
Automatic Simplification of Obfuscated

JavaScript Code⋆

Gen Lu, Kevin Coogan, and Saumya Debray

Department of Computer Science
The University of Arizona
Tucson, AZ 85721, USA

{genlu, kpcoogan, debray}@cs.arizona.edu

Abstract. Javascript is a scripting language that is commonly used to
create sophisticated interactive client-side web applications. It can also
be used to carry out browser-based attacks on users. Malicious JavaScript
code is usually highly obfuscated, making detection a challenge. This
paper describes a simple approach to deobfuscation of JavaScript code
based on dynamic analysis and slicing. Experiments using a prototype
implementation indicate that our approach is able to penetrate multiple
layers of complex obfuscations and extract the core logic of the compu-
tation.

1 Introduction

A few years ago, most malware was delivered via infected email attachments.
As email filters and spam detectors have improved, however, this delivery mech-
anism has increasingly been replaced by web-based delivery mechanisms, e.g.,
where a victim is lured to view an infected web page from a browser, which
then causes malicious payload to be downloaded and executed. Very often, such
“drive-by downloads” rely on JavaScript code; to avoid detection, the scripts
are usually highly obfuscated [7]. For example, the Gumblar worm, which in
mid-2009 was considered to be the fastest-growing threat on the Internet, uses
Javascript code that is dynamically generated and heavily obfuscated to avoid
detection and identification [9].

Of course, the simple fact that a web page contains dynamically generated
and/or obfuscated JavaScript code does not, in itself, make it malicious [4]; to
establish that we have to figure out what the code does. Moreover, the func-
tionality of a piece of code can generally be expressed in many different ways.
For these reasons, simple syntactic rules (e.g., “search for ‘eval(’ and ‘unescape(’

within 15 bytes of each other” [9]) turn out to be of limited efficacy when dealing
with obfuscated JavaScript. Current tools that process JavaScript typically rely

⋆ This work was supported in part by the National Science Foundation via grant
nos. CNS-1016058 and CNS-1115829, the Air Force Office of Scientific Research via
grant no. FA9550-11-1-0191, and by a GAANN fellowship from the Department of
Education award no. P200A070545.

on such syntactic heuristics and so tend to be quite imprecise: we found, for
example, the obfuscated version of the fibonacci program discussed in Section 4
was identified as “infected” by an email system simply because it was obfuscated.

A better solution would be to use semantics-based techniques that focus on
the behavior of the code. This is also important and useful for making it pos-
sible for human analysts to easily understand the inner workings of obfuscated
JavaScript code so as to deal quickly and effectively with new web-based mal-
ware. Unfortunately, current techniques for behavioral analysis of obfuscated
JavaScript typically require a significant amount of manual intervention, e.g., to
modify the JavaScript code in specific ways or to monitor its execution within
a debugger [10, 13, 17]. Recently, some authors have begun investigating auto-
mated approaches to dealing with obfuscated JavaScript. Cova et al. extract a
set of features via runtime monitoring of the code, then apply machine learning
techniques to classify these features as malicious or benign [3]. Saxena et al. use
symbolic execution to reason about string operations in JavaScript programs
[15].

This paper takes a different approach to reasoning about obfuscated JavaScript
code: we use run-time monitoring to extract execution trace(s) from the obfus-
cated program, apply semantics-preserving code transformations to automati-
cally simplify the trace, then reconstruct source code from the simplified trace.
The program so obtained is observationally equivalent to the original program
for the execution considered, but has the obfuscation simplified away, leaving
only the core logic of the computation performed by the code. The resulting
simplified code can then be examined either by humans or by other software.
The removal of the obfuscation results in code that is easier to analyze and un-
derstand than the original obfuscated program. Experiments using a prototype
implementation indicate that this approach is able to penetrate multiple layers of
complex obfuscations and extract the core logic of the underlying computation.

2 Background

2.1 JavaScript

Despite the similarity in their names and their object-orientation, JavaScript
is a very different language than Java. A JavaScript object consists of a series
of name/value pairs, where the names are referred to as properties. Another
significant difference is that while Java is statically typed and has strong type
checking, JavaScript is dynamically typed. This means that a variable can take
on values of different types at different points in a JavaScript program. JavaScript
also makes it very convenient to extend the executing program. For example, one
can “execute” a string s using the construct eval(s). Since the string s can itself
be constructed at runtime, this makes it possible for JavaScript code to be highly
dynamic in nature.

There are some superficial similarities between the two languages at the
implementation level as well: e.g., both typically use expression-stack-based

byte-code interpreters, and in both cases modern implementations of these in-
terpreters come with JIT compilers. However, the language-level differences
sketched above are reflected in low-level characteristics of the implementations
as well. For example, Java’s static typing means that the operand types of each
operation in the program are known at compile time, allowing the compiler to
generate type-specific instructions, e.g., iadd for integer addition, dadd for addi-
tion of double-precision values. In JavaScript, on the other hand, operand types
are not statically available, which means that the byte code instructions are
generic. Unlike Java, the code generated for JavaScript does not have an asso-
ciated class file, which means that information about constants and strings is
not readily available. Finally, JavaScript’s eval construct requires runtime code
generation: in the SpiderMonkey implementation of JavaScript [11], for example,
this causes code for the string being evaled to be generated into a newly-allocated
memory region and then executed, after which the memory region is reclaimed.

The dynamic nature of Javascript code makes possible a variety of obfus-
cation techniques. Particularly challenging is the combination of the ability to
execute a string using the eval construct, as described above, and the fact that
the string being executed may be obfuscated in a wide variety of ways. Howard
discusses several such techniques in more detail [7]. For example, the charac-
ters in the string can be encoded in various ways, e.g., using %-encoding (a as
%61, b as %62, . . .), Unicode (a as \u0061, b as \u0062, . . .), Base-64, etc.
The string can be kept in encrypted, compressed, or permuted form. It can be
constructed at runtime by concatenating other strings together. Moreover, these
string obfuscation techniques can be combined in arbitrary ways, e.g., a string
can be constructed by concatenating together a collection of strings that have
been encoded in various ways; the string so constructed can be permuted or
reversed to construct a second string; and this can then be decrypted to obtain
the string that is actually used. Further, dynamic code generation via eval can
be multi-layered, e.g., a string that is eval-ed may itself contain calls to eval, and
such embedded calls to eval can be stacked several layers deep. Such obfuscation
techniques can make it difficult to determine the intent of a JavaScript program
from a static examination of the program text.

2.2 Semantics-Based Deobfuscation

Deobfuscation refers to the process of simplifying a program to remove obfusca-
tion code and produce a functionally equivalent program that is simpler (or, at
least, no more complex) than the original program relative to some appropriate
complexity metric. To motivate our approach to deobfuscation, consider the se-
mantic intuition behind any deobfuscation process. In general, when we simplify
an obfuscated program we cannot hope to recover the code for the original pro-
gram, either because the source code is simply not be available, or due to code
transformations applied during compilation. All we can require, then, is that
the process of deobfuscation must be semantics-preserving: i.e., that the code
resulting from deobfuscation be semantically equivalent to the original program.

For the analysis of potentially-malicious code, a reasonable notion of seman-
tic equivalence seems to be that of observational equivalence, where two pro-
grams are considered equivalent if they behave—i.e., interact with their execu-
tion environment—in the same way. Since a program’s runtime interactions with
the external environment are carried out through system calls, this means that
two programs are observationally equivalent if they execute identical sequences
of system calls (together with the argument vectors to these calls).

This notion of program equivalence suggests a simple approach to deobfus-
cation: identify all instructions that directly or indirectly affect the values of
the arguments to system calls; these instructions are “semantically relevant.”
Any remaining instructions, which are by definition semantically irrelevant, may
be discarded (examples of such semantically-irrelevant code include dead and
unreachable code used by malware to change their byte-signatures in order to
avoid detection). The crucial question then becomes that of identifying instruc-
tions that affect the values of system call arguments: for the JavaScript code
considered in this paper, we use dynamic slicing, applied at the byte-code level,
for this.

3 JavaScript Deobfuscation

3.1 Overview

Fig. 1. Our approach to JavaScript deobfuscation: Overview

Our approach to deobfuscating JavaScript code is shown in Figure 1. It con-
sists of the following sequence of steps:

1. Use an instrumented interpreter to obtain an execution trace for the JavaScript
code under consideration.

2. Construct a control flow graph from this trace to determine the structure of
the code that is executed.

3. Use our dynamic slicing algorithm to identify instructions that are relevant
to the externally-observable behavior of the program. Ideally, we would like
to compute slices for the arguments of the system calls made by the pro-
gram. However, the actual system calls are typically made from external

library routines that appear as native methods. As a proxy for system calls,
therefore, our implementation computes slices for the arguments passed to
any native function.

4. Decompile excution trace to an abstract syntax tree, and label all the nodes
constructed from resulting set of relevant instructions.

5. Apply transformation rules to eliminate goto statements. Then traverse AST
to generate deobfuscated source code, by printing only labeled syntax tree
nodes.

In our current implementation, the first step (trace collection) is separate
from the remaining steps (trace analysis, decompilation): the generated trace is
written out to a file, which is then read by the trace analyzer and decompiler.
This is purely for convenience, since it is conceptually straightforward to build
the trace collection and analysis facilities directly into the JavaScript engine,
making it unnecessary to write/read a trace file. Our current implementation
writes out the abstract syntax tree obtained at the end of the above process in
the form of JavaScript source code, but one could also imagine directly applying
malware analysis tools to the syntax tree itself.

3.2 Instrumentation and Tracing

We instrument the JavaScript interpreter to collect a trace of the program’s exe-
cution. Each byte-code instruction is instrumented to print out the instruction’s
address, operation mnemonic, and length (in bytes) together with any additional
information about the instruction that may be relevant. In particular, we print
the following information, which is used for control and data dependence analysis
and to construct the control flow graph of the program:

– expression stack: set of memory locations on the stack that are read and/or
written by the instruction;

– constants: encoded as part of the byte-code instruction, could be an integer
or a reference to an object (i.e., string and floating point number), for the
latter case, the actual value of constant is retrieved and printed instead of
the reference;

– global variables: the name of the variable;
– local variables: an index specifying which variable amongst the function’s
locals is being referenced;

– function calls: the reference to the callee and the number of arguments being
passed, and wether the callee is native function;

– conditional and unconditional branches: the offset (relative to the current
instruction) of the branch target.

– global variables, array elements, and object property accesses: which prop-
erty of which object is being defined or used. (This information is useful for
the slicing step described next.)

The length information for instructions is used to distinguish calls to native
methods from calls to interpreted methods: since native methods do not produce

a byte-code trace, a call instruction I at address A of length n bytes is a native-
method call if the next instruction in the trace has address A + n, i.e., is the
instruction that physically follows I in the program byte-code and therefore
is the instruction that the call returns to. This proceeds as one would expect,
except for one case: it turns out that tracing the code generated dynamically for
the eval construct needs to be handled specially. There are two issues that arise
in tracing dynamically generated code: code addresses and local variables. We
discuss each of these below.

Dynamic code generation for an evaled string typically allocates a buffer
to hold the code. Code is generated into this buffer and executed, after which
the buffer is deallocated. If a string is evaled repeatedly at the same program
point, e.g., over different loop iterations, the buffers allocated for the different
evals may be at different addresses. Tracing this code naively would give different
addresses for the code generated into different such buffers. These would then be
treated as different code fragments by later stages of the decompilation pipeline,
leading to a great deal of repetition and redundancy in the high-level program
representations recovered from the code. To deal with this, we maintain a table
of evaled strings indexed by the address of the eval construct. We then post-
process the instructions in the trace collected from the execution and use this
table to adjust the addresses of code resulting from dynamic code generation.
This is done by making a pass over the instructions in the execution trace to find
instances of code resulting from eval. Whenever such a code instance is found,
we check to see whether the eval-string table mentioned above already contains
the same executed string for the eval at that address. If this turns out to be the
case, we adjust the addresses of the instructions within the evaled code for that
string by an offset that accounts for any difference between the addresses of the
different buffers allocated. It is not difficult to see that this works as desired even
if we have nested evals, i.e., where a string being evaled itself contains embedded
evals.

The second issue arises from the fact that in some JavaScript implementa-
tions, local variables may be represented differently in dynamically generated
code than in statically generated code. For example, in Mozilla’s SpiderMonkey
JavaScript engine [11], in the code generated during the “regular” compilation
process, each local variable in a function is represented using an index (a small
integer), while the code resulting from dynamic compilation of evaled strings
uses the names of the variables regardless of whether they are local or global.
It is necessary to resolve this discrepancy prior to program analysis, because
otherwise the different representations for local variables may cause incorrect
program slices and syntax tree to be computed. This means that when pro-
cessing an instruction such as setname, whose operand is given as a name, the
instrumentation code has to check to see whether the name resolves to a local
variable, and retrieve and write out the corresponding index value if it does.

3.3 Control Flow Graph Construction

In principle, the (static) control flow graph for a JavaScript program can be
obtained fairly easily. The byte-code for each function in a JavaScript program
can be obtained as a property of that function object, and it is straightforward to
decompile this byte-code to an abstract syntax tree. In practice, the control flow
graph so obtained may not be very useful if the intent is to simplify obfuscations
away. The reason for this is that dynamic constructs such as eval, commonly
used to obfuscate JavaScript code, are essentially opaque in the static control flow
graph: their runtime behavior—which is what we are really interested in—cannot
be easily determined from an inspection of the static control flow graph. For this
reason, we opt instead for a dynamic control flow graph, which is obtained from
an execution trace of the program. However, while the dynamic control flow
graph gives us more information about the runtime behavior of constructs such
as eval, it does so at the cost of reduced code coverage.

The algorithm for constructing a dynamic control flow graph from an exe-
cution trace is a straightforward adaptation of the algorithm for static control
flow graph construction, found in standard compiler texts [2, 12], modified to
deal with dynamic execution traces, plus the standard dominator analysis to
identify the loops. The issue is that while an instruction at a particular memory
address may occur many times in an execution trace, it should appear just once
in a control flow graph. To this end, the first time an instruction I at memory
address A is encountered, it is added to the control flow graph in the usual way.
If instruction I at address A is subsequently encountered again, we do not create
a new instance of that instruction in the control flow graph, but instead add a
control flow edge to previously-created instance of I at A.

B call

B ret

B entry

B exit

call

return

. . .

. . .

. . .

. . .

Fig. 2. Control flow graph structure for function calls/returns

Function Identification. The dynamic control flow graph obtained is missing
some information necessary for transformation to a higher-level representation.
In particular, the basic blocks in the program are not grouped into different

functions. In order to identify the basic blocks belonging to each function, we
first associate each function call block with the corresponding block to which
control returns from the call.

Figure 2 shows the structure of control flow edges for function calls and
returns in the control flow graph constructed after slicing. Consider a basic block
Bcall ending in a call instruction. For each target for this call (in general there
may be more than one) there is a control flow edge to the entry block Bentry

of the callee. Suppose that control transfer from this callee back to the caller at
the end of this call occurs from a basic block Bexit in the callee to a block Bret

in the caller, as shown in Figure 2. In general, a call may target more than one
callee; a function may be called from more than one call site; and different calls
to a function may return from different basic blocks within that function. Thus,
Bcall and Bexit may have multiple outgoing edges, and Bentry and Bret may have
multiple incoming edges. Our objective is to link together the call block Bcall

and the corresponding return block Bret to which control returns at the end of
the call. We proceed as follows:

1. Suppose that the call instruction at the end of Bcall is at address A and is
n bytes long. This means that the instruction that comes immediately after
it in the program’s byte-code, and to which control returns from the call, is
at address A + n. We search the control flow graph to find the basic block
Bret whose first instruction is at address A+ n.

2. We remove all the outgoing edges from Bcall (however, we retain a list of the
call targets for the call block) and the incoming edges into Bret . We add an
edge from Bcall to Bret ; this edge indicates that the call from Bcall returns
to Bret .

After all call blocks have been processed in this way, the control transfer edges
out of each call block and the control transfer edges into the corresponding return
block are replaced by a single edge from the call block to the return block. For
each function, the basic blocks belonging to that function are then computed as
the set of blocks that are reachable from the entry node for the function.

3.4 Deobfuscation Slicing

As mentioned in Section 2.2, we use dynamic slicing to identify instructions that
directly or indirectly affect arguments passed to native functions, which has been
investigated by Wang and Roychoudhury in the context of slicing Java byte-code
traces [16]. We adapt the algorithm of Wang and Roychoudhury in two ways,
both having to do with the dynamic features of JavaScript used extensively for
obfuscation. The first is that while Wang and Roychoudhury use a static control
flow graph, we use the dynamic control flow graph discussed in Section 3.3. The
reason for this is that in our case a static control flow graph does not adequately
capture the execution behavior of exactly those dynamic constructs, such as eval,
that we need to handle when dealing with obfuscated JavaScript. The second is in
the treatment of the eval construct during slicing. Consider a statement eval(s):

Input: A dynamic trace T; a slicing criterion C; a dynamic control flow graph
G;

Output: A slice S;

1 S := ∅;
2 currFrame := lastFrame := NULL;
3 LiveSet := ∅;
4 stack := a new empty stack;
5 I := instruction instance at the last position in T;
6 while true do

7 inSlice := false;
8 Uses := memory addresses and property set used by I ;
9 Defs := memory addresses and property set defined by I ;

10 inSlice := I ∈ C ; /* add all instructions in C into S */

11 if i is a return instruction then

12 push a new frame on stack;
13 else if I is an interpreted function call then
14 lastFrame := pop(stack);
15 else

16 lastFrame = NULL;
17 end

18 currFrame := top frame on stack;
// inter-function dependence: ignore dependency due to eval

19 if I is an interpreted function call ∧ I is not eval then
20 inSlice := inSlice ∨ lastFrame is not empty;
21 else if I is a control transfer instruction then

// intra-function control dependency

22 for each instruction J in currFrame s.t. J is control-dependent on I do

23 inSlice := true;
24 remove J from currFrame;

25 end

26 end

27 inSlice := inSlice ∨ (LiveSet ∩ Defs 6= ∅) ; // data dependency

28 LiveSet := LiveSet − Defs;
29 if inSlice then // add I into the slice

30 add I into S;
31 add I into currFrame;
32 LiveSet := LiveSet ∪ Uses;

33 end

34 if I is not the first instruction instance in T then

35 I := previous instruction instance in T;
36 else

37 break;
38 end

39 end

Algorithm 1: Deobfuscation slicing

in the context of deobfuscation, we have to determine the behavior of the code
obtained from the string s; the actual construction of the string s, however—for
example, by decryption of some other string or concatenation of a collection of
string fragments—is simply part of the obfuscation process and is not directly
relevant for the purpose of understanding the functionality of the program.When
slicing, therefore, we do not follow dependencies through eval statements. We
have to note that because an evaled string s depends on some code v doesn’t
automatically exclude v from the resulting slice; if the real workload depends
on v, then v would be added to slice regardless of the connection with eval. In
other words, only code which is solely used for obfuscation would be eliminated.
Therefore, an obfuscator cannot simply insert evals into the pragram’s dataflow
to hide relevant code. We refer to this algorithm as deobfuscation-slicing.

The pseudocode of deobfuscation-slicing is shown in Algorithm 1. Lines 1−5
are initialization. The algorithm traverses the execution trace backwards, pro-
cessing each instruction in order from the last instruction to the first. Lines 8−9
extracts from the trace the set of memory locations on the stack that are read
and/or written by the instruction, and similarly for properties. If we encounter
a return instruction, this instruction must be in a callee function, and since the
trace is being traversed backwards we push a new frame on the stack (line 11);
analogously, when we encounter a call to an interpreted function (native func-
tions are not traced), we pop the stack because the call instruction is in the caller
(line 13). The underlying implementation handles dynamic code generation via
eval like a function call; line 19 of our algorithm ignores eval, as discussed above.

3.5 Decompilation

The slicing step described above identifies instructions in the dynamic trace that
directly or indirectly affect arguments to native function calls, which includes
functions that invoke system calls. Instead of recomputing a control flow graph
considering only those relevant instructions, we adopt a simpler approach for
decompilation: transform the original control flow graph to the higher-level rep-
resentation such as an abstract syntax tree (AST), and label those AST nodes
constructed from relevant instrucions. This way, we avoid the complexity of han-
dling protential programs caused by slicing, for example, basic blocks might be
scattered and the branching target instruction might not in the slice.

A program in the byte-code representation of SpiderMonkey can not be di-
rectly converted into valid JavaScript source code, due to the existence of those
low level branch instructions, e.g. ifne, goto, etc. Therefore, as the first step, we
use goto statement to represent those branch operations in AST. Since the CFG
has already been processed using loop analysis and function indentification, we
need to construct an abstract syntax tree for each function. The basic blocks
of the CFG are traversed in depth first order on the corresponding dominance
tree, goto node is created in two cases: at the end of basic block that doesn’t end
with a brach instruction, or whenever a branch instruction is encountered. In
addition to storing information of target block in goto nodes, we also keep track
of a list of preceding goto nodes in each target node. Once every basic block

has been translated to an AST node, loop structures are constructed by creating
infinite while loop node which, initially, contains only the nodes of corresponding
natural loop obtained from section 3.3. Once we have an extened AST with goto

nodes, additional code transformation is applied to generate valid JavaScript
soure code. Basic block node and loop node in AST will be refered as block node.

3.6 Code Transformation

Introducing goto statments during decompilation allows us to apply a straight-
forward algorithm to construct AST, but JavaScript source code generated di-
rectly from this AST is invalid. To recover valid code, we need to transform the
extended AST to eliminate goto statements, without changing the logic of the
program.

Joelsson proposed a goto removal algorithm for decompilation of Java byte-
code with irreducible CFGs, the algorithm traverses the AST over and over and
applies a set of transformations whenever possible [8]. We adapt this algorithm to
handle JavaScript and the instruction set used by the SpiderMonkey JavaScript
engine [11]. The basic idea is to transform the program so that each goto is either
replaced by some other construct, or the goto and its target are brought closer
together in a semantics-preserving transformation. The fact that SpiderMonkey
always generates byte-code with reducible CFGs (due to lack of an aggressive
code optimization phase) and the difference between JavaScript byte-code and
Java byte-code, makes it possible for our algorithm to have a smaller set of tran-
formation rules. But it would be straightforward to add more rules, if necessary,
to handle highly optimized JavaScript byte-code with possibly irreducible CFGs.

The following transformation rules are applied by our algorithm on extended
AST.

(a) Move target block after preceding goto. This transformation moves a
block node to the location right after its preceding goto node. To apply this
transformation, node m and its preceding goto node n must satisfy following
conditions:
– n must be the only preceding goto node of m, and
– m is not already located after n, and
– m is neither a function entry nor a loop header node, and
– if m is being moved into a loop node o from outside, then there must be

a goto node p immediately follows o, and a goto node q at the end of m,
such that m and n have the same target node.

(b) Convert goto to continue. To convert a goto node n to continue,
– n and its target node m must resides in the same loop node o, and
– m must be the loop header of o.

When this transformation applied, n has to be removed from m’s predeced-
ing goto list.

(c) Convert goto to break. To convert a goto node n to break,

– n must resides in the a loop node o, and
– there must be a goto node p immediately follows o, and,
– n and p have the same target node.

When this transformation applied, n has to be removed from its target node’s
predeceding goto list.

(d) Combine infinite loop and if-else. This transformation, if applied, re-
moves an if-else statement and moves the goto out the loop. To combine a
while loop p and if-else node q, following conditions must be satisfied:

– p is an infinite loop, and
– q is the first statement in p, and
– the else branch of q only has a goto node n, and target of n is not part

of loop p.

then, the p and q are combined, by substituting loop condition of p with
predicate of q, substituting q with statements in the if branch of q, and
moving n to the location immediately follows and outside of p. This rule
also has a symmetric case, in which if and else is switched.

(e) Move goto out of if-else. This transformation could move gotos out of
blocks and reduce the number of goto nodes as well. Given a if-else node p,
in which the if branch ends with node m and else branch ends with node
n, if both m and n are goto nodes and have the same target, then m is
moved to the location right after p, and n is removed from AST as well as
the preceding goto list of its target.

The transformation stops when none of the rules above could be applied to
the AST. Then the syntax tree is traversed again, for each goto node n, we
examine its target node t, if t is the node immediately following n, then n is
removed from syntax tree. The resulting syntax tree is traversed one last time,
for each node labeled by the decompiler described in section 3.6, corresponding
source code has been printed out.

4 Experimental Results

We evaluated our ideas using a prototype implementation based on Mozilla’s
open source JavaScript engine SpiderMonkey [11]. Here we present results for
two versions of Fibonacci number computation program. We chose them for two
reasons: first, because it contains a variety of language constructs, including con-
ditionals, recursive function calls, and arithmetic; and second, because it is small
and familiar, which makes it easy to assess the quality of deobfuscation. The first
of these, P1, is shown in Figure 3(a); this program is was hand-obfuscated to
incorporate multiple nested levels of dynamic code generation using eval for each
level of recursion. The second program, P2, as shown in Figure 3(b), is also hand-
obfuscated, in which we added dependency between real workload and the value

function f(n){
var t1=n;var t2=n;var k;
var s4 = "eval(’k=t1+t2;’);";

var s3 = "t1=f(t1-1);eval(s4);";
var s2 = "t2=f(t2);eval(str3);";

var s1 = "if(n<2){k=1;}\
else{t2=t2-2;eval(s2);}";

eval(s1);
return k;

}

var x = 3;
var y = f(x);

print(y);

function fib(i){
var k;var x = 1;var f1 = "fib(";
var f2 = ")";var s1 = "i-";

var s2 = "x";
if(i<2)

eval("k="+eval("s"+
(x*2).toString()));

else
eval("k="+f1+s1+x.toString()+

f2+"+"+f1+s1+(x*2).toString()

+f2);
return k;

}
var y = fib(3);

print(y);

(a) Program P1 (b) Program P2

Fig. 3. The test programs P1 and P2

used by eval (local variable x in function fib). Three versions of each of these pro-
grams are used—the program as-is as well as two obfuscated versions—one using
an obfuscator we wrote ourselves that uses many of the obfuscation techniques
described by Howard [7]; and an online obfuscator [1]. Figures 4 and 5 show the
obfuscated programs corresponding to input programs P1 and P2 respectively.

The output of our deobfuscator for these programs is shown in Figure 6.
Figure 6(a) shows the deobfuscated code for all three versions of program P1 (the
original code, shown in Figure 3(a), as well as the two obfuscated versions shown
in Figure 4). Figure 6(b) shows the deobfuscated code for all three versions of the
program P2 (the original, shown in Figure 3(b), as well as the obfuscated versions
shown in Figure 5). For both P1 and P2, the deobfuscator outputs are the same
for each of the three versions. It can be seen that the recovered code is very close
to the original, and expresses the same functionality. The results obtained show
that the technique we have described is effective in simplifying away obfuscation
code and extracing the underlying logic of obfuscated JavaScript code. This
holds even when the code is heavily obfuscated with multiple different kinds
of obfuscations, including runtime decryption of strings and multiple levels of
dynamic code generation and execution, in particular, from simplified code of
P2 (Figure 6(b)), we could see that our approach handles those code intented to
be “hidden” by eval correctly.

5 Related Work

We are not aware of much work on automatic simplification of obfuscated Java-
Script. Most current approaches to dealing with obfuscated JavaScript typi-
cally require a significant amount of manual intervention, e.g., to modify the
JavaScript code in specific ways or to monitor its execution within a debugger
[10, 13, 17]. There are also approaches, such as Caffeine Monkey [5], intended to
assist with analyzing obfuscated JavaScript code, by instrumenting JavaScript

var cl=[168,183,176,165,182,171,177,176,98,168,171,164,106,176,107,189,184,163,180,98,182,
115,127,176,125,184,163,180,98,182,116,127,176,125,184,163,180,98,173,125,184,163,180,
98,181,182,180,118,98,127,98,100,167,184,163,174,106,105,173,127,182,115,109,182,116,125,

105,107,125,100,125,184,163,180,98,181,182,180,117,98,127,98,100,182,115,127,168,171,164,
106,182,115,111,115,107,125,167,184,163,174,106,181,182,180,118,107,125,100,125,184,163,

180,98,181,182,180,116,98,127,98,100,182,116,127,168,171,164,106,182,116,107,125,167,184,
163,174,106,181,182,180,117,107,125,100,125,184,163,180,98,181,182,180,115,98,127,98,100,

171,168,106,176,126,116,107,189,173,127,115,125,191,167,174,181,167,189,182,116,127,182,
116,111,116,125,167,184,163,174,106,181,182,180,116,107,125,191,100,125,75,167,184,163,174,
106,181,182,180,115,107,125,75,180,167,182,183,180,176,98,173,125,191,184,163,180,98,186,

98,127,98,117,125,184,163,180,98,187,98,127,98,168,171,164,106,186,107,125,178,180,171,
176,182,106,187,107,125];

var ii=0;
var str=’;’;

for(ii=0;ii<cl.length;ii++){
str+= String.fromCharCode(cl[ii]-66);

}

eval(str);

(a) Obfuscated code using our obfuscator.

eval(function(p,a,c,k,e,d){e=function(c){return
c};if(!’’.replace(/^/,String)){while(c--){d[c]=k[c]||c}k=[function(e){return
d[e]}];e=function(){return’\\w+’};c=1};while(c--){if(k[c]){p=p.replace(new

RegExp(’\\b’+e(c)+’\\b’,’g’),k[c])}}return p}(’17 8(9){0 6=9;0 4=9;0 7;0
11="5(\’7=6+4;\’);";0 10="6=8(6-1);5(11);";0 13="4=8(4);5(10);";0

15="18(9<2){7=1;}20{4=4-2;5(13);}";5(15);19 7}0 14=3;0
12=8(14);16(12);’,10,21,’var||||t2|eval|t1|k|f|n|str3|str4|y|str2|x|str1
|print|function|if|return|else’.split(’|’),0,{}))

(b) Obfuscated code using online obfuscator.

Fig. 4. Obfuscated versions of the program P1

engine and log the actual string passed to eval. Similar tools include several
browser extensions, such as the JavaScript Deobfuscator extension for Firefox
[14]. The disadvantage of such approaches is that they show all the code that is
executed and do not separate out the code that pertains to the actual logic of the
program from the code whose only purpose is to deal with obfuscation. Recently a
few authors have begun looking at automating the analysis of obfuscated and/or
malicious JavaScript code. Cova at al. describe Prophiler, which uses machine
learning techniques to identify behavioral characteristics of malicious Javascript
code [3]. The classification of Javascript code as malicious or benign is based on
runtime characteristics consisting of both browser-based behavior, such as the
number and target of web page redirections, browser personality and history-
based differences, as well as JavaScript execution characteristics such as ratio of
string definitions and string uses, number of dynamic code executions, number
of bytes allocated through string operations, and length of dynamically evalu-
ated code. Zozzle by Curtsinger et al. [4], identifies malicious JavaScript using
a classifier based on context-sensitive features. They use known malicious and
benign JavaScript to train a classifier, unlike [3], it must be run on unobfuscated
scripts to reliably detect malicious code. While these techneques usually have
a deobfuscation component, they simply rely on the assumption that the ma-
licious workload has to be unpacked at last, and still heavily based on manual
inspection for labeling training data. Besides, as with all classification problems,

var cl=[168,183,176,165,182,171,177,176,98,168,171,164,106,171,107,189,184,163,180,98,173,

125,184,163,180,98,186,98,127,98,115,125,184,163,180,98,168,115,98,127,98,100,168,171,164,
106,100,125,184,163,180,98,168,116,98,127,98,100,107,100,125,184,163,180,98,181,115,98,127,

98,100,171,111,100,125,184,163,180,98,181,116,98,127,98,100,186,100,125,171,168,106,171,
126,116,107,167,184,163,174,106,100,173,127,100,109,167,184,163,174,106,100,181,100,109,
106,186,108,116,107,112,182,177,149,182,180,171,176,169,106,107,107,107,125,167,174,181,

167,189,167,184,163,174,106,100,173,127,100,109,168,115,109,181,115,109,186,112,182,177,
149,182,180,171,176,169,106,107,109,168,116,109,100,109,100,109,168,115,109,181,115,109,

106,186,108,116,107,112,182,177,149,182,180,171,176,169,106,107,109,168,116,107,125,191,180,
167,182,183,180,176,98,173,125,191,184,163,180,98,187,98,127,98,168,171,164,106,117,107,125,

178,180,171,176,182,106,187,107,125];
var ii=0;
var str=’;’;

for(ii=0;ii<cl.length;ii++){
str+= String.fromCharCode(cl[ii]-66);

}
eval(str);

(a) Obfuscated code using our obfuscator.

eval(function(p,a,c,k,e,d){e=function(c){return

c.toString(36)};if(!’’.replace(/^/,String)){while(c--)
{d[c.toString(a)]=k[c]||c.toString(a)}k=[function(e){return

d[e]}];e=function(){return’\\w+’};c=1};while(c--){if(k[c])

{p=p.replace(new RegExp(’\\b’+e(c)+’\\b’,’g’),k[c])}}return p}
(’f a(i){0 k;0 4=1;0 6="a(";0 8=")";0 9="i-";0 d="4";c(i<2)7("k="+7

("e"+(4*2).5()));g 7("k="+6+9+4.5()+8+"+"+6+9+(4*2).5()+8);h k}0
b=a(3);j(b);’,21,21,’var||||x|toString|f1|eval|f2|s1|fib|y|
if|s2|s|function|else|return||print|’.split(’|’),0,{}))

(b) Obfuscated code using online obfuscator.

Fig. 5. Obfuscated versions of the program P2

function f (arg0) {

local_var0 = arg0;
local_var1 = arg0;
if((arg0<2))

local_var2 = 1;
else {

local_var1 = (local_var1-2);
local_var1 = f(local_var1);

local_var0 = f((local_var0-1));
local_var2 =

(local_var0+local_var1);

}
return local_var2;

}
(x = 3);
(y = f(x));

print(y);

(a) Deobfuscated P1

function fib (arg0) {

(local_var1=1);
if((arg0<2))
(local_var0=local_var1);

else
(local_var0=

(fib((arg0-1))+fib((arg0-2))));
return local_var0;

}
(y=fib(3));
print(y);

(a) Deobfuscated P2

Fig. 6. Deobfuscator outputs for programs P1 and P2

features based on obfuscation techniques are not reliable indicators of malicious
code, given the fact that obfuscation is also common in benign code. Our tech-
nique of automatic deobfuscation not only could reduce workload of manual
analysis, it also could potentially increase the accuracy of such machine learn-
ing techniques. Saxena et al. discuss dynamic symbolic execution of JavaScript
code using constraint-solving over strings [15]. Hallaraker and Vigna describe an
approach to detecting malicious JavaScript code by monitoring the execution of
the program and comparing the execution to a set of high-level policies [6]. All
of these works are very different from the approach discussed in this paper.

6 Conclusions

The prevalence of web-based malware delivery methods, and the common use
of JavaScript code in infected web pages to download malicious code, makes
it important to be able analyze the behavior of JavaScript programs and, pos-
sibly, classify them as benign or malicious. For malicious JavaScript code, it
is useful to have automated tools that can help identify the functionality of
the code. However, such JavaScript code is usually highly obfuscated, and use
dynamic language constructs that make program analysis difficult. This paper
describes an approach for dynamic analysis of JavaScript code to simplify away
the obfuscation and expose the underlying logic of the code. Experiments using
a prototype implementation indicate that our technique is effective even against
highly obfuscated programs.

References

1. Online javascript obfuscator. http://www.daftlogic.com/projects-online-
javascript-obfuscator.htm.

2. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: principles, techniques, and tools.
Reading, MA,, 1986.

3. D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: A fast filter for the large-
scale detection of malicious web pages. In Proceedings of the 20th international
conference on World wide web, pages 197–206. ACM, 2011.

4. C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle: Fast and precise in-
browser javascript malware detection. In USENIX Security Symposium, 2011.

5. B. Feinstein, D. Peck, and I. SecureWorks. Caffeine monkey: Automated collection,
detection and analysis of malicious javascript. Black Hat USA, 2007, 2007.

6. O. Hallaraker and G. Vigna. Detecting malicious javascript code in mozilla. In En-
gineering of Complex Computer Systems, 2005. ICECCS 2005. Proceedings. 10th
IEEE International Conference on, pages 85 – 94, june 2005.

7. F. Howard. Malware with your mocha: Obfuscation and antiemulation tricks in-
malicious javascript, 2010.

8. E. Joelsson. Decompilation for visualization of code optimizations. 2003.
9. A. Kirk. Gumblar and more on Javascript obfuscation. Sourcefire Vulner-

ability Research Team. http://vrt-blog.snort.org/2009/05/gumblar-and-more-on-
javascript.html. May 22, 2009.

10. P. Markowski. ISC’s four methods of decoding Javascript + 1, March 2010.
http://blog.vodun.org/2010/03/iscs-four-methods-of-decoding.html.

11. Mozilla. Spidermonkey javascript engine. https://developer.mozilla.org/en/SpiderMonkey.
12. Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-

mann, 1997.
13. J. Nazario. Reverse engineering malicious Javascript. CanSecWest 2007,

http://cansecwest.com/csw07/csw07-nazario.pdf.
14. W. Palant. Javascript deobfuscator 1.5.7. https://addons.mozilla.org/en-

US/firefox/addon/javascript-deobfuscator/.
15. Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,

and Dawn Song. A symbolic execution framework for javascript. Security and
Privacy, IEEE Symposium on, 0:513–528, 2010.

16. T. Wang and A. Roychoudhury. Dynamic slicing on java bytecode traces. ACM
Transactions on Programming Languages and Systems (TOPLAS), 30(2):10, 2008.

17. D. Wesemann. Advanced obfuscated javascript analysis, April 2008.
http://isc.sans.org/diary.html?storyid=4246.

