
jc: An E�cient and Portable SequentialImplementation of JanusDavid Gudeman1, Koenraad De Bosschere2, Saumya K. Debray11. Department of Computer Science 2. Electronics LaboratoryThe University of Arizona Rijksuniversiteit GentTucson, AZ 85721, USA B-9000 Gent, BelgiumAbstract: Janus is a language designed for distributed constraint programming[12]. This paper describes jc, an e�cient and portable sequential implementationof Janus, which compiles Janus programs down to C code. Careful attention tothe C code generated, together with some simple local optimizations, allows thesystem to have fairly good performance despite the lack (at this time) of global 
owanalysis and optimization.1 IntroductionJanus [12] is an instance of a concurrent constraint programming language [11].This report describes jc, an e�cient and portable sequential implementation ofJanus that compiles down to C. A Janus program is a set of 
at guarded clausesde�ning its procedures. It is in many respects similar to Strand [6] and Flat GHC[13]. There are, however, a number of di�erences: the most important of these isthe two-occurrence restriction of Janus. This restriction states, essentially, that inany clause, a variable whose value cannot be inferred to be \�xed" (i.e., ground)from the guard operations is allowed to have at most two occurrences: one of theseoccurrences is annotated to be the \writable" occurrence, and the other is the\readable" occurrence. Only the writable occurrence of a variable may be assignedto. Thus, variables in e�ect serve as point-to-point communication channels; otherlanguage constructs allow many-to-one and one-to-many communication.The two-occurrence restriction is motivated strongly by a vision of distributedconstraint programming. A fundamental concern is that syntactically correct pro-grams should not cause the store to become inconsistent at runtime: this is enforcedby the two-occurrence restriction, which ensures that any variable has exactly oneproducer, thereby precluding any possibility of inconsistency. This has the desir-able e�ect that programs become e�ciently implementable (at least in principle).It has been observed that while programs typically do not give rise to a great dealof aliasing, this information is not available to compilers, which have to resort tocomplicated and potentially expensive algorithms to recover it. The problem isaddressed in Janus by specifying the default to be that there is no aliasing, and re-quiring the programmer to explicitly invoke certain language features when sharingbetween structures is necessary. Rules for syntactic well-formedness then ensurethat the compile-time satisfaction of certain properties, local to a clause, regardingthe number of occurrences of a variable imply the run-time satisfaction of certainglobal properties regarding lack of aliases.Data objects in Janus consist of the following: askers, tellers, numbers (integersand 
oats), constants, arrays, lists, and bags. An asker for a variable X is the\read" occurrence of X: it denotes read capability on the communication channel X(if we think of a variable as a communication point-to-point channel). A teller for avariable X, written ^X, denotes the \write" occurrence of X, i.e., write capability onthe channel X. An array of n objects a0; : : : ; an�1, written <a0; : : : ; an�1>, representsa sequence of values indexed by f0; : : : ; n�1g. A list is either the empty list [], or a1



pair [H|L]. A bag represents an unordered multiset of objects, and can be thoughtof as many-to-one communication channels. Ask constraints in Janus consist ofvarious type tests and relational tests on objects (and, via selectors, to componentsof objects). A tell constraint is restricted to be of the form X = E, where X is avariable for which the agent has tell rights, and E can be any expression includingarithmetic, array, and bag expressions.2 The Janus Virtual Machine2.1 ValuesJanus values are represented in a single word consisting of a tag and a data portion.For integers, the data portion is the integer itself. For atoms (symbols, not atomicclauses) the data portion is a unique integer that can be looked up in a table to�nd the representation of the atom. For 
oats, the data portion is a pointer toa memory block (on the SPARC, for example, this is a 32-bit word) containing a
oating point number. For lists, the data portion is a pointer to a pair of taggedvalues. For arrays, the data portion is a pointer to an array block. The array blockcontains the length of the array and a pointer to the sequence of tagged values thatmake up the array. For tellers, the data portion is a pointer to the correspondingasker. For askers, the data portion is a pointer to itself or to a lower value in thereference chain.2.2 Memory ManagementThe Janus runtime system has two memory regions, the stack and the heap. Thestack contains environments (also called stack frames), which contain a set of localvariables in the form of tagged values. The heap contains tagged values as wellas 
oating point numbers, suspension records, arrays and other sorts of data thatdo not �t into stack allocation. Currently, there is no garbage collection for theheap. The bottom of the stack begins at an address lower than the heap and growstoward higher memory while the heap grows toward lower memory. This makes itpossible to check the allocation of stack and heap space at the same time with asingle comparison of the stack and heap pointers.Environments are allocated only at commit points: guard operations are carriedout entirely in registers. When a clause commits, an environment of the appropriatesize (for that clause) is allocated if necessary. The allocation and deallocation ofenvironments is similar to the WAM, but with some important di�erences. First,the test to see if there is enough space for a stack frame is separate from the actualallocation of the stack frame. This allows us to combine the tests for adequate heapand stack space in a clause, so that for most procedures there is only one test thataccounts for all the space that will be needed (for the stack as well as the heap)in a clause. Another di�erence from the WAM is that that rather than savinga \return address"|a pointer into the code of some other procedure|to whichcontrol should be transferred when the current activation has �nished execution,an environment for a procedure contains a \resumption address"|a pointer intoits own code|where execution should resume when control returns to it. Thissimpli�es the management of control in the presence of arbitrary suspensions andresumptions.Another (minor) di�erence from the WAM is that jc uses a stack pointer sp(to the top of the stack) rather than an environment pointer (to the base of thetopmost environment). Local variables are referenced by negative o�sets from spand the resumption address is the top word on the stack. There is no pointer2



to the previous stack frame, instead environment allocation and deallocation usesa matched pair of instructions NewFrame(i), ..., FreeFrame(i) where i is thenumber of variables in the stack frame. This scheme, like the WAM, leaves thestack with no self-de�ning structure. In other words, there is no way to dividethe stack into frames by following pointers. This is not needed for allocating anddeallocating environments, but debugging and garbage collection procedures needto know the structure of the stack so there has to be a way to re-create it. To allowthis, the resumption addresses are given special tags to distinguish them from othertagged values. Since there is a resumption address at the top of each frame (exceptpossibly the topmost frame), it is possible to divide the stack into environmentsby looking for tagged resumption addresses. Since currently resumption addressesare arbitrary integers, there is no run-time overhead associated with tagging anduntagging them, the tagged value is just used all the time.2.3 RegistersThe virtual machine has a set of registers that are simply C variables, but manyof them are declared as \register" and mapped to hardware registers. The special-purpose registers include the usual stack pointer and heap pointer. In addition, wehave a register cs that is used to reduce the overhead of suspension (see below): thisis a pointer to the current suspension record (or NULL if there is no such structure).There are a number of special registers that handle suspension and resumption ofactivations. Finally, there are several sets of general-purpose registers: tagged valueregisters, used to hold tagged values and to pass parameters to procedures (theparameter passing convention is similar to the WAM); address registers, used tohold machine addresses; integer registers, used to hold untagged integer values; and
oat registers, used to hold 
oating point values. There is no a priori bound onthe number of general purpose registers: the Janus compiler generates a distinctC variable for each register needed by a program (some subset of these are givenregister declarations, based on usage counts, as discussed later).2.4 ArithmeticInteger values are represented as 32-bit words (30-bit value + 2-bit tag), while
oating point values are represented by a tagged pointer to an untagged 
oating-point number, in the machine representation, allocated in the heap. The runtimesystem has the usual complement of arithmetic instructions. These instructionscome in a number of di�erent versions, for di�erent types of operands and results(tagged/untagged, integer/
oat).Conditional instructions in the virtual machine contain the label as one of theoperands, and the jump is made immediately if the condition is met. There is apair of conditional instructions for each type of tag, one that jumps if the tag isright, one that jumps if it is wrong.There is also the complete set of arithmetic conditions: EQ, NE, LT, LE, GT,and GE. Like the arithmetic operations, these instructions also come in a numberof di�erent versions for comparing tagged values, tagged integers, tagged 
oats,untagged integers, untagged 
oats, and addresses. The conditions on general taggedvalues are all implemented as C functions to reduce code bloat.2.5 ProceduresParameters are all passed in tagged value registers (t0, t1, t2, :::). Before callingan n-ary procedure, the �rst n tagged value registers must be set to the n actualparameters. Then if the call is not a tail call, the stack frame must be updated to3



contain the resumption address of the calling procedure. When a procedure exitsit just jumps to the resumption address of the top frame on the stack. The bottomframe on the stack is always initialized with a resumption address that exits theJanus portion of the program (returning to the top-level input mode).Resumption addresses present a problem when compiling to C because in C,labels are not �rst-class objects. They are not values that can be assigned tovariables, and it is not legal to write goto e where e is an expression other than alabel name. One possible way to solve this problem is to use separate C functions forJanus procedures, since C does allow function-valued variables. But that solution isunsatisfactory for several reasons. First, the overhead of C procedure calls is muchhigher (for most compilers) than what is needed for Janus. Second, most C compilersdo not do tail-call optimization. Third, such a strategy would preclude several othertypes of optimization such as call-forwarding and optimizations involving where aresumed procedure starts.A less unsatisfactory solution, the one currently used in jc, is to use the Cswitch statement to give a form of \computed goto". Any address that must bestored in memory and calculated dynamically is implemented as a small integerconstant (tagged as an address), and the \label" for that address is a case labelwith that value. However, addresses of procedures are known statically, so thejump instructions in procedure calls can have the label \hard-wired" in.The code for the clauses of a procedure are generated contiguously, in sequence.Each guard test jumps to the next guard on failure.1 If the last guard fails it jumpsto the suspension code. After the guard code for a clause, at the \commit" point, iscode to allocate an environment for that clause (if necessary). Also at the commitpoint is code that checks whether there is adequate space in the heap to satisfyall allocation requirements of the tell actions appearing in the body of the clause.After these allocation checks is code for in-line tell actions. Only after all possiblein-line work is done are there any procedure calls.2.6 Suspension and ResumptionIn general, before a guard can test the value of a variable, it must make sure thatthe variable is instantiated to a value. If not, then the 
ag register susp flag isset and there is a jump to the next guard or the suspension code. This action is allhandled by the single instruction CheckIfAsker(lbl,var). If the 
ag susp flagis set when control reaches the suspension code, then it is known that at least oneguard was unable to �nish due to an uninstantiated variable, so the procedure mustsuspend until that variable becomes known. Otherwise, all guards completed andfailed, so the procedure vanishes.As a special case, a test on a parameter does not need to be proceeded bya CheckIfAsker instruction. For parameters, the guard simply checks the type orvalue of the the variable and jumps to the next guard if the variable does not satisfythe test. Such tests will always fail if the variable is not instantiated. Then thesuspension code must check each such parameter to see if it is instantiated as well aschecking susp flag. This strategy moves work out of the normal non-suspendingcode and into the suspension code, so that procedures that do not suspend do nothave to pay a high performance cost for the language's suspension feature.But this strategy does not work for variables that are not parameters, becausethere is no guarantee that the variable is available when the suspension code getsexecuted. The reason is that any non-parameter variable must get assigned some-1We currently do not have decision tree compilation implemented: we are investigating decisiontree compilation in the presence of execution weights, see [5] for details.4



where in the guard, and the assignment will never be made if a preceeding test inthe same guard fails. For example the guard of the clausep(L) :- L = [H|T], int(H) | :::(supposing it is the second guard) gets expanded intoG2 lbl:JumpUnlessLcons(G3 lbl,t0)GetCons(a0,t0)Load(t1,a0[0])JumpUnlessInt(t1):::G3 lbl::::Notice the use of t0 and t1, the tagged-value registers. The single formal parameteris initially in t0. In the code above, it is clear that if p/1 is called with an askeras its actual parameter, then the register t1 never gets assigned a value. So thesuspension code cannot test t1 to check whether it is an asker.When a procedure needs to suspend, it copies its parameters to the heap, thencreates a suspension record in the heap, setting the special register cs (currentsuspension) to point to it. The suspension record contains a continuation address,a pointer to the parameters in the heap, a number telling how many parametersthere are, and a pointer to the next suspension in a list of suspensions. Then thereis a jump to suspension label where cs is prepended to the list suspension listof suspended activations.When a suspension record is resumed, the register cs is set to point to thesuspension record. Then the parameters are copied into the registers, and executioncontinues at the beginning of the procedure. If the procedure suspends again, thecs register is already pointing to the correct suspension record, so it is not necessaryto create or initialize a new one. The suspension code of each procedure containsa test at the beginning that jumps directly to suspension label if cs is non-zero,thereby avoiding the creation of a new suspension record. This greatly reduces theoverhead of a program that has procedures suspending and resuming many timesbefore they commit.An early design decision in the jc system was that programs that did not needto suspend should not, if at all possible, incur any overhead due to the fact thatthe language allows suspension. One consequence of this decision was to abandonany attempt at fair scheduling: our stance is that programs written by the usershould not rely on assumptions about the underlying scheduling strategy beingused in an implementation for their correctness. Thus, our strategy for resumptionof suspended goals makes no guarantee about when an awakened goal will actuallyget to execute. This allows us to optimize the implementation considerably: a tellaction does not have to check whether it is awakening a suspended goal, and othercommon primitive operations also do not have to contend with suspensions. Indeed,there is no special tag indicating a \variable that has a procedure waiting for it tobe instantiated".When the stack is empty and there are no suspension records on rl, thesuspension list is copied to the rl and execution proceeds at the scheduler. Thescheduler is simply a piece of code that checks if the register rl (the resume list)is non-empty. If so, then a suspension record is removed from the list and resumedas described above. If rl is empty, then execution continues at the resume address5



of the top frame on the stack. If a list of suspended procedures is resumed in thisway and none of them makes any progress, it is not a good idea to repeat the pro-cess since they will continue to make no progress and an in�nite loop will result.To detect this, there is another �eld in the suspension record, was resumed thatis 0 when the the record is �rst created and gets set to 1 when it is resumed. Ifany element in the suspension list has a was resumed �eld equal to 0, then thatresumption is new.Searching the entire list of suspensions to see if there is a new one can getexpensive, so there are two more registers, num suspensions, which counts thenumber of suspensions that have occurred since the last batch resumption, andnum resumptionswhich tells how many suspension records were resumed in the lastbatch resumption. If num suspensions is di�erent from num resumptions, thensome progress was made since the last batch resumption, so it is safe to resumeagain without traversing the list of suspensions to see if there is a new one. Ifnum resumptions is equal to num suspensions, then it is necessary to traverse thelist, because they may be equal either because no progress was made or because thenumber of new suspensions happens to be the same as the number of commits. Sincethese operations are carried out only on suspension and resumption, non-suspendingcode incurs (almost) no overhead for the possibility of suspension.3 The Janus CompilerThe Janus compiler has been built with standard tools: the scanner is generatedby lex, the parser by yacc. This is augmented by a phase that does some trans-formations at the syntax tree level, a code generator that generates Janus virtualmachine code, and a code optimizer.3.1 Program TransformationsThe syntax tree transformations performed by the compiler can be subdivided intothree groups:Suspension-Related Transformations: These are concerned with simplify-ing the implementation of tell actions in the body of a clause that might suspend.To simplify the implementation, we do not want a clause to suspend once it hascommitted. Therefore, we create extra predicates for tell actions in the body ofa clause that might have to suspend. These new predicates are generated so thatthey can only suspend in the guard, and not in the body: this allows all suspensionto be dealt with in a uniform way, and simpli�es the implementation. For example,in the factorial programfact(N,^F) :- int(N), N > 0 | fact(N-1,^F1), F = F1*N.fact(0,^1).the multiplication F1*N is only allowed when F1 is known, but that depends onthe condition that the recursive call to fact/3 does not suspend. Therefore, thisprogram is transformed tofact(N,^F) :- int(N), N > 0 | fact(N-1,^F1), fact__1(F,F1,N).fact(0,^1).fact__1(F,F1,N) :- number(F1) | F := F1*N.Note that the new program is not a legal user program: the operation :=, whichis an assignment directly to an asker rather than to the associated teller, is notavailable to users, and the predicate fact 1 can be seen to be assigning to avariable without checking whether it is allowed to do so (i.e., without checking for6



a \teller" annotation). This works because the transformation is carried out on thesyntax tree of the program, after any syntax checking is carried out. The pointhere is that the compiler knows that the variable F has been checked for a tellerannotation in the clause de�ning fact/2, so it is not necessary to repeat this check infact 1/3. In general, since such auxiliary predicates are automatically generatedby the compiler, they are generated in the most e�cient way (maximal reuse ofalready available argument registers, maximal use of the information available atthe call site, and omission of unneeded tests).An alternative to this approach would be to implement virtual machine instruc-tions operations, that can suspend if necessary|this is the approach taken in theimplementation of KL1 [2]. This approach has the advantage, compared to ours,that it saves a (Janus) procedure call, but it requires a more complicated suspensionscheme. Also, unless special non-suspending versions of the body goals are provided,this approach will add tests to every body goal that might suspend, which will slowdown the execution.Expression Flattening and Common Subexpression Elimination: Com-plex expressions are broken up into smaller pieces, which are assigned to new vari-ables. These assignments are put immediately before the goal they are extractedfrom. Common expressions are merged to avoid unnecessary computations.Goal Reordering: In order to avoid unnecessary suspension, goals are re-ordered, wherever possible, such that producers are generated before consumers.This transformation also has the advantage that registers can be reused more fre-quently because variables are only used during a short period. As part of thistransformation, tell actions are moved to the beginning of the body, if possible.Having most of the tell actions at the beginning of the body goals makes regis-ter allocation somewhat more di�cult, but allows better reuse of partial results,especially values in untagged registers (addresses, integer and 
oating point).3.2 Code GenerationThe code generator scans the syntax tree and generates code on a procedure byprocedure basis. Its register allocator that is somewhat di�erent from the ones de-scribed in literature (e.g., see [3, 8]). It uses four kinds of registers: ordinary taggedregisters, untagged address registers, untagged integer registers, and untagged 
oat-ing point registers. Once a variable has been untagged for any reason, its untaggedversion is kept in an untagged register as long as the variable is in use. These un-tagged registers are actually just local registers in a chunk: they are neither savedon the stack nor used as arguments.This feature turns out to be interesting, especially for addresses of structures andthe length of arrays. Since subexpressions are extracted and merged, they only haveto be computed once, but can be used many times. The fact that untagged valuesare available for reuse contributes to the e�ciency: for example, multiple referencesto an array element, as in the quicksort benchmark, do not cause its address to berepeatedly recomputed|instead, it is computed once into an untagged register andreused subsequently. The code generator not only tries to minimize the number ofinstructions, but also the number of registers. The number of hardware registers istypically limited to about 10, and the code generator reuses registers as much aspossible. It keeps a static reference count of the Janus registers (tagged, as well asuntagged), and the n most frequently used registers (where n depends on the targetmachine) are stored into hardware registers. In many Prolog implementations, bycontrast, a �xed set (typically the �rst six or eight) \general purpose" registersare mapped to hardware registers regardless of their usage counts|an approach7



that may very well be suboptimal, since in our experiments we often observed morereferences to (untagged) address registers than to some of the �rst few generalpurpose registers.The register allocator uses a \lazy" allocation algorithm. This essentially meansthat it tries to postpone the physical allocation of a register as long as possible.Therefore, assignments to a variables are not generated, but recorded internally.In case a bound expression was assigned, it can better immediately be used at thesecond (and last) occurrence. For example, some variables that occur only onceare never generated or even assigned a register. Registers are only allocated `ondemand'.For our current benchmark set, we end up with 90% of all the Janus registerreferences in hardware registers by using only 8 hardware registers. The use of 10registers covers 95% of all the register references in the benchmark set. Of course,this does not prove that 95% of the run-time register references will be covered too.Actually, however, we expect the run-time reference coverage even higher becausethe 5% non-covered registers occur predominantly in rarely used clauses or in thebody of a clause. Most of the variables used in guards such as arguments areallocated to hardware registers. The number of hardware registers that is actuallyused depends on the target architecture.3.3 Code OptimizationThe code optimizer uses a special optimization called Call Forwarding to removesome redundant computation. The basic idea here is to generate procedures withmultiple entry points: at any call site for a procedure, information speci�c to thatcall site (obtained, for example, from the guard tests preceding that call or theoperations that created the actual parameters) can be used to bypass some guardtests at the callee and jump into the middle of the callee's guard tests. In orderto do so, the compiler keeps track of information (mainly type information) aboutthe contents of the Janus registers at each call site. This information is used togenerate a call instruction that skips as many tests as possible at the called guard.Since many guard operations just check the type of the arguments, and since thisinformation is often readily available at the call site, this optimization allows a callsite to avoid executing many guard tests. The performance improvements resultingfrom this relatively simple local optimization turn out to be quite remarkable.2 Thesmaller the body of the clause w.r.t. the size of the guard, the higher the savings ofthis optimization: the optimization is especially successful in case of small recursivepredicates such as naive reverse and factorial. It is interesting to note that theoptimization improves the performance of non-suspending code (in which case sometests are skipped) as well as suspending code (in which case execution is sometimestransferred directly into the suspension code).The e�ects of call forwarding can be enhanced by another local optimizationcalled Jump Target Duplication. This optimization replaces an unconditional jumpby the target of the jump, followed by a jump to the instruction following thetarget. This transformation does not, of itself, improve e�ciency; however, it canallow the call forwarding algorithm to skip some extra tests that could not have2Initially, when we began the implementation, we expected that serious global data
ow analysiswould be necessary to get reasonable performance|particularly in light of the fact that extensivesuspension testing seemed necessary in an ask/tell language such as Janus. The improvementsfrom our local optimizations have so surpassed our expectations that the need for global 
owanalysis and optimization, while not entirely eliminated, seems quite a bit less pressing at thistime. 8



been skipped otherwise. Jump target duplication is especially useful in the specialcase where the jump target is a conditional jump. This situation arises due tolast goal optimization, a generalization of tail recursion optimization, since the callto the last goal in a clause translates to a jump to the beginning of the code forthe corresponding predicate, and this code typically consists of conditional jumpsarising from guard tests. In such cases, an unconditional jump is replaced by aconditional jump that jumps directly into a particular clause: this saves one jumpinstruction. Repeated application can replace a procedure call by a partial decisiontree.Repeated application of jump target duplication on body goals of the calledpredicate will end up in an inline call of the predicate, so to prevent reduce codebloat, (not to mention in�nite expansion on recursive predicates), this feature mustbe restricted to a limited number of instructions. In the current implementation,there is one pass of jump target duplication, where duplication is carried out onlyif it will allow further optimization from call forwarding.As an important side e�ect, the information that is gathered about the vari-ables is also used for other purposes. For example, speci�c type information (e.g.,whether an operand is guaranteed to be an integer) about variables allows generalarithmetic instructions to be replaced by specialized integer and 
oating point in-structions. Other optimizations that use this information include the removal ofredundant dereferencing instructions and globalizing (\put-unsafe") instructions.The net result is that the compiler consists of a small number of simple and e�-cient (and reliable) components, and is able to carry out signi�cant optimizationsand realize good performance, without having to deal with complicated, computa-tionally expensive, and potentially fragile data
ow analyses.The �nal optimization on intermediate code, called Instruction-Pair Motion in-volves instructions that reverse or nullify the e�ect of a previous instruction. Thesimplest case arises when there are two contiguous instructions that are comple-mentary, e.g.:..., NewFrame(6), FreeFrame(6), ...Here, these instructions are analogous to the allocate and deallocate instruc-tions, respectively, of the WAM. Clearly, the �rst instruction can be eliminatedbecause the second instruction will immediately undo its e�ects. This optimizationcan be generalized to situations where the instructions under consideration are sep-arated by a nonempty instruction sequence, in some cases containing (conditionalor unconditional) jumps (see also the discussion in [4]). There are two main e�ectsof this optimization. First, it is often the case that variables are initialized, but thisaction is wasted because the initialization value is subsequently overwritten withoutever being used. Such useless initialization of variables can be avoided using thisoptimization. A similar optimization is described in [14], based on a global data
owanalysis. Our approach, which relies on local (intra-procedural) analysis instead,is simpler and more e�cient, but does not work in as many cases. It is, however,quite e�ective for loops, where such optimizations are likely to be most e�ective interms of performance improvement.Second, in tail-recursive predicates (encoding iterative computations), most ofthe execution time is usually spent in the recursive clauses. In most nontrivial cases,such clauses require an environment to be allocated. Under the standard WAMmodel of allocation, this causes an environment to be allocated and deallocated eachtime around the loop, though it might be more e�cient to allocate an environmentonce, use it through the duration of the loop, and deallocate it at the end. This can9



be realized using the instruction-pair motion optimization. The idea is similar tothat discussed in [4]: there are some subtleties regarding the checking of stack/heapover
ow, but a detailed discussion is omitted due to space constraints. A similaroptimization is described in [10]. The optimizations described here can be seen asgeneralizing a number of optimizations for traditional imperative languages [1]:� In the special case of a (conditional or unconditional) jump whose target is a(conditional or unconditional) jump instruction, call forwarding generalizes a
ow-of-control optimization that collapses chains of jump instructions. Callforwarding is able to deal with conditional jumps to conditional jumps (thisturns out to be an important source of performance improvement in practice),while traditional compilers for imperative languages such as C and Fortrandeal only with the case where there is at most one conditional jump (see [1],p. 556).� When we consider call forwarding and instruction-pair motion for the last goalin a recursive clause, what we get is essentially a generalization of code motionout of loops. The reason it is a generalization is that the code that is bypasseddue to call forwarding at a particular goal need not be invariant with respectto the entire loop, as is required in traditional algorithms for invariant codemotion out of loops. Moreover, our algorithm implements inter-proceduraloptimization and can deal with both direct and mutual recursion withouthaving to do anything special, while traditional code motion algorithms handleonly the intra-procedural case.� When call forwarding is combined with jump target duplication, we get ageneralization of subprogram inlining. The reason it is a generalization is thatthe extent of inlining can be controlled by limiting the number of instructionsduplicated from the jump target, thus allowing \partial inlining."� Call forwarding very often skips type tests in the guard, such as teller tests,integer tests, and 
oating point number tests. Usually it is possible to getinteger arithmetic nearly as fast as machine arithmetic just by \declaring"the operands as integers in the guard, and depending on call forwarding toskip the tests. This goes a long way toward overcoming the performanceproblems of dynamic typing without requiring global type inference.In addition, call forwarding is a useful addition to implementation techniques, suchas decision tree compilation, that have been studied for committed choice languages[9], since it allows optimizations at call-sites rather than just at the callee. Thus,in the code for the predicate fact/2 given earlier, the type of the �rst argument istested in each clause, and decision tree compilation would execute this just once;however, this test would be repeated at each recursive call. Using call forward-ing, the repeated tests at each recursive call would be avoided, because the codegenerated for the recursive call would simply bypass this test.4 An Example of the Code GeneratedFigure 1 shows the code generated for the following Janus program:app([H|L1],L2,^Z) :- Z=[H|L3], app(L1,L2,^L3).app([],L,^Z) :- Z=L.The �rst column is the optimized Janus virtual machine (JVM) code, while thesecond is the corresponding C code generated (some C macros have not been ex-panded due to space constraints, but their e�ects are described below and theirimplementation should be intuitively obvious). The jc virtual machine instructions10



are �ner-grained than those for the WAM; in fact most of them would have sim-ple expansions directly into assembly language. The label L3 is the beginning ofthe suspension code (not shown). The tag operation macros are left unexpandedto make the C code easier to read, and in any case they are quite typical of suchoperations. Each is type() macro involves a single mask and comparison. Eachget type() and tag type() for tellers, and integers involves a single mask or shift,the other types require both a mask and a shift. Askers, tellers, and integers usetwo-bit tags, the other types all use 5 bits. Askers have the tag 00, so they requireno work to either tag or untag. All get asker(ti) macros in the code have beenexpanded to ti but the tag asker macros have been left in.OJump(FrameResume) jumps to the resumption address in the top stack frame.What it actually does is set the value of nxt lbl to a small integer constant thenjump to the top of a switch statementtop: switch (nxt_lbl) {...}that contains the whole janus program. Each non-tail call is followed by a caselabel on a unique integer. That integer is put on the top of the current frame beforea call.The Move(cs,0) at the beginning of the body sets the current suspension csto a null value on commit. This must be done before the current procedure callsanother procedure, otherwise if cs is non-null and the called procedure suspends,it will suspend on cs. The reason this instruction is at the beginning of the bodyinstead of just before a call is so that call forwarding can skip it. anotherMemCheck(i,j) tests to see whether there is room for i words of stace space plusj words of heap space plus the extra word on the stack for storing the resumptionaddress. The reason the C code shows a check for 3 words instead of just 2 is thatthe extra word on the stack frame is checked for even when no stack is allocated,as in this example.MakeTeller(t2,t2) is implemented as a special tag operation that converts anasker to a teller with one addition. TELLER and ASKER are the teller and askertags respectively. They are static constants so the substraction is performed at Ccompile-time. In the unoptimized code there is a teller made and then an asker isextracted from it in the inner loop, but in the optimized code both operations aremoved out of the inner loop.MakeSafe(t1) moves t1 to the heap if it is on the stack. This is necessary ingeneral to avoid having a lower frame in the stack point to a higher one. Becauseof the strict directionality of assignment in Janus it is not possible to use the WAMstrategy of always just making the higher address point to the lower one. Thepreceeding MemCheck() is needed to make sure there is space in case t1 needs to bemoved to the heap.5 PerformanceThe tables below give some indication of the current level of performance of thesystem. The host machine in all cases is a Sun 4/60 (SPARCstation-1) with 16 MBof mainmemory. It should be emphasized that this is by no means a �nished system:there are a number of optimizations that we have not had time to implement.Table 1 compares the speed of the code produced by the jc compiler withthe speed of the same program written in Prolog and executed on Sicstus Prologversion 2.1 (compiling to native code) and Quintus Prolog version 3.1.1. In eachcase, the time reported, in milliseconds, is the time taken to execute the programonce. This time was obtained by iterating the program long enough to eliminate11



Optimized JVM code%%% CODE FOR CLAUSE 1L0:JumpUnlessTeller(L2,t2) % Is arg 3 a teller?JumpUnlessLcons(L5,t0) % Is arg 1 a cons cell?Move(cs,0) %GetAsker(t2) % Remove teller tagL4:MemCheck(0,2) % Enough space for new cons?GetCons(a0,t0) % Get address of old consLoad(t3,a0[0]) % Get car of old consLoad(t0,a0[1]) % Get cdr of old consHeapSpace(2) % Allocate space for consAssign(t2,tag_lcons(hp)) % Assign new cons to arg 3Store(t3,hp[0]) % Set car of new consMakeAsker(t2,hp[1]) % Make a reference to cdrDeref(t0) % Deref the cdr of old cons%JumpIfLcons(L4,t0) % Loop if old cdr is a consStore(t2,hp[1]) % Initialize new cdrJumpIfEqual(L6,t0,C_nil) % Exit if old cdr is nilMakeTeller(t2,t2) % Make a teller for new cdrJump(L2) %%%% CODE FOR CLAUSE 2L1:JumpUnlessTeller(L2,t2) % Teller test for clause 2L5:JumpUnlessEqual(L2,t0,C_nil) % Is arg 1 nil?GetAsker(t2) % Change arg 3 to an addressL6:MemCheck(0,1) % Check space for MakeSafeMakeSafe(t1) % Make sure arg 2 is safe%Assign(t2,t1) % Assign arg 2 to arg 3OJump(FrameResume) % Return from procedureL2:JumpUnlessKnown(L3,t0) % Suspend if arg 1 unboundJumpUnlessKnown(L3,t2) % Suspend if arg 3 unbound
Expanded C CodeL0:if (!is_teller(t2)) goto L2;if (!is_lcons(t0)) goto L5;cs = 0;for (t2=*get_teller(t2);t2 != *t2;t2=*t2);L4:if (sp + 3 >= hp) mem_error();a0 = get_lcons(t0);t3 = a0[0];t0 = a0[1];hp -= 2;*t2 = tag_lcons(hp);hp[0] = t3;t2 = tag_asker(&hp[1]);{register tagval *v; if (is_asker(t0))do t0=*(v=t0); while(is_asker(t0)&&v!=t0);}if (is_lcons(t0)) goto L4;hp[1] = t2;if (t0 == C_nil) goto L6;t2 = t2 + (TELLER - ASKER);goto L2;L1:if (!is_teller(t2)) goto L2;L5:if (t0 != C_nil) goto L2;for (t2=*get_teller(t2);t2 != *t2;t2=*t2);L6:if (sp + 2 >= hp) mem_error();if (t1 < sp && is_varptr(t1)){hp-=1;*hp=*get_varptr(t1)=hp;t1=hp|(t1&3);}*t2 = t1;nxt_lbl = ((frame)sp)->resume; goto top;L2:if (!is_known(t0)) goto L3;if (!is_known(t2)) goto L3;

Figure1:Codegeneratedforappend/3inthenaivereversebenchmark
12



Program jc (J) (ms) Sicstus (S) (ms) S/J Quintus (Q) (ms) Q/Jhanoi 182 300 1.6 690 3.4tak 267 730 2.7 2200 8.2nrev 0.729 1.8 2.5 7.9 11qsort 2.03 5.1 2.5 9.4 4.6factorial 0.0494 0.44 8.9 0.27 5.5Table 1: The Performance of jc, compared with Sicstus and Quintus PrologProgram unoptimized (ms) optimized (ms) % improvementhanoi 283 182 36tak 487 138 72nrev 2.07 0.729 65qsort 3.57 2.03 43factorial 0.0678 0.0494 27merge 1.19 0.623 46susp 43.5 26.8 38dnf 0.628 0.217 65Table 2: Speed Improvements due to the optimizationsmost e�ects due to multiprogramming. The experiments were repeated 20 timesfor each benchmark on each system and in each case, the average time was taken.The benchmarks tested were the following:nrev { naive reverse: 1000 iterations on a list of length 30.qsort{ quicksort: 100 iterations on a list of length 50.tak{ the \Takeuchi" benchmark: we timed the call tak(18, 12, 6, ).hanoi { The Towers of Hanoi program: hanoi(13). Adapted from [7].factorial { A program to compute the factorial of 12.The Janus code is typically more than twice as fast as the Sicstus Prolog, and fourto eight times faster than Quintus Prolog. Table 2 gives the improvements in speedresulting from the optimizations described at the end of the previous section. Herewe include three more benchmarks: susp, a program that suspends and resumesrepeatedly because the consumer is always scheduled ahead of the producer. Themerge benchmark is the usual nondeterministic \merge" program. The dnf bench-mark is an array based implementation of the \Dutch national 
ag" problem (see[12]). The combined optimizations (call forwarding, jump target duplication, andinstruction-pair motion), give rise to a speed improvements typically ranging from30%{65%. For well written Janus clauses, the overhead of the guard tests that donot play a role in committing a particular clause, but are just written as a kindof sanity check for the arguments to have the proper type, is almost completelyoptimized away.Finally, Table 3 compares the performance of our Janus system with C code forsome small benchmarks. Again, these were run on a SPARCstation 1, with cc asthe C compiler. We tested only programs where we felt C could \compete fairly"| i.e., we did not test programs such as nrev or merge, where the cost of memoryallocation via malloc() would have crippled the performance of the C programsand produced misleading results. The programs were written in the style one would13



Program Janus (ms) C (unopt) (ms) C (opt: -O4)qsort3 1.33 1.25 0.34tak 267 208 72factorial 0.0494 0.049 0.036Table 3: The performance of jc compared to Cexpect of a competent C programmer: no recursion (except in tak, where it is hardto avoid), destructive updates, and the use of arrays (in qsort).It can be seen that even without global data
ow analysis and optimizations, weare not very far from the performance of the C code | a factor of 4 in speed fromthe code produced by optimizing at level -O4 by a high-quality C compiler suchas cc on the SPARCstation is not very embarrassing, and we expect to close thegap considerably once we implement a number of optimizations that we are nowinvestigating.6 ConclusionsThis paper describes jc, a portable and e�cient sequential implementation of Janus[12] that compiles down to C. When we began this implementation, we expectedthat \heavy-duty" global 
ow analyses and optimizations would be necessary forcredible performance, because ask/tell languages involve a great deal of testing forsuspension, etc., that is absent in Prolog. Somewhat to our surprise, we discoveredthat with careful attention to the C code generated by the Janus compiler, and somereasonably simple \local" optimizations such as common subexpression eliminationand call forwarding, we can attain reasonably good performance. We expect furtherperformance improvements once we have implemented sophisticated compilationalgorithms, such as (weighted) decision trees, heap space reuse, and global 
owanalysis and optimizations.An alpha test version of this system, together with some (rudimentary) docu-mentation, is currently available by anonymous FTP from cs.arizona.edu in thedirectory janus/jc.Acknowledgements: Discussions with Mats Carlsson played a very importantrole in the design of the Janus virtual machine. The system also bene�ted from dis-cussions with Takashi Chikayama, Ken Kahn, Jacob Levy, and Vijay Saraswat. Weare also grateful to Mats Carlsson for helping with the Quintus Prolog benchmark-ing. The work of the �rst and third authors was supported in part by the NationalScience Foundation under grant number CCR-8901283, and that of the second au-thor by the National Fund for Scienti�c Research of Belgium and by the BelgianNational incentive program for fundamental research in Arti�cial Intelligence, ini-tiated by the Belgian State Prime Minister's o�ce Science Policy Programming.References[1] A. V. Aho, R. Sethi and J. D. Ullman,Compilers { Principles, Techniques andTools, Addison-Wesley, 1986.3The Janus version of qsort used in this table is di�erent from the one used in the previoustables: here, the predicate split/4 has explicit int/1 tests in its guards, to be consistent withint declarations in the C program and allow a fair comparison. These tests allow additionaloptimizations in the Janus compiler. 14



[2] T. Chikayama, personal communication, Feb. 1992.[3] S. K. Debray, \Register Allocation in a Prolog Machine", Proc. 1986 IEEESymposium on Logic Programming, Salt Lake City, Sept. 1986, pp. 267{275.[4] S. K. Debray, \A Simple Code Improvement Scheme for Prolog", J. LogicProgramming, vol. 13 no. 1, May 1992, pp. 57-88.[5] S. K. Debray, S. Kannan, and M. Paithane, \Weighted Decision Trees", Proc.Joint International Conference and Symposium on Logic Programming, Wash-ington, D.C., Nov. 1992 (this volume).[6] I. Foster and S. Taylor, \Strand: A Practical Parallel Programming Tool",Proc. 1989 North American Conference on Logic Programming, Cleveland,Ohio, Oct. 1989, pp. 497-512. MIT Press.[7] A. Houri and E. Shapiro, \A Sequential Abstract Machine for Flat ConcurrentProlog", in Concurrent Prolog: Collected Papers, vol. 2, ed. E. Shapiro, pp.513-574. MIT Press, 1987.[8] G. Janssens, B. Demoen, and A. Mari�en, \Improving the Register Allocationin WAM by Reordering Uni�cation", Proc. Fifth International Conference onLogic Programming, Seattle, Aug. 1988, pp. 1388{1402.[9] S. Kliger and E. Shapiro, \From Decision Trees to Decision Graphs", Proc.1990 North American Conference on Logic Programming, Austin, Oct. 1990,pp. 97{116. MIT Press.[10] M. Meier, \Recursion vs. Iteration in Prolog", Proc. Eighth International Con-ference on Logic Programming, Paris, June 1991, pp. 157{169. MIT Press.[11] V. A. Saraswat, Concurrent Constraint Programming Languages, PhD thesis,Dept. of Computer Science, Carnegie-Mellon University, 1989. (To appear inthe ACM Doctoral Dissertation Award series, MIT Press.)[12] V. Saraswat, K. Kahn, and J. Levy, \Janus: A step towards distributed con-straint programming", in Proc. 1990 North American Conference on LogicProgramming, Austin, TX, Oct. 1990, pp. 431-446. MIT Press.[13] K. Ueda, \Guarded Horn Clauses", in Concurrent Prolog: Collected Papers,vol. 1, ed. E. Shapiro, pp. 140-156, 1987. MIT Press.[14] P. Van Roy and A. M. Despain, \The Bene�ts of Global Data
ow Analysis foran Optimizing Prolog Compiler", Proc. 1990 North American Conference onLogic Programming, Austin, Texas, Oct. 1990, pp. 501{515. MIT Press.
15


