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Abstract
Just-in-Time (JIT) compilers are widely used to improve the

performance of interpreter-based language implementations

by creating optimized code at runtime. However, bugs in

the JIT compiler’s code manipulation and optimization can

result in the generation of incorrect code. Such bugs can be

difficult to diagnose and fix, and can result in exploitable

vulnerabilities. Unfortunately, existing approaches to auto-

matic bug localization do not carry over well to such bugs.

This paper discusses a different approach to analyzing JIT

compiler optimization behaviors, based on using dynamic

analysis to construct abstract models of the JIT compiler’s

optimizer and back end. By comparing the models obtained

for buggy and non-buggy executions of the JIT compiler, we

can pinpoint the components of the JIT compiler’s internal

representation that have been affected by the bug; this can

then be mapped back to identify the buggy code. Our ex-

periments with two real bugs for Google V8 JIT compiler,

TurboFan, show the utility and practicality of our approach.

CCS Concepts: • Theory of computation → Program
analysis.

Keywords: program analysis, jit compiler, optimization, dy-

namic code generation
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1 Introduction
JIT compilers are ubiquitous in today’s world and appear

within a wide range of software systems, ranging from

widely used applications such as web browsers [14, 16, 18]
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to specialized performance-critical code in OS kernels [30].

JIT compiler systems are typically large and complex, and

often incur rapid code change—a combination that makes

them fertile ground for bugs. Particularly challenging, in

this context, are dynamic code generation bugs, which

cause the JIT compiler to silently emit incorrect code,

resulting in incorrect execution behavior in the application

being optimized. Such bugs can be difficult to diagnose and

correct, for two reasons: first, the program that exhibits

incorrect behavior (the application being optimized) is not

the program that contains the bug (the JIT compiler); and

second, the code that manifests the incorrect behavior is

transiently generated at runtime and is not available for

static inspection. They also have significant security impli-

cations: e.g., an alias analysis bug in Mozilla’s IonMonkey

JIT compiler results in the erroneous elimination of an

array bounds check (CVE-2019-17026) [31], and a bug in the

BPF JIT compiler in the Linux kernel results in incorrect

branch displacement computations (CVE-2021-29154)

[22], in each case resulting in vulnerabilities that can be

exploited to achieve arbitrary code execution. The difficulty

in diagnosing such bugs, combined with their security

implications, makes it important to provide tool support for

reasoning about JIT compiler optimization processes.

Unfortunately, existing approaches to automated bug lo-

calization [4–6, 8, 20, 21, 23] do not carry over to such bugs.

The problem is that these approaches are application-agnostic,
i.e., do not have any higher-level characterization of what the

applications under consideration do. A common approach

is to identify differences between the machine-level state

sequences observed in “good” and “bad” executions, map

these differences to code locations, then use a ranking func-

tion to determine their likelihood of being the cause of the

bug; code that causes differences earlier in execution are

typically ranked higher [3]. This approach, while very gen-

eral, unfortunately does not carry over well to JIT compil-

ers, whose inputs must first be processed by the interpreter

front end (parser, bytecode generator, etc.). The problem is

that, given two different input programs—one that triggers

a JIT-compiler bug and one that does not—their source-code

differences necessarily give rise to execution differences in

the interpreter front end that, because they occur early in ex-

ecution, are ranked higher by the bug localizer. For example,

in our experiments with a state-of-the-art bug localization

system [3], the root cause of a JIT compiler dynamic code

https://doi.org/10.1145/3520313.3534656
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Figure 1. Interpreter/JIT Compiler Systems: Organization and structure

generation bug was erroneously identified as occurring in

the parser in the interpreter front end.

Instead, we take a very different approach. The problem

we are concerned with is: given a “proof of concept” (PoC)

input 𝑃 that triggers a dynamic code generation bug in the

JIT compiler (such PoCs are typically provided alongside bug

reports), use program analysis techniques to identify poten-

tially incorrectly optimized components of the JIT compiler’s

representation of the input program. We use directed fuzzing

to create a set of variants of 𝑃 and determine which of them

result in buggy JIT compiler executions and which do not.
1

For each of these input programs, we use dynamic analysis

to obtain an instruction-level execution trace of the JIT com-

piler, from which we construct an abstract model of how it

manipulates its representation(s) of that program. We then

compare these abstract models for buggy and non-buggy JIT

compiler executions to determine how they differ, and use

these differences to identify structures in the JIT compiler’s

program representation that have potentially incorrect val-

ues. This allows us to pinpoint specific components of the

program representation that may be problematic: e.g., a par-

ticular intermediate representation node where an edge was

incorrectly modified during optimization, or an instance of

an instruction data structure in the JIT compiler back end

where an operand may have been improperly encoded. This

information can then be used to locate the buggy code.

This paper makes the following technical contributions:

(1) it describes how the program representations manipu-

lated by JIT compilers can be modeled in a general way;

and (2) it discusses how the resulting abstract models can

be used for automatic identification of witnesses to dynamic

code generation bugs, i.e., specific components of the JIT

compiler’s representation of the input program that have

1
For our purposes, a JIT compiler execution is non-buggy if the input

program’s behavior is the same with and without JIT compilation, i.e., if

the JIT-compiled code has the same behavior as interpreted code. The JIT

compiler’s execution is considered buggy if program’s behavior with JIT

compilation differs from its behavior when it is interpreted.

incorrect values. Preliminary results from a prototype imple-

mentation are encouraging and suggest that this approach

may be helpful in dealing with such bugs. Our prototype

currently targets three JavaScript JIT compilers: TurboFan,

(V8), DFG (JavaScriptCore), and IonMonkey (Spidermonkey);

due to space constraints we present results for V8.

2 Background
Figure 1 shows the conceptual structure of a typical inter-

preter/JIT compiler system. The input program is read by the

interpreter front end, converted to bytecode, and executed

by the interpreter. If a section of bytecode is executed a large

number of times, the JIT compiler is invoked and optimizes

the bytecode to generate optimized machine code.

JIT compilers typically convert the bytecode generated

by the interpreter into a graph-structured intermediate rep-

resentation (IR) that is used for optimization and transla-

tion to machine code. E.g., the TurboFan JIT compiler for

Google’s V8 JavaScript engine uses a sea-of-nodes repre-

sentation, where nodes represent operations, control flow,

types, and state; and edges represent control flow, data flow,

and effect dependencies [19, 28]. The optimized IR is con-

verted it into a different internal representation via lowering.
E.g., the resulting used in V8’s instruction selector, called

an Instruction, is a data structure that represents a ma-

chine code instruction. The Instruction data structure has

a number of different fields; when modeling the back end

we focus on two of these fields: opcode and operands.

3 An Overviw of Our Approach
We use dynamic analysis using Intel’s Pin Tool [25] to col-

lect an execution trace of a JIT compiler, i.e., a sequence

of dynamic instances of machine instructions obtained on

a particular execution of the input program (including JIT

compiler invocations occuring during execution). While an-

alyzing each instruction in a given trace, we extract the

following information to model the JIT compiler optimizer

and back end Instruction Selector:
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• We use symbol table information in the JIT compiler exe-

cutable to map each instruction in the trace to the function

it belongs to. Thus, given the names of the JIT compiler’s

IR node allocation function(s), we can identify entry into

and return from these allocation functions, and thereby

determine the address and size of the allocated node.

• Given a (direct or indirect) function call instruction in the

trace, we collect the return value of the call. The location

of the return value can be obtained from the system’s

application-binary interface (ABI), e.g., on an x86-64 sys-

tem, an address is returned in the rax register.

• For each instruction in the trace, we collect information

about (𝑎) the registers or memory locations it reads to-

gether with the values read; and (𝑏) the registers or mem-

ory locations it writes together with the values written.We

use the read/write information to model the JIT compiler’s

creation, modification, and manipulation of IR nodes and

Instruction objects in the course of execution.

To enhance portability, we push system-specific aspects of

trace analysis, in particular the functionality to identify the

address, opcode, and size of IR node, into a library that is

accessed through a system-independent API, so that the re-

maining logic of model construction and analysis can be

kept system-independent. At this time, we have successfully

used this approach for system-independent modeling of IR

optimization for three different JIT compilers, namely: Tur-

boFan [13], DFG JIT [12], and IonMonkey [14]. Due to space

constraints, this paper provides experimental data for a V8

TurboFan optimization bug. We have not had time to apply

this approach to modeling JIT compiler back end structures.

This approach is conceptually simple, does not require

a great deal of knowledge about the JIT compiler system

beyond recognizing the functions that create the objects ma-

nipulated by the JIT compiler, and is portable across different

JIT compiler implementations. However, collecting and ana-

lyzing such traces can be expensive in both space and time.

An alternative would be to instrument the JIT compiler to

only emit information about specific events of interest. The

latter approach would likely incur less runtime overhead,

but has the following disadvantages:

1. It would require deeper knowledge of what to instru-

ment in the JIT compiler as well as more manual effort.

2. It would potentially be more brittle in handling

changes to the JIT compiler’s code.

3. It would not be portable across different JIT compilers.

4 Model Representations
Although a JIT compiler is a combination of several different

components, such as the parser, analyzer, optimizer, machine

code generator, etc, we focus on two components that play

an important in code manipulation in the JIT compiler. In

this section, we describe our abstract models of the code rep-

resentations used by the JIT compiler for manipulating the

input program during optimization and code generation. We

focus, in particular, on two components of the JIT compiler:

(1) the IR optimizer, which is responsible for converting byte-

code into a system-independent intermediate representation

(IR) and optimizing it; and (2) system-specific native code

generator, which is the back end of the JIT compiler.

4.1 Optimizer - Intermediate Representation

The JIT compiler parses its input, a sequence of bytecode

instructions, and builds an initial unoptimized IR. The IR

optimizer (“optimizer” for short) then performs a variety

of machine-independent optimizations on the resulting IR.

Different JIT compilers may differ in the details of their

optimization processes, both in terms of the optimizations

used and the particulars of how they are implemented.

In order to characterize and reason about the optimization

process within the JIT compiler, we build an abstract model

of the IR manipulated by the optimizer, as discussed below.

4.1.1 IR Graphs. We extract information about the IR

nodes and edges manipulated by the JIT compiler during

an execution by examining the instructions in its execu-

tion trace. We assume that we know the names of the JIT

compiler’s IR node allocation function(s).
2
We can therefore

identify the instructions that enter and return from these

allocation functions, from which we can determine the ad-

dress and size of the allocated node; by examining values

assigned to fields within the node we can determine the node

type (i.e., an operation such as mult or div, or a data type
such as int). Given an IR node 𝑣𝑖 of type 𝑡𝑖 and size 𝑠𝑖 at

address 𝑎𝑖 , the corresponding “abstract IR node” is obtained

as 𝛼 (𝑣𝑖 ) = (𝑖, 𝑡𝑖 , 𝑠𝑖 , 𝑎𝑖 ). The index 𝑖 refers to the order of node
creation during optimization. The size 𝑠𝑖 and address 𝑎𝑖 allow

us to keep track of operations performed on the node during

optimization, including addition/deletion of edges.

Given an edge 𝑒 ≡ (𝑢, 𝑣) in the concrete IR graph manipu-

lated by the JIT compiler, the corresponding “abstract edge”

is 𝛼 (𝑒) = (𝛼 (𝑢), 𝛼 (𝑣)).

4.1.2 IRGraphTransformations. The optimization pro-

cess in a JIT compiler on a given input can be thought of as

a sequence of IR graph modifications of the form

𝐺0

(𝑣𝑖
0
,𝜏0)

−−−−−→ 𝐺1

(𝑣𝑖
1
,𝜏1)

−−−−−→ · · ·
(𝑣𝑖𝑛−1 ,𝜏𝑛−1)−−−−−−−−−→ 𝐺𝑛

where each 𝐺𝑖 is an IR graph and 𝐺 𝑗

(𝑣𝑖 𝑗 ,𝜏 𝑗 )−−−−−→ 𝐺 𝑗+1 denotes
that a transformation

3 𝜏 𝑗 is applied to 𝐺 𝑗 ≡ (𝑉𝑗 , 𝐸 𝑗 ) at node
𝑣𝑖 𝑗 ∈ 𝑉𝑗 to obtain the graph 𝐺 𝑗+1. In practice the JIT com-

piler does not construct a sequence of different IR graphs

2
Identifying and extracting such functions from the source code is typically

straightforward: e.g., the functions can be found in node.h for TurboFan,

DFGNode.h for DFG JIT, and MIR.h for IonMonkey.

3
For our purposes, the transformations 𝜏𝑖 are low-level changes to the

graph, i.e., addition, deletion, or modification of nodes or edges, rather than

high-level optimization transformations such as loop unrolling or inlining.
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𝐺0, . . . ,𝐺𝑛 , but successively transforms a single data struc-

ture, by adding, deleting, or modifying nodes and/or edges,

until the final “fully optimized” IR graph 𝐺𝑛 is obtained. To

avoid confusion, we refer to the IR graphs manipulated by

the JIT compiler as concrete IR graphs.
In order to model such optimization behaviors of the JIT

compiler for bug localization purposes, we summarize the

changes occurring in the concrete IR graphs using an abstract
IR graph. A key consideration here is the handling of node

and edge deletions. Suppose that a node (edge) is deleted from

a concrete IR graph at some point in the optimization process.

We cannot simply delete the corresponding node (edge) in

the abstract IR graph, since it would be lost to subsequent

reasoning if it were. Instead, we retain the corresponding

node (edge) in the abstract IR graph, but flag it as “removed.”

Thus, given a concrete IR graph transformation sequence

𝐺0

(𝑣𝑖
0
,𝜏0)

−−−−−→ 𝐺1

(𝑣𝑖
1
,𝜏1)

−−−−−→ · · ·
(𝑣𝑖𝑛−1 ,𝜏𝑛−1)−−−−−−−−−→ 𝐺𝑛

where 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) is a concrete IR graph, we model this us-

ing an abstract IR graph (𝑉 , 𝐸, 𝐻 ) where𝑉 is a set of abstract

nodes, 𝐸 is a set of abstract edges, and 𝐻 is a transformation
history. The set of nodes 𝑉 and edges 𝐸 in the abstract IR

graph capture all of the nodes and edges in the concrete IR

graphs encountered during optimization:

𝑉 =
⋃{𝛼 (𝑣) | 𝑣 ∈ 𝑉𝑖 , 0 ≤ 𝑖 ≤ 𝑛}

𝐸 =
⋃{𝛼 (𝑒) | 𝑒 ∈ 𝐸𝑖 , 0 ≤ 𝑖 ≤ 𝑛}

The transformation history 𝐻 specifies the location and na-

ture of graph transformations applied during optimization.

We consider three kinds of graph modifications, denoted

as Mods = {addition, removal, replacement}; since we are in-
terested in bug localization, with each transformation we

record the JIT compiler source-code function that performs

that transformation (this can be deduced by using the sym-

bol table of the JIT compiler binary to map instructions in

the execution trace to source-level function names). The

transformation history 𝐻 is a sequence of tuples of the form

𝐻 = ⟨(𝑣0,𝑚0, 𝑓0), (𝑣1,𝑚1, 𝑓1), . . . , (𝑣𝑛,𝑚𝑛, 𝑓𝑛)⟩.

where 𝑣𝑖 ∈ 𝑉 is the vertex in the abstract IR graph that is

transformed at step 𝑖;𝑚𝑖 ∈ Mods specifies the nature of the
transformation applied at that step; and 𝑓𝑖 is the name of the

JIT compiler function that performs the modification.

4.2 Back End Instruction Selector - Instruction

The instruction selector in the JIT compiler back end uses

the Instruction data structure to represent the optimized

machine instructions to be generated. Our analysis examines

the JIT compiler’s execution trace and extracts the following

information for each allocated instance of this data structure:

• Its address.
• The opcode of the instruction represented by this instance.

Figure 2. Buggy IR (left) vs. Non-Buggy IR (right)

• The operands of that instruction. This field in the source

code is a dynamically sized array. Each element in the

array is an 8-byte long operand encoding. Each operand

encoding describes attributes of the operand. As an exam-

ple, one of the attributes indicates whether the operand

will use a register or a stack slot. Since this field is a dynam-

ically sized array, we do not know its length. We currently

consider only the first two elements of this array.

• State changes of the opcode and operands fields. Each field

has its own sequence of state changes. For each field, let

𝑆 = (𝑓 , 𝑣) be the state of the field, which means the value

𝑣 is written to the field by a function 𝑓 . The state of the

field is changed when a new function writes a new value

to the field. When such a change happens, we record the

new state of the field. Let 𝑆𝑖 be the 𝑖-th state of the field.

So the state changes of the field is {𝑆1, 𝑆2, ..., 𝑆𝑛}.

Let Instr to denote the information we extract for each in-

stance. Our model is defined as a sequence {Instr1, ..., Instr𝑛},
where 𝑛 is the number of allocated instances.

5 Applications of Models
One of the useful applications of the abstract models dis-

cussed above is in identifying the bugs of the JIT compiler

which can happen during the code manipulation, i.e., opti-

mization and instruction selection. Our models hold enough

information about the result of the operation, e.g., the struc-

ture of an IR node after edge replacement graph modification

or the operand of Instruction instance after encoding, etc.,
which can be used in the analysis to identify the buggy IR

nodes and buggy Instruction instances. The buggy struc-

tures so identified can then be mapped back to the code that

manipulated them to identify the actual buggy functions in

the JIT compiler source code. For the purposes of this paper,

we focus on applying our abstract models to identify the

buggy IR nodes and buggy Instruction instances.

To identify buggy IR nodes and Instruction instances,

we compare the buggy and non-buggy models to find the

differences between them. For example, in the case of opti-

mizer IR graph, we compare the nodes from two IR graphs

to determine the nodes in the buggy IR graph that shows
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the difference in any one of metadata, structure, and the opti-
mization. The nodes found to be different are the candidates

to be selected as the buggy IR nodes.

For example, in Figure 2, let A be the modeled buggy IR

and B be the modeled non-buggy IR. While nodes a, c, and d
are the same, the node b in the buggy IR graph has an extra

edge to the node d whereas the non-buggy IR graph does not.

This indicates that (1) this difference makes one IR graph

buggy while the other non-buggy; (2) the bug is likely to be

in the code that created the extra edge from b to 𝑑 .
Note that, in the reality, the models and comparisons are

much more complicated than the given example. We pro-

vide specific examples of both optimizer IR and back end

Instruction instance model applications in Section 6.

6 Evaluation
To evaluate our ideas, we built two prototype tools, one that

models the IR optimizer and a (partially implemented) tool

that models the back end. Our experiments were run on a

machine with 32 cores (@ 3.30 GHz) and 1TB of RAM, run-

ning Ubuntu 20.04.1 LTS. A dynamic analysis tool built using

Intel’s Pin software (version 3.7) [25] is used for program

instrumentation and instruction-level execution trace collec-

tion; XED version 8.20.0 [7] is used to decode instructions.

Our prototypes target the JIT compiler, TurboFan, used in

JavaScript engines Google Chrome V8 [16] and Node.js [15]

to present the results on the use cases discussed in Section 5.

Specifically, (1) identify and rank the IR nodes that are sus-

picious to be buggy, and (2) identify potentially buggy in-

stances of Instruction data structure. In our experiments, we

took the following procedures:

1. Search and retrieve the separate bug reports for op-

timizer and back end that are marked as fixed from

Google Chrome’s bug report community [17].

2. Get the proof-of-concept (PoC) codes from the reports.

Use our fuzzer to generate a set of variants of the PoC.

3. Run our prototype tools on these PoC variants to iden-

tify a candidate set of buggy instances of JIT compiler

data structures.

4. Check that the results from the prototypes are correct.

We do this by checking that the result returned by

our tool matches that targeted by the fix in the source

code.

6.1 Optimizer Buggy IR Identification

Bug issue 5129 [9] was reported in June 2016 explaining that

the V8 JIT compiler version 8.3.1 incorrectly optimizes the

nodes for subtract and less-than operations: e.g., given the

expression x - y < 0, the optimizer transforms the IR graph

to generate x < y expression instead. Mathematically, the

two expressions are equivalent, which makes the conversion

seems to be reasonable. However, according to the develop-

ers, this can cause an overflow resulting to wrong evaluation,

e.g., true for x - y < 0, but false once converted to x < y. The
fix was made in the MachineOperatorReducer::Reduce op-
timizer function optimizing the operator nodes for less-than
and subtract. Thus, our goal is to model the IR graph and

analyze the model to confirm that we can identify the buggy

subtract and less-than operator nodes.

For this bug, our tool modeled a total of 300 nodes with 260

different opcodes in a single IR graph. We confirmed that our

model is correct by manually adding the print statements in

the optimizer source code to print the generated nodes with

opcode.We used the print-statements in the optimizer source

code and V8’s default tracing options, i.e., –trace-opt, to
confirm that our IR modeler tool has properly modeled the

optimization and constructed the model.

Table 1. Ordered List of Potentially Buggy Nodes

Order no. Node ID Opcode Mnemonic

1 242 007c NumberSubtract

2 243 006f NumberLessThan

3 285 014c Word32Equal

Our IR modeler analyzed both buggy and non-buggy mod-

eled IRs to compute their differences. We used a custom

fuzzer, which we built, to generate 13 additional JavaScript

program inputs for this PoC, for a total of 14 input programs;

of these, 4 programs trigger the JIT compiler bug and 10

do not. The results are shown in Table 1. The analyzer se-

lected and returned only 3 nodes out of 300 nodes, namely,

NumberSubtract, NumberLessThan, and Word32Equal, and
ranked them in the order shown. Of these, NumberSubtract
and NumberLessThan are the actual buggy nodes.

Our tool takes about 2 minutes to model a single IR graph

for the PoC for this bug, i.e., a total of 28 minutes to model 14

IR graphs. Generating additional input programs via fuzzing,

analyzing the modeled IR graphs to identify the buggy IR

nodes, and ranking them like in the Table 1 takes less than a

minute. Thus, starting from a single input PoC program, it

takes approximately 30 minutes to get the result.

6.2 Back End Buggy Instance Identification

We evaluated the back end model on issue 9980 [10]. This

bug was reported in November 2019 explaining that the V8

JIT compiler version 8.0.0. causes a crash in the generated

dynamic code due to the following description.

The InstructionSelector::VisitS8x16Shuffle
function allocates instances of Instruction data structure
that have the opcode pshufd. This opcode reorganizes bytes
in a specified order. Among the Instruction instances,

there is an instance whose operand encoding encodes

that the operand will be stored to a stack slot. If pshufd
has a stack operand, the operand is required to have

16-byte memory alignment. However, V8 does not check

for this memory alignment, which results in a crash. We
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call such an instance a "buggy instance". We can see that

the bug roots in the buggy instance which has a buggy

operand encoding that eventually causes the crash. In the

next V8 version, we see that the fix [1] was made in the

InstructionSelector::VisitS8x16Shuffle function.

In our experiment, our task is to identify the buggy in-

stance. The proof-of-concept we use is here [11]. Given a PoC

retrieved from the bug report, we generated an additional 20

buggy and 17 non-buggy input programs. In summary, 21

buggy input programs and 17 non-buggy input programs.

Table 2 shows the summary of our result. Initially, in all

the buggy models, there are 2143 potentially buggy instances.

We found that each buggy model has 102 potentially buggy

instances on average for this specific bug. We compute the

intersections of buggy instances to select only the instances

that commonly appear among the buggy instances. The re-

sult shows that there are only 35 potentially buggy instances

out of 2143 instances. Then, we compute the difference be-

tween the intersection result and non-buggy instances to se-

lect the instances that only appear on the buggy side. We call

this process subtraction. The result shows that the number

of potentially buggy instances was reduced to 15 instances.

The whole process took approximately 60 minutes.

Table 2. Number of Potentially Buggy Instances

Initial Total Average Intersection Difference

2143 102 35 15

Initially, there were 102 potentially buggy instances on

average. Our model narrowed this down to 15, and one of

them is the actual buggy instance. Furthermore, we can tell

which operand and which state of the operand is possibly

buggy. If we compare the potentially buggy instances with

the non-buggy instances, we can tell which operands and

states are different. Those operands and states are possibly

buggy in the potentially buggy instances.

We have not fully implemented modeling the back end at

this time. However, our initial results are encouraging, and

we plan to continue work on modeling the back end.

7 Future Work
As our evaluation shows, our approach is capable of iden-

tifying the buggy IR nodes and Instruction instances via
using dynamic analysis on execution traces of Google V8’s

JIT compiler optimizer and back end. Nevertheless, our idea

was experimented only with JIT compilers for JavaScript

language. Therefore, we plan to experiment with other lan-

guage JIT compilers, e.g., HHVM JIT and/or PHP 8 JIT, etc.,

to show that the idea is generalizable. Additionally, we aim

to model other internal components of the JIT compiler, e.g.,

register allocator, etc, and improve the approach to handle

more types of bugs, e.g., performance bugs that do not show

clear distinct behavior between the normal and abnormal

execution.

8 Related Work
Lim andDebray [24] discuss bug localization in the TurboFan

JIT compiler for Google’s V8 JavaScript engine. The work is

considerably less precise than ours, in that bug localization

is done at the granularity of optimization phases, and only

for a limited class of JIT compiler bugs. It also requires de-

tailed symbol information for the code implementing each

optimization phase, which makes generalizing to other JIT

compilers difficult.

The work on formal verification of JIT compilers [2, 26, 27]

has the laudable advantage of proving the correctness of the

verified JIT compiler. However, the size and complexity of

real-world JIT compilers, combined with the fact that they

are typically not written with verification in mind, make its

application to real-world JIT compilers challenging.

Static approaches used in automated bug localization [29,

32] typically uses the information retrieval technique. These

approaches require source code information in their anal-

ysis. There are two main problems using the approach in

JIT compilers: (1) JIT compilers generate code at run-time

and execution behavior tend to change per execution; (2) JIT

compilers, which generally is a part of larger system, tend

to share many functions with other components, e.g., inter-

preter. Thus, source code information used in the analysis

might not necessarily belong to the JIT compiler execution

but, for example, the interpreter.

The dynamic analysis approach used in the statistical de-

bugging [5, 23] targets to instrument specific types of pred-

icates, which are then analyzed and ranked. The approach

assumes that the program will always take the same exe-

cution path that identifying the predicates appear the most

within the buggy programs’ execution paths gives the idea

of where the bug is located in the source code. Nonetheless,

the JIT compiler’s execution paths are inconsistent.

9 Conclusion
In this paper, we present a new approach in analyzing the

execution behaviors of JIT compilers by modeling the in-

termediate representation, which the optimizer builds and

optimizes, and the instruction selector, which the back end

builds from the optimized IR to generate native code. Our ex-

periments on the real bugs show that our models are useful

in bug localization. Nevertheless, our approach was tested

on JIT compilers for JavaScript language only. Thus, we plan

to test on other language JIT compilers, e.g., PHP.
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