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Abstract

Optimizations performed at link time or directly ap-
plied to final program executables have received in-
creased attention in recent years. This paper discuss
the discovery and elimination of redundant load op-
erations in the context of a link time optimizer, an
optimization that we call Load Redundancy Elimina-
tion (LRE). Our experiments show that between 50%
and 75% of a program’s memory references can be con-
sidered redundant because they are accessing memory
locations that have been referenced less than 200-400
instructions away. We then present three profile-based
LRE algorithms targeted at optimizing away this re-
dundancies. Our results show that between 5% and
30% of the redundancy detected can indeed be elimi-
nated, which translates into program speedups in the
range of 3% to 8%. We also test our algorithm assum-
ing different cache latencies, and show that, if latencies
continue to grow, the load redundancy elimination will
become more important.

1 Introduction

Optimizations performed at link time or directly ap-
plied to final program executables have received in-
creased attention in recent years [24, 9, 12, 21], due
to two main reasons: First, large programs tend to
be compiled using separate compilation, that is, one
or a few files at a time. Therefore, the compiler does
not have the opportunity to optimize the full program
as a whole. Thus, even if the compiler performs so-
phisticated inter-procedural analysis, the fact that it
is only looking at a few files at a a time severely lim-
its the usefulness of inter-procedural transformations.
Furthermore, alias information and basic knowledge
about variable allocation (for example, whether a vari-
able is stored on the heap, stack or global area) is also
lost when moving from one file (compilation unit) to
the next. Vendors have tried to overcome this limita-
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tion by compiling separate files that contain interme-
diate representations rather than final object code [1].
Later, when linking, these “fake” intermediate ob-
ject files are fully compiled and optimized together
with the rest of the program units. The drawback
of this approach is that it doesn’t mix well with tra-
ditional Makefile-based software development environ-
ments. As a consequence, link time optimizations that
are based solely on the final object representation have
the attraction of being able to work on a full program
basis and be fully integrated on a normal compile-
build-test cycle.

A second reason for the recent interest in binary op-
timization has been the emergence of profile-directed
feedback [22, 7, 10, 13]. As it has been shown in several
studies [3, 4], the compiler can use to great advantage
the profiling information. However, the same problem
of separate compilation plagues the production use of
profile feedback. If the profiling information has to
be used when compiling, then a large project will be
forced to re-build each and every file in order to take
advantage of the profiling information. Furthermore,
the profile-guided compilation needs to be specially
coded into the Makefile environment. By contrast, it
would be much better to be able to build the full ap-
plication, instrument it to obtain profile data and then
re-optimize the final binary without recompiling a sin-
gle source file. This is the approach taken by Spike,
for example [9] and is only possible if using binary
optimization techniques.

This paper presents an optimization to be applied
in the context of binary optimizers or link time op-
timizers. We discuss the discovery and elimination
of load operations that are redundant and can be
safely removed in order to speed up a program, an
optimization that we call Load Redundancy Elimina-
tion (LRE).

Unnecessary memory references appear in a binary
due to a variety of reasons: a variable may not have
been kept in a register by the compiler because it was
a global, or maybe the compiler was unable to resolve
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Figure 1: Dynamic amount of load redundancy for the whole SPECint95 (Compaq/Alpha executables compiled

with full optimizations). X-axis is logarithmic.

aliasing adequately, or maybe there were not enough
free registers available. We quantify these effects and
show that between 50% and 75% of a program’s mem-
ory references can be considered redundant because
they are accessing memory locations that have been
referenced less than 200 400 instructions away. We
then present three profile-based LRE algorithms tar-
geted at optimizing away this redundancies: a basic
LRE algorithm for extended basic blocks, and two
general algorithms that work over regions of arbitrary
control flow complexity: one for removing fully re-
dundant loads and the other for removing partially
redundant loads.

Our results show that between 5% and 30% of the
redundancy detected can indeed be eliminated, which
translates into program speedups in the range of 3%
to 8%. We also test our algorithm assuming differ-
ent cache latencies, and show that, if latencies con-
tinue to grow, the load redundancy elimination will
become more important. Finally, we discuss what are
the factors that prevent us from eliminating all the
redundancy detected and perform experiments with
different numbers of machine registers to show their
impact on the amount of redundancy eliminated.

2 Dynamic amount of load re-
dundancy
Before presenting our algorithms for removing redun-

dant loads, we motivate our work by measuring a po-
tential upper bound on how many loads could be re-

moved from a program. Our goal is to measure how
often a load is re-loading data that has already been
loaded in the near past and also to quantify the typical
distance (in memory instructions) between re-loads of
the same data item.

To achieve this goal, we instrument the SPECint95
programs to catch all their memory references. Dy-
namic load redundancy is measured by recording the
most recent n memory references into a redundancy
window. This window is a simple FIFO queue, where
new references coming into it displace the oldest mem-
ory reference stored in the window. A dynamic in-
stance of a load is then redundant if its effective ad-
dress matches the address of any prior load or store
that is still in the redundancy window.

The results of our simulations are shown in Fig 1,
where we present data for all the SPECint95 programs
for various redundancy window sizes. As an exam-
ple, the graph shows that, for m88ksim, almost 75%
of all load references were to memory locations that
had been referenced by at least one of the most re-
cent 256 memory instructions. That is, almost 75%
of all load references were to memory locations that
had been loaded recently and that, therefore, should
be candidates to be optimized away by the compiler.

Clearly, a lot of redundancy exists even in these
highly optimized binaries. As we can see, almost
50% of all loads are re-loading a data item that was
read/written less than 100 memory instructions ago.
Considering that in these streams, around 1/3 of in-
structions are memory references, it means that 50% of
all loads are re-loading data that was already accessed
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Figure 2: Elimination of redundant load inside a ma-
chine code basic block.

12| load (a2), r2

or stored less than 300 instructions ago. Furthermore,
today’s optimizing compilers are clearly able to deal
with regions larger than this size and, thus, should be
expected to optimize all this redundancy away.

3 LRE on executable code

The simplest example of Load Redundancy Elimina-
tion (LRE) is shown in Figure 2a. Suppose that an in-
struction I loads a value into register r; from memory
location pointed by ay. Furthermore, this load is fol-
lowed after some instructions by another instruction
I, within the same basic bloc, which puts its value
from location pointed by as into register ro. If it can
be proved that both locations pointed by a; and as
are the same, and this location is not modified be-
tween these two instructions, then I, is redundant in
front of I;. Note that the redundancy is also present
if the instruction I; is a store operation.

Once a redundant load has been identified, we may
try to eliminate it by bypassing the value from the first
load to the redundant one, as shown in Figure 2b. By-
passing the value is accomplished by inserting a couple
of move operations that use a new available register
(ro in the example; this register may or may not be
the same as ry or ry, depending on register lifetimes).
The expectation is that, after running the LRE opti-
mization, a copy propagator is also run to eliminate as
many register moves introduced by LRE as possible.

Although this is but the most simple case of LRE,
it already introduces the three fundamental problems
that this optimization has to deal with: alias analysis,
register liveness analysis and cost-benefit analysis. We
now discuss each problem in more detail.

Alias analysis. The first problem is to decide if both
loads (or any store/load pair) are really accessing

the same memory location or not, and also to
prove that there is no other store between them
that may be in conflict with the memory loca-
tion accessed by the redundant load. In our ex-
ample in Figure 2, this amounts to proving that
registers a; and as do indeed point to the same
memory location. Although there is an extensive
work on pointer alias analysis [2, 25], such anal-
yses are typically formulated in terms of source-
level constructs, and do not handle features such
as pointer arithmetic and out-of-bound array ref-
erences, while these are precisely the features en-
countered in executable programs [11].

Register liveness analysis. The second problem is
to find an available register to bypass the value
from the redundancy source to the redundant in-
struction. This is not an easy task, due to the lim-
ited number of machine registers and also due to
the constraints imposed by the calling convention.
Register liveness analysis [12, 20] is a technique
that computes which registers are live or dead
at every point in the code. On executable code,
control flow reconstruction is key to improve the
accuracy of the register liveness analyzer, other-
wise the analysis becomes too conservative to be
useful.

Cost-Benefit Analysis Finally, the simple example
presented shows that eliminating the load does-
n’t come without a cost: in fact, we have inserted
two “move” instructions in the optimized code
in the hope that (a) they can be removed by a
copy propagator and (b) even if they are not, their
cost will be lower than that of the original redun-
dant load. Of course, the cost can be reduced if
we can use register r; as the bypassing register.
This, however, will require that r; is not over-
written between instructions Iy and I5. In any
case, LRE on executable code requires of a care-
ful cost-benefit analysis, as Section 4 will discuss.
If the cost-benefit analysis is too optimistic, per-
formance degradation may appear.

Alias and register liveness analysis are well-known
data-flow problems already described in the litera-
ture [19]. From now on, we assume that both of them
have been computed before applying the LRE opti-
mization. Then, the more accurate are these analysis,
the more opportunities appear for LRE. A significant
number of opportunities may be lost if the alias ana-
lyzer is not able to decide whether two references are in
conflict. Also, discovered LRE opportunities are lost
if the register liveness analyzer is not able to find an



available register to effectively bypass the redundant
value.

LRE on Intermediate Code vs. Executable

Code

It is interesting to point out the difference between
performing LRE on intermediate code (as done by
compilers) and on executable code: our proposed op-
timization must deal with the limitations of a small
register file. By contrast, most compilers will perform
LRE by taking a new “pseudo-virtual” register from
the infinite virtual register pool to bypass the value
between the two loads. Interestingly, it may happen
that at a later stage, when the register allocator runs,
the compiler re-inserts the redundancy due to lack of
machine registers (a problem that LRE on executable
code does not suffer from).

Working on executable code also has the added dif-
ficulty that alias analysis becomes even more difficult,
since no information on the original program variables
is available. On the other side, the one advantage
of working on executable code is that estimating the
costs and benefits of inserting and removing instruc-
tions is rather more accurate than when working on
intermediate level code.

4 Profile-Guided LRE

Information about the program execution behavior
can be very useful in optimizing programs. Our pro-
posal is to be aware of profile information to guide
LRE. Profile information consists of a frequency for
each basic block and a probability for each branch in
the program. We next outline the algorithms used and
present the cost-benefit equations that use the basic
block frequency information gathered in a profile run
to choose the candidates for removal.

4.1 Eliminating Close Redundancy

The results presented in Section 2 show that between
25% and 40% of all the redundancy detected can be
captured using a redundancy window of just 16 en-
tries. This indicates that the first source of redun-
dancy that we should target our optimization at is lo-
cated either within the same basic block or in groups
of small basic blocks.

LRE on Extended Basic Blocs

We have already seen the easiest form of LRE in the
example given in Section 3, where we look for redun-
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Figure 3: Elimination of redundant load within ex-
tended basic blocks; LRE must be only applied cou-
pled to a cost-benefit analysis.

dancy within a basic block. A natural extension of this
scheme is to perform LRE on Extended Basic Blocks'.

The implementation of LRE on an extended basic
block is straight-forward using a bottom-up search to
the EBB root. For every load in the EBB, we search
bottom-up for other loads or stores that may be a
source of redundancy, as shown in Figure 3. If we can
prove, again, that addresses a; and as point to the
same memory location and that no intervening store
has modified said location?, then it is safe to remove
I and bypass the value from r; to rs.

However, as already discussed, introducing a
“move” instruction increases the cost of executing ba-
sic block BB1. What if, as in Figure 3, the hot path
does not flow through BB2? In this case, a move in-
struction has been inserted in the critical path, al-
though the bypassed value will be most often dis-
carded. There is no benefit in applying LRE to I, in
this example and we might risk lowering performance.

The lesson to learn is that it is not always benefi-
cial to remove a redundant load, and it is necessary
to apply LRE carefully. We need to be compute as
precisely as possible the cost and benefit of applying
the optimization for each particular load.

The equations we use to compute the benefits (B)
and costs (C) of removing a certain load are as follows:

TAn EBB is a set of basic blocks with a single entry point
but multiple exit points.

21f an intervening store can be proved to write to the same
location, then it becomes itself the source of redundancy and the
algorithm works the same way. The problem is when an inter-
vening store has an unknown address. In such case, bypassing
is not safe and redundancy elimination can not proceed.



B = latload X BBgreq
C = latmope X (BB{™ + BBI™)
LRE< C<B

As it can be seen, the benefit computation includes
the latency of the load being eliminated times the fre-
quency of its basic block. On the other hand, the
costs include the latencies of the two “move” instruc-
tions introduced weighted by the execution frequen-
cies of the two basic blocks where they appear. Note
that the costs are pessimistic, as they always include
both “move” instructions, even though they might be
later removed by the copy propagation phase. Our
algorithm checks first whether either the source of re-
dundancy register or the final destination register (r;
and ro in our example, respectively) can be chosen
to bypass the redundant value, avoiding some of the
“move” insertions and keeping the cost C' more real-
istic.

4.2 Eliminating Distant Redundancy

The LRE approach described in the previous Section
was targeted at close redundancy. However, going
back to Figure 1 in Section 2 there is still a lot of re-
dundancy that can be caught if we can explore larger
distances between instructions. Of course, in order
to catch this distant redundancy, we need to apply
LRE to regions of code that expand beyond an EBB
and which, therefore, contain complicated control flow
structures.

The major difference with the previous Section is
that when working on a candidate load to be removed,
we need to examine all the possible control flow paths
that may reach the load in order to decide whether
the load is truly redundant or not. Two situations
may arise:

Full redundancy The candidate load is indeed re-
dundant with respect to all the control flow paths
that reach it.

Partial redundancy The candidate load is redun-
dant on some paths, but not all, that reach it.

Fully Redundant Loads

The second algorithm we will evaluate is targeted
at detecting fully redundant loads. For every candi-
date load, we scan all potential paths that may reach
it looking for a source instruction that may render
the load redundant. If redundancy is found on all
paths and, again, all intervening stores have known
addresses that do not alias with the load, then the

i BB1 i BB2
11| load (al), rl 12| load (a2), r2
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move r0 , r3
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Figure 4: Elimination of a multi-path redundant load.
That is, the redundant load is fully redundant for every
path that reaches to it.

load becomes a candidate for removal. An example is
shown in Figure 4.

Once a load is a candidate we apply to it the cost-
benefit equations already described. However, we have
to extend the cost (C) equation to account for all the
move instructions that must be inserted on each of the
redundancy paths, as shown below:

C = latmo. x (BBI§" + i, BBL:)

As before, this cost is a pessimistic upper bound,
since an appropriate choice of registers to bypass the
value may avoid some of the “move” instructions.

Again, the load will maintain its “candidate” status
only if the benefits of removing it out-weight the costs
of adding the “move” instructions. If this is the case,
then our algorithm starts looking for available regis-
ters to bypass the value. First of all, we start checking
whether the destination register (rs3 in our example)
can be used to bypass the value from all source paths.
That is, if r3 is not live on the paths that lead from
BB1 and BB2 to BB3. Choosing r3 as the bypass reg-
ister results in avoiding the move instruction in BB3.
If the destination register can not be used, the basic
blocks that are the source of the redundancy (BB1 and
BB2 in Figure 4) are sorted according to their execu-
tion frequency. Now, we start with the most executed
basic block and check whether we can use the source
redundancy register (r; in our example) to bypass the
value on all the other paths. That is, if r; happens to



be free on the path(s) that leads from BB2 to BB3,
then by choosing r; as the bypass register we save a
move instruction in BB1. We iterate for every source
basic block until a free register is found (that is, if r
is not available on the path from BB2 to BB3, then
we will try to use as bypass register ro, again to save
a “move” instruction in BB2). If after this process no
register is found, then we simply look for any register
that might be available on all paths simultaneously

note that this would match the pessimistic cost anal-
ysis outlined above. If still no register is found, then
the redundant load can not be removed.

Clearly, this is an expensive optimization that
should be applied only once. Furthermore, as we will
see in Section 5, it may happen that after all the ex-
pensive alias analysis, we can not remove a load simply
because we have no register available.

Partially Redundant Loads

So far, all the LRE algorithms discussed were only
able to remove loads that are fully redundant. The
upside of the previous algorithms is that the removal
a of particular load is always a safe transformation,
because there is always a static source of redundancy
for the load removed. However, a high percentage of
dynamic redundancy comes from loads that are redun-
dant only on some control flow paths. We call these
loads partially redundant loads.

We can see an example of a partially redundant
load in Figure 5. Imagine that instruction I, is an
invariant instructions inside the loop (suppose that
neither ag nor location pointed by ag are changing in
the loop). If we apply the algorithm of the previous
Section, it will fail to remove the load because it is
not fully redundant: instruction I is redundant on
the loop back-edge with the store I;, but it is not on
the entry point of the loop. A similar situation arises
frequently even without considering loops.

The partial redundant load must be removed by
inserting a copy of the instruction on the control flow
paths where it is not available, thus making the load
fully redundant. In the example, this means that a
copy of the redundant load must be inserted in the
loop preheader.

Partial LRE involves insertion of new instructions.
As this insertions are usually done on a different ex-
tended basic block, the inserted instruction becomes
speculative. In general, it is safe to perform specu-
lation for instructions that cannot cause exceptions,
but this is not the case for speculative loads. When
speculating loads, the optimizer must be careful not
to introduce side-effects into a program that did not

load (a0), r0

12| load (a0), ril move r0 , rl
|:> 12 |-lead--(aB)--rt

11| storerl , (a0)
move rl , r0

@ / (b)

Figure 5: Elimination of a partially redundant load.
Removing the redundant load requires to insert in-
stances in less-frequent paths, in order to make the
load fully redundant.

11| storerl , (a0)

exhibit them before. In order to deal with safe load
insertions only, our implementation of partial LRE is
restricted to global and stack references. Access to
global variables is always safe, because they are always
live in the whole execution of a program. Local vari-
ables located in the stack are considered only if neither
the stack pointer changes within the function (except
the entry and exit points) nor other callee function
store values in the stack out of its stack frame.

For the implementation of our partial LRE opti-
mization, we have followed the approach described by
Horspool and Ho [14]. They proposed a general profile
driven PRE algorithm based upon edge profiles. The
main idea is to insert copies on less frequently executed
paths in favor of more frequently executed paths, as
shown if Figure 5. We have adapted their algorithm to
(a) only consider redundant load operations and (b)
to deal with our cost-benefit analysis.

The cost of removing a redundant load on partial
LRE is then as follows:

bepass = latmove X (BBfTeq + Z?:l BBfreq)

red sre;
_ m freq
Cinsert - latload X Zi:l EDGZ
C= bepass + Cinsert

Being n the number of partial redundancies and m
the number of load insertions needed. Cost involves
not only bypassing the value, but inserting the new
load operations that make the candidate load become
fully redundant. To obtain a register to bypass the
value, we use the same algorithm already described
for the fully redundant loads case. The algorithm has



to be extended, however, to also look for register avail-
ability at the new insertion points where we insert a
load to make our candidate load fully redundant.

4.3 A Combined LRE algorithm

We have implemented the proposed LRE approaches
within the alto link-time optimizer [21]. In order to
maximize the optimization opportunities we use the
following scheme.

First we run an inlining pass using the already ex-
isting Alto framework. The reason is that our LRE al-
gorithms are not inter-procedural and, yet, the calling
conventions do introduce an important amount of re-
dundancy at compile time. Thus, since we are working
on the final binary, it is a good opportunity to remove
this calling convention overhead.

Then we apply the close-distance LRE, that is, the
LRE on extended basic blocks. Indeed, we re-run LRE
on extended basic blocks several times during opti-
mization, since computing the data-flow equations for
an EBB and performing the load redundancy searches
is relatively cost-effective.

Next, we run one of the long-distance algorithms,
whether fully-redundant LRE or partially redundant
LRE (Section 5 presents results for both cases)?.
These are expensive optimizations and, therefore, we
perform them only once, after performing also a space-
and time-intensive data flow analysis. To maximize
the benefits of the LRE optimization, we apply the
analysis phase of LRE to every function and keep a
list of all the candidates for removal sorted by net
benefit. Then, the most executed loads (“hot” loads)
are the ones that are tried to remove first, when the
chance of finding available registers inside the function
is higher.

After running the long-distance algorithms, we re-
run the close-distance LRE (LRE on EBB), to catch
any new opportunities opened up by the previous LRE
phase. Since this is a cheap optimization, it doesn’t
contribute much to the overall running time of the
algorithm.

Finally, to keep the running time of the LRE al-
gorithm under control we use a parameter ¢ in the
interval (0,1]. Basic blocks are sorted according to
their relative execution frequency and the LRE opti-
mization is only applied to loads within basic blocks
that have en execution frequency larger than 1 — ¢.
Thus, setting ¢ = 1.0 will cause the algorithm to ap-
ply LRE to every single load in the code, but it will

3Note that the partial-LRE algorithm, of course, subsumes
the behavior of the fully-redundant LRE algorithm.

Benchmark | Input |

099.go 50 10
124 .m88ksim | dcrand.lit (train input)
126.gcc gee.i

129. compress | 50000 e 2231

130.1i boyer.sp (train input)
132.1ijpeg specmun (test input)

134 .perl primes.in (ref input, 51 lines)
147 .vortex persons.250 (train input)

Table 1: SPEC95 integer benchmark suite and their
inputs.

also cause a large increase in optimization time. The
idea is to apply LRE only to the “hot loads” in the
program. For all our experiments we have used a ¢
value of 0.75.

5 Performance evaluation

5.1 Experimental framework

We have implemented the proposed LRE approaches
within the alto link-time optimizer [21]. The bench-
marks used were the eight programs in the SPEC95
integer benchmark suite. The eight programs and the
inputs used for our experiments are listed in table 1.
Note that we have used variants of the official SPEC
input sets to keep simulation time down to a manage-
able value.

All programs were compiled with full optimiza-
tions, using the vendor-supplied C compiler on an Al-
phaServer 8400 equipped with an Alpha 21264 micro-
processor. For processing by Alto, the compiler was
also invoked with linker options to retain information
and to produce statically linked executables?

The executables were instrumented using Pixie and
executed on the SPEC training inputs to obtain an ex-
ecution frequency profile. Finally, these binaries and
their profiles were processed by Alto using different
degrees of profile-guided LRE, for obtaining different
measures about the effect of this optimization.

5.2 LRE Algorithm Effectiveness

We start evaluating the effectiveness of the three LRE
algorithms under study (LRE on EBB for catching

4We used statically linked executables because Alto relies
on the presence of relocation information for its control flow
analysis. The Tru64 Unix linker refuses to retain information
for non-statically linked executables.



Fully Partial

Pot | Ben | Rem | Pot | Ben | Rem

EBB
Benchmark Pot | Ben | Rem
099.go 542 436 430
124 .m88ksim 572 481 462
126.gcc 2962 | 1886 | 1833
129.compress | 246 191 185
130.1i 917 | 389 382
132.ijpeg 369 309 303
134.perl 1096 | 894 872
147 .vortex 1966 | 1759 | 1718

o84 | 470 454 | 754 | 532 489
705 | 607 985 | 858 | 664 615
2996 | 1917 | 1854 | 3088 | 1960 | 1884
253 | 201 195 | 287 | 215 209
1238 | 671 640 | 2027 | 958 913
386 | 324 316 | 491 | 378 363
1109 | 904 878 | 1152 | 928 891
1970 | 1763 | 1722 | 2236 | 1918 | 1841

Table 2: Static LRE numbers for the SPEC95 integer benchmark suite. Pot: potential number of opportunities,
Ben: opportunities that are beneficial using the cost/benefit analysis, Rem: loads actually removed (there was a

register to bypass the redundant value).

close redundancy and fully-LRE and partial-LRE for
catching distant redundancy) by comparing the num-
ber of dynamic loads executed against the program
baseline. As a baseline, this section and all further
sections use the fully-optimized benchmarks after be-
ing run through Alto with inlining turned on. That is,
we are comparing the effectiveness of the algorithms
implemented against what could be considered state-
of-the-art optimized machine code.

Figure 6 presents the reduction in number of dy-
namic loads for each benchmark with respect to the
original baseline. As it can be seen, all programs do
show improvements typically around 5%, with some
rather better cases such as m88ksim and compress.
Comparing our results to Table 2 in Lo et al [17], we
can see that we achieve less benefits. However, we be-
lieve the reason for that is that we are working on final
machine code while they were measuring reduction in
dynamic loads before code generation and register al-
location. Factoring this in, our results are very much
in line with those presented in [17], yet we do not have
the advantage of high quality alias analysis as they do.

The results show also that working only on EBBs
is not enough to catch the close-redundancy we pre-
sented in Section 2. Except maybe for perl and
vortex, LRE applied to EBBs yields a small reduction
in dynamic loads. By contrast, fully-LRE improves
the overall results for five programs and partial-LRE
only yields extra improvements for compress.

In order to better understand this results, it is
worth looking at the internals of our algorithm. Ta-
ble 2 breaks down the opportunities for LRE for each
of the three algorithms under evaluation. For each al-
gorithm, three numbers are presented: Pot, Ben and
Rem. Column “Pot” indicates the number of loads
considered by the algorithm as candidates for removal.
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Figure 6: Effect of different LRE degrees in number of
loads at run time. The baseline is optimized binaries
without any LRE at all.

Note that this number is computed after memory dis-
ambiguation has determined that there are no con-
flicting aliases that prevent LRE. The second column,
“Ben”, are the number of candidates remaining after
applying our cost benefit analysis based on BB fre-
quencies. For example, the large drop in gcc indicates
that the costs of removing those loads out-weight the
benefits. Finally, column “Rem” indicates the num-
ber of static loads actually removed. The differences
between column “Ben” and “Rem” are attributed to
lack of registers to bypass the value from the source
to the redundant load.

The lack of registers to bypass a value is directly
responsible for only a minority of the “lost opportuni-
ties”. The largest drop corresponds to column “Ben”,
where our cost-benefit analysis discards many oppor-
tunities for load removal. Since our cost equations are
conservative, they always assume that a move instruc-
tion will be inserted, regardless of whether registers
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Figure 7: Effect of different LRE degrees in execution
time. The baseline is optimized binaries without any
LRE at all.

are really available or not. We are currently investi-
gating other cost formulations that integrate the cost
computation with the register availability computa-
tion.

5.3 Speedup using LRE

Counting the number of dynamic loads removed is cer-
tainly of interest to understand the effectiveness of
each algorithm. However, the final measure of inter-
est is whether execution time is reduced or not. To
this end, we have decided to use the SimpleScalar 3.0
simulation toolset [6] to get an accurate measure of
the differences between applying or not the LRE algo-
rithms 5. Our out-of-order simulator models a Com-
paq Alpha 21264 configuration [15]. Detailed simula-
tion parameters are described in Table 3.

The results of our simulations are presented in Fig-
ure 7. Of course, since loads are only a fraction of
all instructions executed in a program, reduction in
execution time is smaller than the corresponding re-
duction in number of dynamic loads. Thus, for exam-
ple, the 30% reduction in dynamic loads in m88ksim
only translates into an 8% reduction in overall execu-
tion time. Overall, however, the decrease in execution
time shows that we have hit (removed) some loads that
indeed were on the program’s critical path and, there-
fore, contributed heavily to overall execution time.

5.4 Effects of load latency

Another interesting measure to gauge the importance
of the LRE transformation is to see what will hap-

5Variations in real execution time due to interactions with
other processes and OS variations were too large to allow effec-
tive measurement of speedups
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Figure 8: Effect of load latency (from 3-cycle to 5-cycle
hit latency)

pen in the future, as Ll-cache latency continues to
increase. Current CPUs are typically at a 2-cycle or 3-
cycle latency and the trend is towards hyper-pipelining
and, therefore, longer latencies. In this section we re-
simulated all the benchmarks changing the L1-cache
latency from its value to 3 cycles up to 4 and 5 cycles.
Furthermore, for each experiment we also re-compiled
every benchmark, since all our cost/benefit analysis
are dependent on the latency of the loads. At larger
latencies, it is more likely that the cost/benefit equa-
tions tend to favor the substitution of a load by one
or more “move” instructions.

The results can be seen in Figure 8. The first thing
to observe, as expected, is that the longer the latency
the worse the execution time of all programs. How-
ever, as latency increases, the importance of perform-
ing LRE also grows. Consider, for example, the case
of vortex. After applying partial-LRE, the execution
time at a 5-cycle latency is better than the original
execution time using a 3 cycle latency.

5.5 Effects of register file size

Another interesting experiment that our simulation
environment allows is to vary the number of logical
registers available to the compiler. While we clearly
do not expect in the near future that microprocessor
vendors increase the number of registers in their in-
struction sets, it is a very interesting experiment from
the compiler’s point of view. By increasing the logical
register set, we can get insight into how many oppor-
tunities for load removal could be re-gained by better
register allocation or, in our case in executable code,
by better register re-shuffling.

We modified both Alto and the SimpleScalar
toolset to be able to optimize and simulate Alpha bi-



| Parameter | Value

Fetch width 4 instructions.

L1 I-cache

64Kb, 4-way set-associative, 64-byte line, LRU, 1-cycle hit latency.

Branch predictor

Combined predictor of a 2-level adaptative predictor with 8K 2-bit
counters, 16-bit global history, and a bimodal predictor of 8K entries
with 2-bit counters. 3-cycle extra mispredict latency.

Decode/Commit width | 4 instructions.

Issue mechanism

4-way out-of-order issue, wrong-path issue included.

Instruction window size | 128 entries.

Functional units

4 simple integer, 1 integer mult/div, 4 simple FP, 1 mult/div.

Load/store queue (LSQ)

64 entries, stores in LSQ may bypass values to later loads.

L1 D-cache

64Kb, 2-way set-associative, 64-byte line, LRU, 3-cycle hit latency.

L2 unified I/D-cache

1Mb, 4-way set-associative, 64-byte line, LRU, 12-cycle hit latency.
16 bytes to main memory, 16 cycles first chunk, 2 cycles interchunk.

Instruction TLB

1Mb, 4-way set-associative, 4Kb page, LRU, 30-cycle miss penalty.

Data TLB

1Mb, 4-way set-associative, 4Kb page, LRU, 30-cycle miss penalty.

Table 3: Simulation parameters for an Alpha 21264 configuration.
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Figure 9: Effect of register file size. Number of logical
integer registers varies from 32 to 128 registers.

naries containing 64 and 128 integer registers (the de-
fault being 32). Of course, we re-optimized all the
binaries with the new integer register file sizes and re-
simulated them on SimpleScalar. The results can be
seen in Figure 9.

First of all, having more registers improves execu-
tion time whether we apply LRE or not, as the black
bars in Figure 9 show. When we turn to the results for
the LRE algorithm, we see that only the go program
really takes advantage of the extra registers. This
suggests that register pressure may be less of a prob-
lem than originally anticipated and that, probably, we
should focus future work on improving the number of
candidates that our LRE algorithm targets (i.e., the
“Pot” column in Table 2).
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6 Related work

While a number of systems have been described for
optimization of executable code [24, 9, 12, 21], to the
best of our knowledge, any elimination of redundant
loads carried out by these systems is limited to fairly
simple load removal.

Load redundancy elimination can be seen as
a particular case of Partial Redundancy Elimina-
tion (PRE), where the expressions to be considered
for removing are only load operations. PRE [16, 8] is
a well known scalar optimization that subsumes var-
ious ad hoc code motion optimizations (as common
subexpression elimination and loop invariant code mo-
tion) by attempting to remove redundancies that oc-
cur only on some control flow paths. Horspool and
Ho [14] described a new formulation of PRE based on
a cost-benefit of the flowgraph, by using edge profiles
(our current implementation of partial LRE optimiza-
tion is based in their equations). Gupta, Berson and
Fang [13] extended this profile driven PRE algorithm
by using path profiles.

Register Promotion allows scalar values to be allo-
cated to registers for regions or their lifetime, where
the compiler can prove that there are no aliases for
the value. Promotion carries out elimination of both
redundant loads and dead stores. Cooper and Lu [18]
examined promotion over loop regions. Their results
indicate that the main benefit of promotion comes
from removing store operations. Lo et al use a variant
of SSA-PRE to remove unnecessary loads and stores
over any program region. However, they not consider



the effect of spilling because it simulate with an in-
finite symbolic register set before register allocation.
Both previous works only counted the improvement
compared to the total number of load and store in-
structions. Postiff, Greene and Mudge [23] presented
recently a register promotion algorithm at link-time,
although their algorithm does not use any PRE ap-
proach at all. They also present numbers for long
register files, but the gain in this case seems to come
from several ad hoc techniques for promoting global
and constant values into a dedicated subset of the long
register file.

Bodik, Gupta and Soffa [5] developed a load redun-
dancy analysis, and design a method for evaluating its
precision. However, their paper is only focused in the
analysis, they do not perform any elimination of re-
dundant loads at all.

7 Summary and future direc-
tions

This paper has presented three algorithms to per-
form load redundancy elimination on executable files.
We have instrumented the SPECint95 programs and
shown that between 50% and 75% of all memory ref-
erences can be considered “redundant”’, since they
access memory locations that had already been ref-
erenced by another load or store instruction within a
close dynamic distance (less than 256 references away
in our dynamic window experiments).

We have presented an algorithm targeted at catch-
ing the close-distance redundancy by looking at re-
dundancy within an extended basic block. This first
algorithm is able to remove less than 5% of all loads
and, therefore, yields speedups below 4% in execution
time. The results seem to indicate that an extended
basic block is too small of a region to catch the redun-
dancy measured in our redundancy experiments. The
second algorithm presented, LRE for fully redundant
loads found on arbitrary control flow regions, yields an
average increase of a 10% in candidate loads consid-
ered to be removed. Despite this small increase, fully-
LRE does detect some of the critical loads and thus
increases speedups up to an 8%. The third algorithm
discussed, LRE for partially redundant loads, signif-
icantly increases the number of static loads removed
(a 30% over the EBB algorithm). However, the ex-
tra cost of the algorithm only shows its strengths on
compress, where an extra 12% of dynamic loads are
removed over the fully-LRE algortithm.

In the third part of the paper we have explored
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the effects of our algorithms on future architectures.
Our simulations have shown that, as the L1 cache la-
tency increases, the importance of the LRE optimiza-
tion also increases. Furthermore, we have explored
how well our optimization would do under a scenario
with more machine registers available (such as in the
TA64 architecture). Results indicate that lack of reg-
ister does not seem to be the gating factor to achieve
better speedups. On the contrary, we believe that we
need to explore better alias analysis algorithms to fully
obtain the potential of the LRE optimization.
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