
Code Compaction of an Operating System Kernel∗

Haifeng He, John Trimble, Somu Perianayagam, Saumya Debray, Gregory Andrews
Department of Computer Science, The University of Arizona,Tucson, AZ 85721, USA

{hehf, trimble, somu, debray, greg}@cs.arizona.edu

Abstract

General-purpose operating systems, such as Linux,
are increasingly being used in embedded systems. Com-
putational resources are usually limited, and embedded
processors often have a limited amount of memory. This
makes code size especially important. This paper de-
scribes techniques for automatically reducing the mem-
ory footprint of general-purpose operating systems on
embedded platforms. The problem is complicated by the
fact that kernel code tends to be quite different from or-
dinary application code, including the presence of a sig-
nificant amount of hand-written assembly code, multi-
ple entry points, implicit control flow paths involving in-
terrupt handlers, and frequent indirect control flow via
function pointers. We use a novel “approximate decom-
pilation” technique to apply source-level program anal-
ysis to hand-written assembly code. A prototype imple-
mentation of our ideas on an Intel x86 platform, applied
to a Linux kernel that has been configured to exclude un-
necessary code, obtains a code size reduction of close to
24%.

1. Introduction

Recent years have seen increasing use of general-
purpose operating systems, such as Linux, deployed in
embedded contexts such as cell phones, media play-
ers, and other consumer electronics [1]. This is due in
great part to technological trends that make it uneco-
nomical for vendors to develop custom in-house oper-
ating systems for devices with shorter and shorter life
cycles. At the same time, however, these operating
systems—precisely because they are general-purpose—
contain features that are not needed in every application
context, and that incur unnecessary overheads, e.g., in
execution speed or memory footprint. Such overheads
are especially undesirable in embedded processors and

∗This work was supported in part by NSF Grants EIA-0080123,
CCR-0113633, and CNS-0410918.

applications because they usually have resource con-
straints, such as a limited amount of memory. Thus,
the memory footprint of the code is especially impor-
tant, and a program that requires more memory than is
available will not be able to run.1

This paper focuses on automatic techniques for re-
ducing the memory footprint of operating system ker-
nels in embedded systems. Such systems tend to have
relatively static configurations: at the hardware end, they
are limited in the set of devices with which they inter-
act (e.g., a cell phone or digital camera will typically
not have a mouse interface); at the software end, they
usually support a fixed set of applications (e.g., we do
not routinely download or build new applications on a
cell phone or digital camera). This implies that an em-
bedded system will typically use only some of the func-
tionality offered by a general-purpose operating system.
The code corresponding to the unused functionality is
unnecessary overhead, and should be removed. Some of
this overhead can be removed simply by configuring the
kernel carefully so as to exclude as much unnecessary
code as possible. However, not all overheads can be re-
moved in this manner. For example, a given set of appli-
cations running on an embedded platform will typically
use only a subset of the system calls supported by the
operating system; the code for the unused system calls
is then potentially unnecessary. Such unnecessary code
typically cannot be eliminated simply by tweaking the
configuration files; additional analysis is required. This
paper discusses how such analysis may be carried out in
order to identify code that can be guaranteed to be un-
necessary. Specifically, this paper makes the following
contributions:

1. It discusses issues that arise in binary rewriting of
operating system kernels and discusses how they
may be handled.

2. It introduces a notion of “approximate decompila-

1Virtual memory is not always an option in embedded systems;
even where it is available, the energy cost of paging out of secondary
storage can be prohibitive.

tion” that allows us to apply source-level program
analysis to hand-written assembly code. This im-
proves the precision of our analysis considerably,
and in a simple way, while ensuring that the safety
of our transformations is not compromised.

There has been a significant body of work on code
size reduction, with different objectives (e.g., reduc-
ing wire transmission time vs. reducing memory foot-
print during execution), on different program represen-
tations (e.g., syntax trees, byte code, or native code), and
making different assumptions regarding the requirement
for runtime decompression and the availability of hard-
ware support for any such runtime decompression. See
Beszédeset al. [4] for a survey. Almost all of this work
has been done in the context of application code. By
contrast, the work described in this paper focuses on op-
erating system kernels in native code representation, and
it aims to reduce their runtime memory footprint. We
do so using automatic program analysis and transfor-
mations, with no programmer intervention in the form
of code annotations or other similar input. A prototype
implementation of our ideas on an Intel x86 platform,
applied to the Linux kernel configured minimally so as
to exclude all unnecessary code, is able to achieve a
code size reduction of nearly 24%, on average, on the
MiBench suite of embedded system applications [11].

2. Background

OS kernel code is quite different from ordinary ap-
plication code. A significant problem is the presence
of considerable amounts of hand-written assembly code
that often does not follow the familiar conventions of
compiler-generated code, e.g., with regard to function
prologues, epilogues, and argument passing. This makes
it difficult to use standard compiler-based techniques
for whole-system analysis and optimization of kernel
code. To deal with this problem, we decided to use bi-
nary rewriting for kernel compaction. However, while
processing a kernel at the binary level provides a uni-
form way to handle code heterogeneity arising from the
combination of source code, assembly code and legacy
code such as device drivers, it introduces its own set of
problems. For example, it is necessary to deal with a
significant amount of data embedded within executable
sections, implicit addressing requirements that constrain
code movement, and occasional unusual instruction se-
quences. As a result, binary rewriting techniques appli-
cable to application code do not always carry over di-
rectly to kernel code (the issues that arise, and our ap-
proach to handling them, are discussed in more detail
elsewhere [19]).

An especially important issue for code compaction is
that of control flow analysis, both intra-procedural and
inter-procedural. This is because, in practice, most of
the code size reductions arising from compaction comes
from the detection and elimination of dead and unreach-
able code [7]. For soundness reasons, we have to ensure
that we only eliminate code that can be guaranteed never
to be needed during any future execution. This means
that imprecision in control flow analysis directly affects
the amount of code that can be eliminated.

Unfortunately, control flow analysis in operating sys-
tem kernels is complicated by the interaction of two sep-
arate problems. First, there are significant amounts of
hand-written assembly code, as mentioned above. Sec-
ond, operating system kernels often make extensive use
of indirect function calls in order to enhance maintain-
ability and extensibility. This is a problem because
static analyses are generally quite conservative in their
treatment of indirect function calls.2 Each of these
problems—hand-written assembly and indirect function
calls—is nontrivial in its own right, and the situation is
exacerbated further by the fact that they interact: the
hand-written assembly code in an operating system ker-
nels may itself contain indirect function calls, and iden-
tifying those targets requires pointer alias analysis of the
assembly code.

A final problem in dealing with control flow in oper-
ating system kernels is that not all entry points into the
kernel, and control flow within the kernel, are explicit.
There are implicit entry points such as system calls and
interrupt handlers as well as implicit control flow aris-
ing from interrupts; both have to be taken into account
in order to guarantee soundness.

3. Pointer Analysis: Resolving Indirect
Function Call Targets

Static analysis of OS kernel code is complicated
by the presence of hand-written assembly code. On
the one hand, dealing with hand-written assembly code
in a source-level or intermediate-code-level analysis
is messy and awkward because of the need to inject
architecture-specific knowledge into the analysis—such
as aliasing between registers (e.g., in the Intel x86 archi-
tecture, the register%al is an alias for the low byte of the
register%eax) and idiosyncrasies of various machine
instructions. On the other hand, if the analysis is im-
plemented at the assembly code or machine code level,
much of the semantic information present at the source
level is lost—in particular, information about types and

2In general, identifying the possible targets of indirect function
calls is equivalent to pointer alias analysis, which is a hard problem
both theoretically and in practice.

foo .c
A

foo .cA

foo.s runtime behavior

(safe approximation)

A
information about

 −analysisA−analysis

approximate
decompilation
w.r.t. A

execution

Figure 1. Using approximate decompilation for program anal ysis

pointer aliasing—resulting in overly conservative analy-
sis that loses a great deal of precision. Nor can such as-
sembly code be ignored, since soundness demands that
all possible execution behaviors of the program be taken
into account.

One possible solution to this problem would be to de-
compile the hand-written assembly code back to equiv-
alent C source code that could then be analyzed by
source-level analysis. The problem with such an ap-
proach is that it is not obvious that all of the kernel as-
sembly code can be reverse engineered back to equiva-
lent C source code. For example, “system instructions”
on the Intel x86 architecture, such as “load interrupt de-
scriptor table register” and “invalidate TLB entry,” do
not have obvious C-level counterparts. Moreover, even
in situations where reverse engineering is possible, it can
be complicated and involve a great deal of engineering
effort. Instead, we deal with this problem using an ap-
proach we call “approximate decompilation,” which au-
tomatically maps hand-written assembly code back to
C source files for analysis purposes. The idea, illus-
trated in Figure 1, is that given an assembly filefoo.s
and a program analysisA, we create a source filefooA.c
that has the property that anA-analysis offooA.c is a
safe approximation of the behavior offoo.s, even though
fooA.c is not semantically equivalent tofoo.s. For ex-
ample, ifA focuses on control flow analysis, thenfooA.c
may elide those parts offoo.s that are irrelevant to con-
trol flow. We have applied this approach to use a source-
level pointer alias analysis technique called FA-analysis
to identify the possible targets of indirect function calls.
The remainder of this section discusses how this is car-
ried out.

3.1 FA Analysis

There is a large volume of literature on pointer alias
analysis, with a variety of assumptions, goals, and
trade-offs (see, for example, the discussion by Hind
and Pioli [12]). In general, these analyses exhibit a
trade-off between efficiency and precision: the greater
the precision, the greater the analysis cost, i.e., the

lower the efficiency. FA-analysis is a flow-insensitive
context-insensitive pointer alias analysis, originally due
to Zhanget al. [23, 24], that is at the efficiency end of
this trade-off.

A detailed discussion of FA-analysis is beyond the
scope of this paper; the interested reader is referred to
the original papers on this analysis [16, 23, 24]. The es-
sential idea in this analysis is to maintain equivalence
classes of names that may alias each other in mem-
ory. Program constructs that result in values being
propagated from one variable to another, e.g., assign-
ment statements and parameter passing during a func-
tion call, cause the corresponding equivalence classes
to be merged. For structure and union references, this
merging propagates recursively down to the equivalence
classes for the constituent fields. This merge process ig-
nores the execution order of program statements: if two
variables can be aliases anywhere in the program, then
they are taken to be potential aliases everywhere in the
program. This flow-insensitivity makes for a fast analy-
sis but also makes it imprecise.

Milanovaet al. have observed, however, that despite
its low precision for general-purpose pointer alias anal-
ysis, FA analysis turns out to be quite precise in practice
for identifying the targets of indirect function calls [16].
The authors attribute this to the fact that programmers
typically use function pointers in a few specific and rel-
atively simple stylistic ways.

3.2 Approximate Decompilation of
Kernel Code for FA Analysis

As Figure 1 suggests, the way in which approxi-
mate decompilation is carried out depends in part on the
source-level analysis that will be applied to the resulting
source files. This section discusses approximate decom-
pilation of assembly code in the Linux kernel code for
FA analysis. For concreteness, we discuss kernel assem-
bly code on the Intel x86 architecture.

The hand-written assembly instructions in the Linux
kernel falls into two broad groups: (1) general-purpose
instructions that perform basic data movement, arith-

metic, logic, and program control flow operations, and
(2) system instructions that provide support for operat-
ing systems and executives [13]. We process these in-
structions as follows:

– System instructions (the second group above) ma-
nipulate only the hardware (or data related to the
hardware) and have no effect on pointer aliasing in
the kernel code. For pointer alias analysis, there-
fore, we simply ignore these instructions.

– Since FA analysis is flow-insensitive and context-
insensitive, instructions whose only effect is on
intra-procedural control flow, such as conditional
and unconditional branches, have no effect on the
analysis. Inter-procedural control flow cannot be
ignored, however, since it induces aliasing between
the actual parameters at the call site and the for-
mal parameters at the callee. Our decompiler there-
fore ignores conditional and unconditional con-
trol flow instructions whose targets are within the
same function, but translates inter-procedural con-
trol transfers.

– The remaining instructions are those that move data
and those that perform arithmetic and logic opera-
tions. These instructions are translated to the cor-
responding operations in C. For example, a register
load instruction, ‘mov $0, %eax,’ is translated to
an assignment ‘eax = 0’.

Since the results of approximate decompilation are used
only by a program analysis tool, we currently do not at-
tempt to raise the level of abstraction of the generated C
code beyond that produced by this straightforward trans-
lation.

Our decompiler maps registers in the assembly code
to global variables of typeint with 32-bit values; the 16-
bit and 8-bit registers (which are aliases of parts of the
32-bit registers) are also mapped to the appropriate 32-
bit global. Thus, the 8-bit register%al and the 16-bit
register%ax, which refer to the low 8 bits and the low
16 bits of the 32-bit register%eax respectively, are both
mapped to the variableeax denoting the 32-bit register
%eax.

Memory locations referenced as absolute addresses
in the assembly code are also treated as global vari-
ables. Since there is little type information available
at the assembly level, we declare memory locations as
having typeMEMOBJ, which denotes a word in mem-
ory.3 An object spanning a series of memory locations
in the assembly code is treated as an array ofMEMOBJ
in the generated C code. This is illustrated in Figure

3Our implementation defines this type as ‘typedef MEMOBJ
int;’.

2(a). The segment of assembly code shown on the left
side in Figure 2(a), taken from the fileentry.S in
the Linux kernel, defines the system call table that con-
tains the function addresses of all system call handlers.
Sincesys call table spans a series of (initialized)
memory locations in the assembly code, we map it to
an (initialized) array in the generated C code shown on
the right side in Figure 2(a). Moreover, since the sym-
bols for the system call handlers are not themselves de-
fined in entry.S, they are declared asextern ob-
jects in the generated C code. Before we start the ac-
tual pointer analysis, we scan the entire kernel source
code and match memory objects to functions so that the
source-level FA analysis can deal properly with function
pointers in the assembly code.

Functions in the assembly code are identified from
symbol table information and mapped to functions in the
generated C code. Memory locations accessed through
the stack pointer register%esp are assumed to be on the
stack; these are mapped to local variables in the corre-
sponding C function, with variables accessed via differ-
ent displacements within the stack frame being mapped
to different local variables in the generated C code. Ac-
tual parameters to a call are identified by similarly ex-
amining displacements in stack references, as illustrated
in Figure 2(b). In this manner, by examining the ref-
erences to actual parameters in the body of a function,
we can determine the number of arguments it takes, and
thereby generate a function prototype in the C code.
Such prototypes are then used by the source-level anal-
ysis to identify aliasing between actuals and formals. A
control transfer to a symbolS is translated as a function
call if either the instruction is acall instruction, or if the
targetS is a function, as illustrated in Figure 2(c).

4. Identifying Reachable Code

4.1 Reachability Analysis

The source-level FA analysis produces a set of pos-
sible call targets for each indirect procedure call in the
kernel. Our kernel binary rewriter takes this information
as an input and constructs a program call graph for the
entire kernel.

Unlike ordinary applications, an operating system
kernel contains multiple entry points. These entry points
are the starting points for our reachability analysis. We
classify kernel entry points into four categories: (1) the
entry point for initializing the kernel (for the Linux ker-
nel, this is the functionstartup 32), (2) system calls
invoked during the kernel boot process, (3) interrupt
handlers, and (4) system calls invoked by user applica-
tions. Once the entry points into the kernel have been

init

.data
ENTRY(sys_call_table)
 .long SYMBOL_NAME(sys_exit)
 .long SYMBOL_NAME(sys_fork)
 .long SYMBOL_NAME(sys_read)
 ...

entry.S

 extern MEMOBJ sys_exit;
 extern MEMOBJ sys_fork;
 extern MEMOBJ sys_read;
 ...
 MEMOBJ sys_call_table[] = {
 &sys_exit,
 &sys_fork,
 &sys_read,
 ...
 };

ENTRY(overflow)
 pushl $0
 pushl $ SYMBOL_NAME(do_overflow)
 jmp error_code

void overflow () {
 VALUE LOCAL1;
 VALUE LOCAL2;
 LOCAL1 = 0;
 LOCAL2 = &do_overflow;
 error_code (LOCAL2,LOCAL1);
}

entry .cFA

error_code:
 ...
 movl 0x24(%esp), %esi
 movl 0x20(%esp), %edi
 ...

void error_code (VALUE PARAM1,
 VALUE PARAM2) {
 ...
 esi = PARAM2;
 edi = PARAM1;
 ...

LOCAL1

Stack

LOCAL2

....

SP

PARAM2

Stack

PARAM1

....

 ssize_t sys_read(..)
 {

 }

fs/read_write.c

(c) Decompilation of stack locations for call paramters

= l

0x24(%esp)

0x20(%esp)

%esp = l

%esp = l - 4

initSP = l

(a) Decompilation of memory locations

(b) Decompilation of stack locations for local variables

Figure 2. Examples of approximate decompilation of assembl y code to C code for FA analysis.

identified, our reachability analysis performs a straight-
forward depth-first traversal of the program call graph to
identify all the reachable functions in the kernel.

4.2 Improving the Analysis

During the initialization phase of kernel bootup (e.g.,
before theinit program in Linux begins execution),
execution is deterministic because there is only one ac-
tive thread and execution depends only on the hard-
ware configuration and the configuration options passed
through boot command line. In other words, the ini-
tialization code can be considered to be “static” in the
partial evaluation sense [14]. This means that if the con-
figuration is not changed, we can safely remove any ini-
tialization code that is not executed. We use this idea to
further improve our reachability analysis.

Our goal is to identify the static functions in the ker-
nel, i.e., functions whose execution is completely deter-
mined once the configuration options and the hardware

are fixed. To this end, we take advantage of a Linux
kernel feature used to identify initialization code, most
of which is not needed, and can be reclaimed, after ini-
tialization is complete. In particular, the Linux kernel
simplifies this reclamation by segregating data and code
used only for initialization into two sections in the ELF
binary: .text.init and.data.init. Once the
initialization of the kernel finishes during bootup, the
kernel frees the memory pages occupied by these two
sections to save physical kernel memory.

We use this knowledge to initialize the set ofstatic
functions to those appearing in the.text.init sec-
tion. We then propagate this information as follows to
find other functions that are not in the.text.init
section but whose execution can be inferred to be com-
pletely determined given the command-line configura-
tion options and hardware setup:

1. Mark all functions in.text.init section as
static.

Procedure Reachability-Analysis

worklist ← functions that are entry points into the
kernel
while worklist 6= ∅ do

f ← Remove a function fromworklist

Mark f as reachable
for every indirect/direct call targetc of f do

if c is static∧ c is not executed based on profile
then

continue
else if c is not marked as reachablethen

Add c into worklist

end if
end for

end while

Figure 3. The improved reachability analy-
sis algorithm

2. Based on the call graph of the Linux kernel, mark
all functions that are not called by any other func-
tion asstatic.

3. If all the direct and indirect callers of a function
F are static, then markF as static. Repeat this
process until there are no changes.

Once we have computed the set of functions that are
considered to bestatic during kernel initialization, we
use the results to improve our reachability analysis as
shown in Figure 3. The improvement is that when a po-
tentially reachable function is found, if the function is
markedstatic and if, based on profile data, it was not
called during kernel initialization, then we do not add it
to the set of reachable functions.

4.3 Handling Exception Handlers

In order to identify all reachable code in the kernel,
it is not enough to consider ordinary control transfers,
which are explicit in the code: we also have to take into
account control transfers that are implicit in the excep-
tion handling mechanisms of the kernel. For this, we
examine the exception table in the kernel.

Locations in the kernel where an exception could be
generated are known when the kernel is built. For ex-
ample, the kernel code that copies data to/from user
space is known as a potential source for a page fault
exception. The Linux kernel contains an exception ta-
ble, ex table, that specifies, for each such location,
the code that is to be executed after handling an excep-
tion. Additionally, a special section,.fixup, contains
snippets of code that carry out the actual control trans-

fer from the exception handlers to the appropriate des-
tination locations. The flow of control when handling
an exception is shown in Figure 4: after the exception
handler deals with an exception from an addressL1, it
searches ex table with L1 as the key, finds the asso-
ciated addressL2 of the corresponding fixup code, and
jumps toL2. The key point to note here is that the control
flow path fromL1 to L2 is not explicit in the code, but is
implicit in ex table. It is necessary to take such im-
plicit execution paths into account for code compaction
to ensure that we find all reachable code. We do this
by examining the exception table and adding pseudo-
control-flow edges to indicate such implicit control flow.
For the example in Figure 4, we would add such an edge
from L1 to L2.

5. Kernel Compaction

Once all the potentially reachable code in the ker-
nel has been identified, a variety of size-reducing code
transformations can be applied to the kernel. Our trans-
formations can be broadly grouped into three categories:

1. Unreachable code elimination. This identifies and
deletes code that cannot be reached during execu-
tion [7].

2. Whole function abstraction. This identifies situa-
tions where multiple different functions have iden-
tical code, and removes all but one instance of such
code. (Unlikely as this situation might seem, this
optimization yields a size reduction of over 3% on
the Linux 2.4.25 kernel.)

3. Duplicate code elimination. This involves trans-
formations (other than whole function abstraction)
where duplicate code instances are identified and
eliminated. We use two different code transforma-
tions for this: tail-merging and procedural abstrac-
tion [7].

Applying these transformations to the kernel code in-
volves some subtleties that have to be taken into account
during code compaction. Here we describe two such sit-
uations.

The first involves a small number of functions in the
kernel bootup code that execute prior to page table ini-
tialization, and which are required to be at specific fixed
addresses. Such functions therefore cannot be moved in
memory during the code compaction process. Our cur-
rent implementation uses a fixed list of functions that
cannot be moved: there are some 71 such functions, out
of a total of roughly 4,600 functions in the input kernel
binary (see Table 1).

1

2

3

1L :

2L :

1L 2L

4

5

.text

.fixup

exception handler

__ex_table

find fixup addr
jmp fixup addr

...memory reference

error = −EFAULT
result = 0
jmp data reference

control transfer

Key:

① A memory exception atL1 causes control to branch to the exception handler.

② Exception handling code.

③ Exception handler searchesex table with the addressL1, where the exception occurred, to find
the associated fixup code addressL2.

④ Control branches from the exception handler to the fixup code.

⑤ Control branches from the fixup code back into the text segment.

Figure 4. Control flow during the handling of exceptions in th e Linux kernel

The second issue is that some forms of procedural
abstraction require that a global memory location be al-
located to save the return address of the procedure. We
currently exclude such code fragmennts for procedural
abstraction within the kernel. There are two reasons for
this. First, if a page fault occurs when accessing this lo-
cation to store a return address and the page tables have
not yet been initialized, the kernel will crash. Second,
since the kernel is multi-threaded in general, using a sin-
gle global location can lead to incorrect results if one
thread overwrites the return address stored there by an-
other thread; this means that the memory allocation has
to be done on a per-thread basis, which complicates the
implementation and reduces its benefits. However, this
exclusion has no effect on procedural abstraction of code
fragments that do not have to save the return address in
global memory, but can leave it on the stack.

6. Experimental Results

We have implemented our ideas using the PLTO bi-
nary rewriting system for the Intel x86 architecture [20]
and evaluated them using two different versions of the
Linux kernel: versions 2.4.25 and 2.4.31. To get an ac-
curate evaluation of the efficacy of this system, we be-
gin with a minimally configured kernel where as much
unnecessary code as possible has been eliminated by
configuring the kernel carefully. For our experiments,
we therefore configured the Linux kernel to remove

With Without
networking networking

Functions 4,584 3,882
Basic blocks 72,951 55,708
Instructions 268,335 205,587
Code size (Kb) 836.70 641.61

(a) Linux 2.4.25

With Without
networking networking

Functions 4,388 3,914
Basic blocks 71,118 51,609
Instructions 261,188 209,352
Code size (Kb) 830.68 645.89

(b) Linux 2.4.31

Table 1. Static kernel characteristics

modules, such as the sound card and video support,
that are not required to run our benchmarks. We con-
sidered two versions for each kernel: one with net-
working support, the other without. The kernel code
was compiled withgcc version 3.4.4 using the com-
pilation flags of ‘-Os -fomit-frame-pointer’,
which instructs the compiler to optimize for code size.
Table 1 gives various size-related statistics for the re-
sulting kernel images. In order to simplify the booting
process of the Linux kernel, we modified the kernel boot

Benchmark set Programs No. of uniquesys-
tem calls

No. of non-bootup
system calls

Auto./Industrial basicmath, bitcount, qsort, susan 33 9
Consumer jpeg, mad, lame, tiff2bw, tiff2rgba, tiffdither, tiffme-

dian, typeset
46 11

Network dijkstra, patricia (blowfish, CRC32, sha) 43 12
Office ghostscript, ispell, rsynth, stringsearch 57 15
Security blowfish, pgp, rijndael, sha 49 10
Telecomm adpcm, CRC32, FFT, gsm 39 11
Entertainment jpeg, lame, mad 43 10
Cellphone blowfish, sha, CRC32, FFT, gsm, typeset 45 12

Table 2. Characteristics of the benchmarks used (from the Mi Bench suite [11])

up fileinittab so that the Linux kernel will run in sin-
gle user mode (level 1). Based on the profile data, there
are 81 different system calls that are invoked during the
booting process.

We used programs from the MiBench suite [11], a
widely used and freely available collection of bench-
mark programs for embedded systems, to evaluate our
aproach. The MiBench suite is organized into six sets of
benchmarks, corresponding to different kinds of embed-
ded environments: Automotive and industrial control,
Consumer devices, Networking, Office automation, Se-
curity, and Telecommunications; each of these sets con-
tains several different application programs. We aug-
mented this with two additional sets: Entertainment,
representing a multi-media consumer appliance for mu-
sic and digital pictures; and Cellphone, representing a
cell phone with security features. Characteristics of
these sets are shown in Table 2. We also considered
the BusyBox embedded toolkit [22], which was used by
Chanetet al. to evaluate their kernel compaction work
[6].

Before we can carry out kernel compaction for any
given benchmark set, we have to identify the system
calls that can arise from programs in that set. It is not
enough to examine their executions using tools such as
strace, since this may not cover all the execution paths
in the programs. Nor is it enough simply to examine the
source code of the benchmarks for system calls, since
these actually call library routines that may contain ad-
ditional system calls not visible in the source code. We
therefore analyze statically linked binaries of the pro-
grams to ensure that we find all the system calls that may
be invoked. This, however, causes the entire C library to
be linked in. We address this problem by first carrying
out a reachability analysis on the application program bi-
naries to identify and eliminate unreachable library rou-
tines (using a conservative approximation to deal with
indirect function calls) and then traversing the resulting
whole-program control flow graph to determine the set

of possible system calls. These data are shown in Table
2: the third column of this table gives the number of dif-
ferent system calls across all of the programs in each set
of benchmarks, while the fourth column gives, for each
benchmark set, the number of system calls not occur-
ring in the set of system calls invoked during the kernel
bootup process. Once we have the system calls that may
be invoked by a set of programs, we use them to identify
and eliminate unreachable code in the kernel.

Table 3 shows the effects of code compaction. For
each benchmark set, we present three sets of num-
bers; these give the amount of compaction achieved
for the .text.init section (the code used for ker-
nel bootup), the.text section (the kernel code used
during steady-state execution), and the total amount of
code (.text.init and.text together). The mean
overall code size reduction achieved for the Linux 2.4.25
kernel is 19.3% for the version with networking code
and 23.75% for that without networking; for the Linux
2.4.31 kernel, these numbers are 22.4% for the version
with networking code and 22.6% for the version without
networking code.

The rows labelled “All system calls” in Table 4 show
how much code compaction is achieved if all system
calls in the kernel are assumed to be invokable by the
application code. There are two conclusions that can be
drawn from this. First, it is evident that our optimiza-
tions are able to achieve significant code size reductions
(around 12%–16%), even on a carefully configured ker-
nel, even if we make no assumptions about what system
calls can be invoked by applications. Second, it can be
seen that the ability to restrict the set of possible sys-
tem calls, based on knowledge of the application code,
can yield significant benefits, in our case giving an addi-
tional savings of 7%–9%.

Table 4 shows the effects of different optimizations
on code size. For each optimization, we show both the
incremental improvement obtained from adding that op-
timization to those listed above it in the table as well

Kernel config. Application set .text.init section .text section Total
size (Kb) reduction size (Kb) reduction size (Kb) reduction

(%) (%) (%)
L

in
ux

2.
4.

25

w
ith

ne
tw

or
ki

ng

Original kernel 48.54 – 788.16 – 836.70 –
All system calls 37.15 23.46 698.97 11.32 736.12 12.02
† Busybox 37.15 23.46 648.95 17.66 686.10 18.00

M
ib

en
ch

Automotive 37.15 23.46 633.64 19.60 670.80 19.83
Cellphone 37.15 23.46 637.71 19.09 674.86 19.34
Consumer 37.15 23.46 639.48 18.86 676.63 19.13
Entertainment 37.15 23.46 636.12 19.29 673.27 19.53
Network 37.15 23.46 633.74 19.59 670.89 19.82
Office 37.15 23.46 640.39 18.75 677.54 19.02
Security 37.15 23.46 638.77 18.95 675.92 19.22
Telecomm 37.15 23.46 634.25 19.53 671.40 19.76

Geom. mean: 23.46 19.03 19.29

w
ith

ou
tn

et
w

or
ki

ng

Original kernel 43.43 – 598.18 – 641.41 –
All system calls 34.35 20.90 514.28 14.03 548.63 14.49
Busybox 34.35 20.90 465.43 22.19 499.78 22.10

M
ib

en
ch

Automotive 34.35 20.90 450.37 24.71 484.72 24.45
Cellphone 34.35 20.90 454.43 24.03 488.79 23.82
Consumer 34.35 20.90 456.21 23.73 490.56 23.54
Entertainment 34.35 20.90 452.85 24.30 487.20 24.07
Network 34.35 20.90 450.46 24.69 484.81 24.44
Office 34.35 20.90 457.11 23.58 491.47 23.40
Security 34.35 20.90 455.50 23.85 489.85 23.65
Telecomm 34.35 20.90 450.98 24.61 485.33 24.36

Geom. mean: 20.90 23.95 23.75

L
in

ux
2.

4.
31

w
ith

ne
tw

or
ki

ng

Original kernel 48.87 – 781.81 – 830.68 –
All system calls 37.42 23.42 669.58 14.36 707.00 14.89
Busybox 37.43 23.41 617.10 21.07 654.53 21.21

M
ib

en
ch

Automotive 37.43 23.41 601.64 23.05 639.06 23.07
Cellphone 37.43 23.41 606.76 22.39 644.18 22.45
Consumer 37.43 23.41 608.76 22.13 646.19 22.21
Entertainment 37.43 23.41 605.32 22.58 642.74 22.62
Network 37.43 23.41 602.12 22.98 639.54 23.01
Office 37.43 23.41 610.41 21.92 647.84 22.01
Security 37.43 23.41 608.67 22.15 646.10 22.22
Telecomm 37.43 23.41 603.16 22.85 640.59 22.88

Geom. mean: 23.41 22.34 22.40

w
ith

ou
tn

et
w

or
ki

ng

Original kernel 58.90 – 586.99 – 645.89 –
All system calls 43.70 25.81 499.12 14.97 542.81 15.96
Busybox 43.69 25.82 460.17 21.60 503.87 21.99

M
ib

en
ch

automotive 43.69 25.82 454.71 22.54 498.40 22.84
cellphone 43.69 25.82 455.45 22.41 499.15 22.72
consumer 43.69 25.82 456.75 22.19 500.45 22.52
entertainment 43.69 25.82 456.17 22.29 499.86 22.61
network 43.69 25.82 454.78 22.52 498.48 22.82
office 43.69 25.82 456.30 22.27 499.99 22.59
security 43.69 25.82 455.30 22.44 498.99 22.74
telecomm 43.69 25.82 454.87 22.51 498.56 22.81

Geom. mean: 25.82 22.31 22.62

† Corresponds to the experiments of Chanetet al. [6].

Table 3. Code compaction results

WITH NETWORKING WITHOUT NETWORKING

Kernel Optimization Incremental Cumulative Incremental Cumulative
benefit (%) benefit (%) benefit (%) benefit (%)

unreachable code elimination 14.56 14.56 20.09 20.09
2.4.25 whole function abstraction 3.16 17.72 2.80 22.89

duplicate code elimination 0.92 18.64 0.39 23.28

unreachable code elimination 21.32 21.32 21.09 21.09
2.4.31 whole function abstraction 0.03 21.35 0.10 21.19

duplicate code elimination 0.81 22.13 1.14 22.33

Table 4. Effects of different optimizations on code size

WITH NETWORKING WITHOUT NETWORKING

Kernel Analysis Unreachable code Overall code size Unreachable code Overall code size
elimination (%) reduction (%) elimination (%) reduction (%)

Conservative 0.00 4.98 0.00 4.52
2.4.25 Address-taken 11.28 15.67 17.85 21.23

FA analysis 14.55 18.76 20.09 23.28

Conservative 0.00 1.34 0.00 2.4
2.4.31 Address-taken 12.10 13.26 16.37 17.78

FA analysis 21.32 22.13 21.09 22.33

Table 5. Effects of different call target analyses on code si ze

as the cumulative benefit of these optimizations. It can
be seen that by far the largest savings, some 15%–21%,
come from unreachable code elimination. For the Linux
2.4.25 kernel, whole function abstraction gives an addi-
tional improvement of about 3%; the effects of duplicate
code elimination, while noticeable, are much smaller,
coming in at under 1%. For the Linux 2.4.31 kernel
almost all of the code size reduction comes from un-
reachable code elimination: the effect of whole function
abstraction is essentially negligible, while that of dupli-
cate code elimination is only around 1%. The large dif-
ference in the effects of whole function abstraction be-
tween the two versions of the kernel arise from the fact
that there are a number of distinct but identical functions
in the 2.4.25 kernel that have been hand-optimized away
in the 2.4.31 kernel. (Note that these optimizations can
have overlapping effects, which means that these num-
bers can be different if the optimizations are considered
in a different order. For example, we might see some-
what greater benefits from duplicate code elimination,
and a little less from unreachable code elimination, if
the former is carried out before the latter. This can hap-
pen because in such a situation, some of the duplication
eliminated might be in code that turns out to be unreach-
able.)

Since unreachable code elimination accounts for
most of our code size savings, the precision of program
analyses for identifying unreachable code plays a sig-
nificant role in the amount of code that can be elimi-

nated. Determining the possible targets of indirect func-
tion calls plays a crucial role in this. Table 5 shows the
effects of different indirect call target analyses on both
the amount of unreachable code identified as well as the
overall code size reduction achieved. We consider three
different scenarios:

– Conservativerefers to the case where no program
analysis is done, and every function is conserva-
tively considered a potential target for each indirect
call.

– Address-takenrefers to an analysis that computes
the setS of functions whose address is taken some-
where in the program. The set of potential targets
for any indirect call is then set toS. Variations of
this analysis are commonly used to deal with in-
direct function calls in many binary rewriting sys-
tems.

– FA analysisrefers to the source-level pointer alias
analysis described earlier in this paper.

Not surprisingly, since no function is identified as un-
reachable in the conservative case, unreachable code
analysis yields no savings; all the code size reduction
in this case comes from whole function abstraction and
duplicate code elimination. This yields code size re-
ductions of about 4.5%–5% on the 2.4.25 kernel, but
(because of fewer opportunities for whole function ab-
straction) only about 1.3–2.4% for the 2.4.31 kernel.

The straightforward address-taken analysis does surpris-
ingly well, identifying about 11%–12% of the code as
unreachable in the 2.4.25 kernel and 12%–16% in the
2.4.31 kernel; the overall size reductions achieved range
from 13% to about 18%. FA analysis identifies about
14.6%–20% of the code as unreachable in the 2.4.25 ker-
nel and about 21% of the code in the 2.4.31 kernel; this
yields overall improvements of about 19%–22%. Be-
cause of the availability of higher-level semantic infor-
mation, the source-level FA analysis is able to attain
improvements over the address-taken analysis ranging
from 2.5%–3% for the 2.4.25 kernel to over 9% for the
2.4.31 kernel with networking.

The amount of compaction achieved for each set of
applications depends on the particular set of system calls
made by the set of application programs. To get an
idea of the extent to which our results might general-
ize to other sets of embedded applications, we evalu-
ated the “popularity” of different system calls across the
MiBench suite. The popularity of a given system calls

in a set of programsP is given by the fraction of pro-
grams inP that uses. Intuitively, if different kinds of
applications use very different sets of system calls, i.e.,
many system calls have low popularity, then our results
may not generalize well; on the other hand, if different
kinds of applications tend to have mostly-similar sets of
system calls, then we can expect these results to gener-
alize. The results are shown in Figure 5. It can be seen
that out of some 226 different possible system calls in
our system,4 there is a small core of 32 system calls that
are used by every program. Popularity drops off sharply
outside this core set. All of our benchmark programs,
taken together, refer to only 76 system calls, i.e., about
a third of the total set of system calls.

This relative uniformity in system call usage across
a wide variety of applications helps explain the surpris-
ing uniformity of our code compression results across
all of the benchmark sets. While the applications them-
selves are very different in terms of their nature and code
size, the popularity data shown in Figure 5 show that
they do not differ from each other hugely in terms of
their interactions with the operating system kernel: for
example, they typically read data from some files, pro-
cess that data, and write out the results. Moreover, in
addition to the system calls made by application code,
the kernel itself makes 81 different system calls during
the bootup process. The overall result is that the set
of “non-bootup” system calls arising in the application
code is relatively small, and does not vary greatly from

4There were 259 syscall entries in our version of Linux; of these,
33 were not implemented (“sysni syscall”), leaving a total of 226.
Other sources put the number of Linux system calls much higher: e.g.,
Wikipedia mentions “almost 300” system calls for Linux.

one benchmark set to another (Table 2, col. 4). Because
of this, the compaction results for the different bench-
mark sets tend to be similar.

7. Related Work

The work that is closest to ours is that of Chanetet al.,
who describe a system for code compaction of the Linux
kernel to reduce its memory footprint [5, 6]. The overall
compaction results achieved by the two approaches are
quite similar: on the one data point where the two sys-
tems can be directly compared (BusyBox with network-
ing, identified with ‘†’ in Figure 3), Chanetet al. do
somewhat better than us (18.9% reduction in text size,
compared to the 18.0% we get). The techniques used by
the two systems are quite different, however, and a de-
tailed comparison of the two indicates different strengths
for each. For example, in the context of unreachable
code elimination, Chanetet al. use more detailed struc-
tural information about subsections in the input binary to
do a better job of analyzing pointers between the code
and data sections; our system, on the other hand, uses
the source-level FA analysis to obtain more precise in-
formation about indirect call targets. (Subsequent work
by Chanetet al. obtains additional code size reductions
by compressing infrequently executed code [5]. These
techniques, which use Huffman compression to store in-
frequently executed code in a non-executable format and
rely on runtime decompression to restore them to an ex-
ecutable format when necessary [8], are orthogonal to
those discussed here.)

We are not aware of a great deal of other work on
binary rewriting of operating systems kernels. Flowers
et al. describe the use of Spike, a binary optimizer for
the Compaq Alpha, to optimize the Unix kernel, focus-
ing in particular on profile-guided code layout [9]. A
number of researchers have looked into specializing op-
erating system kernel code [15, 18, 17]. These generally
focus on improving execution speed rather than reduc-
ing code size and therefore use techniques very different
from ours.

There is a considerable body of work on code com-
paction; Beszédeset al. give a comprehensive survey
[4]. Almost all of this work is in the context of appli-
cation programs in high-level languages and does not
consider the issues that arise when dealing with an OS
kernel.

One of the technical issues of considerable impor-
tance in code compaction of an OS kernel is that of
resolving the possible targets of indirect function calls.
This problem resembles the problem of identifying the
possible targets of virtual method invocations in object-
oriented programs [2, 3, 10, 21]. Much of this work re-

br
k

cl
os

e
ex

it
fc

nt
l

fc
nt

l6
4

fs
ta

t6
4

ge
tc

w
d

ge
tp

id
ge

tr
lim

it
ki

ll
ls

ee
k

m
m

ap
m

od
ify

_l
dt

m
pr

ot
ec

t
m

re
m

ap
m

un
m

ap
ne

w
fs

ta
t

ne
w

st
at

ol
d_

ge
tr

lim
it

op
en

re
ad

re
ad

lin
k

rt
_s

ig
ac

tio
n

rt
_s

ig
pr

oc
m

as
k

rt
_s

ig
re

tu
rn

si
gr

et
ur

n
so

ck
et

ca
ll

st
at

64
tim

e
w

rit
e

w
rit

ev
du

p
io

ct
l

un
lin

k
ac

ce
ss

ex
ec

ve
fo

rk
tim

es
du

p2
ge

tti
m

eo
fd

ay
pi

pe
re

na
m

e
w

ai
tp

id
ch

m
od

na
no

sl
ee

p
rm

di
r

ut
im

e
um

as
k

st
at

fs
ne

w
un

am
e

ne
w

ls
ta

t
m

m
ap

2
m

kd
ir

ls
ta

t6
4

fc
hm

od
fc

ho
w

n
fc

ho
w

n1
6

ge
te

gi
d

ge
te

gi
d1

6
ge

te
ui

d
ge

te
ui

d1
6

ge
tg

id
ge

tg
id

16
ge

tu
id

ge
tu

id
16

cr
ea

t
flo

ck
fs

yn
c

ftr
un

ca
te

ge
td

en
ts

ge
td

en
ts

64
w

ai
t4

lin
k

lls
ee

k
m

ad
vi

se

system calls

0.0

0.2

0.4

0.6

0.8

1.0
fr

ac
ti

on
 o

f
be

nc
hm

ar
ks

Figure 5. System call “popularity” in embedded application s

lies on using type information to resolve the possible tar-
gets of a virtual method invocation. We applied this idea
of using type information to determine possible targets
of indirect calls in the Linux kernel but the results were
disappointing, because the available type information is
not discriminating enough to give an acceptable level of
precision (especially when taking into account the possi-
bility of type casts on pointers). The FA analysis proved
to be far more effective: a type-based signature match-
ing analysis we implemented gave, on average, about
96 targets per indirect function call in the Linux kernel;
with FA analysis, by contrast, the average number of tar-
gets per indirect call is 10.

8. Conclusions

Because of the limited amount of memory typically
available in embedded devices, it is important to reduce
the memory footprint of the code running on such de-
vices. This paper describes an approach to code com-
paction of operating system kernels. We begin with the
observation that embedded systems typically run a small
fixed set of applications. This knowledge can be used to
identify the minimal functionality required of the kernel
code to support those applications and then to discard
unnecessary code. We discuss a number of technical
challenges that have to be addressed in order to make
this work; in particular, we describe “approximate de-
compilation,” which allows us to apply source-level pro-
gram analyses to hand-written assembly code. Our ideas
have been implemented in a prototype binary rewriting
tool that is able to achieve a code size reduction of close
to 24% on an already minimally-configured Linux ker-
nel.

Acknowledgements

Discussions with Dominique Chanet were very help-
ful in improving our understanding of his work as well
as improving our own.

References

[1] The Linux mobile phones showcase, February
2006. http://www.linuxdevices.com/articles/
AT9423084269.html.

[2] G. Aigner and U. Hölzle. Eliminating virtual
function calls in C++ programs. InProc. Eu-
ropean Conference on Object-Oriented Program-
ming (ECOOP), volume 1098 ofLecture Notes
in Computer Science, pages 142–166. Springer,
1996.

[3] D. F. Bacon and P. F. Sweeney. Fast static anal-
ysis of C++ virtual function calls. InConfer-
ence Proceedings: Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA),
pages 324–341, 1996.

[4] Á. Beszédes, R. Ferenc, T. Gyimóthy, A. Dolenc,
and K. Karsisto. Survey of code-size reduction
methods. ACM Computing Surveys, 35(3):223–
267, 2003.

[5] D. Chanet, B. De Sutter, B. De Bus, L. Van Put,
and K. De Bosschere. Automated reduction of the
memory footprint of the linux kernel.ACM Trans-
actions on Embedded Computing Systems. To ap-
pear.

[6] D. Chanet, B. De Sutter, B. De Bus, L. Van
Put, and K. De Bosschere. System-wide com-
paction and specialization of the Linux kernel.
In Proc. 2005 ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES’05), pages 95–104, June
2005.

[7] S. Debray, W. Evans, R. Muth, and B. De Sutter.
Compiler techniques for code compaction.ACM
Transactions on Programming Languages and Sys-
tems, 22(2):378–415, March 2000.

[8] S. K. Debray and W. Evans. Profile-guided code
compression. InProc. ACM SIGPLAN 2002 Con-
ference on Programming Language Design and
Implementation (PLDI-02), pages 95–105, June
2002.

[9] R. Flower, C.-K. Luk, R. Muth, H. Patil, J. Shak-
shober, R. Cohn, and P. G. Lowney. Kernel opti-
mizations and prefetch with the Spike executable
optimizer. InProc. 4th Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-4),
December 2001.

[10] D. Grove, G. DeFouw, J. Dean, and C. Chambers.
Call graph construction in object-oriented lan-
guages. InProc. Conference on Object-Oriented
Programming Systems, Languages & Applications
(OOPSLA ’97), pages 108–124, 1997.

[11] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,
T. Mudge, and T. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. pages 3–14, December 2001.

[12] M. Hind and A. Pioli. Which pointer analysis
should I use? InISSTA ’00: Proceedings of
the 2000 ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 113–123,
2000.

[13] Intel Corp. IA-32 Intel Architecture Software De-
veloper’s Manual, Volume 1: Basic Architecture.

[14] N. D. Jones, C. K. Gomard, and P. Sestoft.Par-
tial Evaluation and Automatic Program Genera-
tion. Prentice Hall, 1993.

[15] D. McNamee, J. Walpole, C. Pu, C. Cowan,
C. Krasic, A Goel, , and P. Wagle. Specialization
tools and techniques for systematic optimization of
system software.ACM Trans. on Computer Sys-
tems, 19(2):217–251, May 2001.

[16] A. Milanova, A. Rountev, and B. G. Ryder. Precise
call graphs for C programs with function point-
ers.Automated Software Engineering, 11(1):7–26,
2004.

[17] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis
kernel.Computing Systems, 1(1):11–32, 1988.

[18] C. Puet al. Optimistic incremental specialization:
Streamlining a commercial operating system. In
Proc. 15th ACM Symposium on Operating Systems
Principles (SOSP’95), pages 314–324, Dec 1995.

[19] M. Rajagopalan, S. Perinayagam, H. He, G. An-
drews, and S. Debray. Biray rewriting of an oper-
ating system kernel. InProc. Workshop on Binary
Instrumentation and Applications, October 2006.

[20] B. Schwarz, S. K. Debray, and G. R. Andrews.
Plto: A link-time optimizer for the Intel IA-32
architecture. InProc. 2001 Workshop on Binary
Translation (WBT-2001), 2001.

[21] F. Tip and J. Palsberg. Scalable propagation-based
call graph construction algorithms. InProc. Con-
ference on Object-Oriented Programming, Sys-
tems, Languages and Application (OOPSLA-00),
pages 281–293, October 2000.

[22] N. Wells. BusyBox: A Swiss Army knife for
Linux. Linux Journal, 78, October 2000.

[23] S. Zhang.Practical Pointer Aliasing Analyses for
C. PhD thesis, 1998.

[24] S. Zhang, B. G. Ryder, and W. Landi. Program
decomposition for pointer aliasing: A step toward
practical analyses. InProc. Fourth ACM SIGSOFT
Symposium on the Foundations of Software Engi-
neering, pages 81–92, October 1996.

