destructive updates, and the use of arrays (in gsort).

It can be seen that even without global dataflow analysis and optimizations, we
are not very far from the performance of the C code — a factor of 4 in speed from
the code produced by optimizing at level -04 by a high-quality C compiler such
as cc on the SPARCstation is not very embarrassing, and we expect to close the
gap considerably once we implement a number of optimizations that we are now
investigating.

6 Conclusions
This paper describes jc, a portable and efficient sequential implementation of Janus
[12] that compiles down to C. When we began this implementation, we expected
that “heavy-duty” global flow analyses and optimizations would be necessary for
credible performance, because ask/tell languages involve a great deal of testing for
suspension, etc., that is absent in Prolog. Somewhat to our surprise, we discovered
that with careful attention to the C code generated by the Janus compiler, and some
reasonably simple “local” optimizations such as common subexpression elimination
and call forwarding, we can attain reasonably good performance. We expect further
performance improvements once we have implemented sophisticated compilation
algorithms, such as (weighted) decision trees, heap space reuse, and global flow
analysis and optimizations.

An alpha test version of this system, together with some (rudimentary) docu-
mentation, is currently available by anonymous FTP from c¢s.arizona.edu in the
directory janus/jc.

Acknowledgements: Discussions with Mats Carlsson played a very important
role in the design of the Janus virtual machine. The system also benefited from dis-
cussions with Takashi Chikayama, Ken Kahn, Jacob Levy, and Vijay Saraswat. We
are also grateful to Mats Carlsson for helping with the Quintus Prolog benchmark-
ing. The work of the first and third authors was supported in part by the National
Science Foundation under grant number CCR-8901283, and that of the second au-
thor by the National Fund for Scientific Research of Belgium and by the Belgian
National incentive program for fundamental research in Artificial Intelligence, ini-
tiated by the Belgian State Prime Minister’s office Science Policy Programming.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers — Principles, Techniques and
Tools, Addison-Wesley, 1986.

3The Janus version of gqsort used in this table is different from the one used in the previous
tables: here, the predicate split/4 has explicit int/1 tests in its guards, to be consistent with
int declarations in the C program and allow a fair comparison. These tests allow additional
optimizations in the Janus compiler.

14

[2]
[3]

[4]
[5]

[9]

[10]

[11]

[12]

T. Chikayama, personal communication, Feb. 1992.

S. K. Debray, “Register Allocation in a Prolog Machine”, Proc. 1986 IEEE
Symposium on Logic Programming, Salt Lake City, Sept. 1986, pp. 267-275.

S. K. Debray, “A Simple Code Improvement Scheme for Prolog”, J. Logic
Programming, vol. 13 no. 1, May 1992, pp. 57-88.

S. K. Debray, S. Kannan, and M. Paithane, “Weighted Decision Trees”, Proc.
Joint International Conference and Symposium on Logic Programmaing, Wash-
ington, D.C., Nov. 1992 (this volume).

I. Foster and S. Taylor, “Strand: A Practical Parallel Programming Tool”,
Proc. 1989 North American Conference on Logic Programming, Cleveland,

Ohio, Oct. 1989, pp. 497-512. MIT Press.

A. Houri and E. Shapiro, “A Sequential Abstract Machine for Flat Concurrent
Prolog”, in Concurrent Prolog: Collected Papers, vol. 2, ed. E. Shapiro, pp.
513-574. MIT Press, 1987.

G. Janssens, B. Demoen, and A. Marién, “Improving the Register Allocation
in WAM by Reordering Unification”, Proc. Fifth International Conference on
Logic Programming, Seattle, Aug. 1988, pp. 1388-1402.

S. Kliger and E. Shapiro, “From Decision Trees to Decision Graphs”, Proc.
1990 North American Conference on Logic Programming, Austin, Oct. 1990,
pp. 97-116. MIT Press.

M. Meier, “Recursion vs. Iteration in Prolog”, Proc. Eighth International Con-
ference on Logic Programming, Paris, June 1991, pp. 157-169. MIT Press.

V. A. Saraswat, Concurrent Constraint Programming Languages, PhD thesis,
Dept. of Computer Science, Carnegie-Mellon University, 1989. (To appear in
the ACM Doctoral Dissertation Award series, MIT Press.)

V. Saraswat, K. Kahn, and J. Levy, “Janus: A step towards distributed con-
straint programming”, in Proc. 1990 North American Conference on Logic
Programming, Austin, TX, Oct. 1990, pp. 431-446. MIT Press.

K. Ueda, “Guarded Horn Clauses”, in Concurrent Prolog: Collected Papers,
vol. 1, ed. E. Shapiro, pp. 140-156, 1987. MIT Press.

P. Van Roy and A. M. Despain, “The Benefits of Global Dataflow Analysis for
an Optimizing Prolog Compiler”, Proc. 1990 North American Conference on
Logic Programming, Austin, Texas, Oct. 1990, pp. 501-515. MIT Press.

15

