
Load Redundancy Elimination on Executable CodeManel Fern�andez and Roger EspasaComputer Architecture DepartmentUniversitat Polit�ecnica de Catalunya, Barcelonafmfernand,rogerg@ac.upc.es Saumya DebrayDepartment of Computer ScienceUniversity of Arizona, Tucson AZdebray@cs.arizona.eduAbstractOptimizations performed at link time or directly ap-plied to �nal program executables have received in-creased attention in recent years. This paper discussthe discovery and elimination of redundant load op-erations in the context of a link time optimizer, anoptimization that we call Load Redundancy Elimina-tion (LRE). Our experiments show that between 50%and 75% of a program's memory references can be con-sidered redundant because they are accessing memorylocations that have been referenced less than 200{400instructions away. We then present three pro�le-basedLRE algorithms targeted at optimizing away this re-dundancies. Our results show that between 5% and30% of the redundancy detected can indeed be elimi-nated, which translates into program speedups in therange of 3% to 8%. We also test our algorithm assum-ing di�erent cache latencies, and show that, if latenciescontinue to grow, the load redundancy elimination willbecome more important.1 IntroductionOptimizations performed at link time or directly ap-plied to �nal program executables have received in-creased attention in recent years [24, 9, 12, 21], dueto two main reasons: First, large programs tend tobe compiled using separate compilation, that is, oneor a few �les at a time. Therefore, the compiler doesnot have the opportunity to optimize the full programas a whole. Thus, even if the compiler performs so-phisticated inter-procedural analysis, the fact that itis only looking at a few �les at a a time severely lim-its the usefulness of inter-procedural transformations.Furthermore, alias information and basic knowledgeabout variable allocation (for example, whether a vari-able is stored on the heap, stack or global area) is alsolost when moving from one �le (compilation unit) tothe next. Vendors have tried to overcome this limita-

tion by compiling separate �les that contain interme-diate representations rather than �nal object code [1].Later, when linking, these \fake" intermediate ob-ject �les are fully compiled and optimized togetherwith the rest of the program units. The drawbackof this approach is that it doesn't mix well with tra-ditional Make�le-based software development environ-ments. As a consequence, link time optimizations thatare based solely on the �nal object representation havethe attraction of being able to work on a full programbasis and be fully integrated on a normal compile-build-test cycle.A second reason for the recent interest in binary op-timization has been the emergence of pro�le-directedfeedback [22, 7, 10, 13]. As it has been shown in severalstudies [3, 4], the compiler can use to great advantagethe pro�ling information. However, the same problemof separate compilation plagues the production use ofpro�le feedback. If the pro�ling information has tobe used when compiling, then a large project will beforced to re-build each and every �le in order to takeadvantage of the pro�ling information. Furthermore,the pro�le-guided compilation needs to be speciallycoded into the Make�le environment. By contrast, itwould be much better to be able to build the full ap-plication, instrument it to obtain pro�le data and thenre-optimize the �nal binary without recompiling a sin-gle source �le. This is the approach taken by Spike,for example [9] and is only possible if using binaryoptimization techniques.This paper presents an optimization to be appliedin the context of binary optimizers or link time op-timizers. We discuss the discovery and eliminationof load operations that are redundant and can besafely removed in order to speed up a program, anoptimization that we call Load Redundancy Elimina-tion (LRE).Unnecessary memory references appear in a binarydue to a variety of reasons: a variable may not havebeen kept in a register by the compiler because it wasa global, or maybe the compiler was unable to resolve1
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Figure 1: Dynamic amount of load redundancy for the whole SPECint95 (Compaq/Alpha executables compiledwith full optimizations). X-axis is logarithmic.aliasing adequately, or maybe there were not enoughfree registers available. We quantify these e�ects andshow that between 50% and 75% of a program's mem-ory references can be considered redundant becausethey are accessing memory locations that have beenreferenced less than 200{400 instructions away. Wethen present three pro�le-based LRE algorithms tar-geted at optimizing away this redundancies: a basicLRE algorithm for extended basic blocks, and twogeneral algorithms that work over regions of arbitrarycontrol 
ow complexity: one for removing fully re-dundant loads and the other for removing partiallyredundant loads.Our results show that between 5% and 30% of theredundancy detected can indeed be eliminated, whichtranslates into program speedups in the range of 3%to 8%. We also test our algorithm assuming di�er-ent cache latencies, and show that, if latencies con-tinue to grow, the load redundancy elimination willbecome more important. Finally, we discuss what arethe factors that prevent us from eliminating all theredundancy detected and perform experiments withdi�erent numbers of machine registers to show theirimpact on the amount of redundancy eliminated.2 Dynamic amount of load re-dundancyBefore presenting our algorithms for removing redun-dant loads, we motivate our work by measuring a po-tential upper bound on how many loads could be re-

moved from a program. Our goal is to measure howoften a load is re-loading data that has already beenloaded in the near past and also to quantify the typicaldistance (in memory instructions) between re-loads ofthe same data item.To achieve this goal, we instrument the SPECint95programs to catch all their memory references. Dy-namic load redundancy is measured by recording themost recent n memory references into a redundancywindow. This window is a simple FIFO queue, wherenew references coming into it displace the oldest mem-ory reference stored in the window. A dynamic in-stance of a load is then redundant if its e�ective ad-dress matches the address of any prior load or storethat is still in the redundancy window.The results of our simulations are shown in Fig 1,where we present data for all the SPECint95 programsfor various redundancy window sizes. As an exam-ple, the graph shows that, for m88ksim, almost 75%of all load references were to memory locations thathad been referenced by at least one of the most re-cent 256 memory instructions. That is, almost 75%of all load references were to memory locations thathad been loaded recently and that, therefore, shouldbe candidates to be optimized away by the compiler.Clearly, a lot of redundancy exists even in thesehighly optimized binaries. As we can see, almost50% of all loads are re-loading a data item that wasread/written less than 100 memory instructions ago.Considering that in these streams, around 1/3 of in-structions are memory references, it means that 50% ofall loads are re-loading data that was already accessed2



--------------load (a2), r2

  ...

  ...
load (a2), r2

load (a1), r1

  ...

(a) (b)

  ...

load (a1), r1
move r1  , r0
  ...

  ...

move r0  , r2

I1

I2

I1

I2

Figure 2: Elimination of redundant load inside a ma-chine code basic block.or stored less than 300 instructions ago. Furthermore,today's optimizing compilers are clearly able to dealwith regions larger than this size and, thus, should beexpected to optimize all this redundancy away.3 LRE on executable codeThe simplest example of Load Redundancy Elimina-tion (LRE) is shown in Figure 2a. Suppose that an in-struction I1 loads a value into register r1 from memorylocation pointed by a1. Furthermore, this load is fol-lowed after some instructions by another instructionI2 within the same basic bloc, which puts its valuefrom location pointed by a2 into register r2. If it canbe proved that both locations pointed by a1 and a2are the same, and this location is not modi�ed be-tween these two instructions, then I2 is redundant infront of I1. Note that the redundancy is also presentif the instruction I1 is a store operation.Once a redundant load has been identi�ed, we maytry to eliminate it by bypassing the value from the �rstload to the redundant one, as shown in Figure 2b. By-passing the value is accomplished by inserting a coupleof move operations that use a new available register(r0 in the example; this register may or may not bethe same as r1 or r2, depending on register lifetimes).The expectation is that, after running the LRE opti-mization, a copy propagator is also run to eliminate asmany register moves introduced by LRE as possible.Although this is but the most simple case of LRE,it already introduces the three fundamental problemsthat this optimization has to deal with: alias analysis,register liveness analysis and cost-bene�t analysis. Wenow discuss each problem in more detail.Alias analysis. The �rst problem is to decide if bothloads (or any store/load pair) are really accessing

the same memory location or not, and also toprove that there is no other store between themthat may be in con
ict with the memory loca-tion accessed by the redundant load. In our ex-ample in Figure 2, this amounts to proving thatregisters a1 and a2 do indeed point to the samememory location. Although there is an extensivework on pointer alias analysis [2, 25], such anal-yses are typically formulated in terms of source-level constructs, and do not handle features suchas pointer arithmetic and out-of-bound array ref-erences, while these are precisely the features en-countered in executable programs [11].Register liveness analysis. The second problem isto �nd an available register to bypass the valuefrom the redundancy source to the redundant in-struction. This is not an easy task, due to the lim-ited number of machine registers and also due tothe constraints imposed by the calling convention.Register liveness analysis [12, 20] is a techniquethat computes which registers are live or deadat every point in the code. On executable code,control 
ow reconstruction is key to improve theaccuracy of the register liveness analyzer, other-wise the analysis becomes too conservative to beuseful.Cost-Bene�t Analysis Finally, the simple examplepresented shows that eliminating the load does-n't come without a cost: in fact, we have insertedtwo \move" instructions in the optimized codein the hope that (a) they can be removed by acopy propagator and (b) even if they are not, theircost will be lower than that of the original redun-dant load. Of course, the cost can be reduced ifwe can use register r1 as the bypassing register.This, however, will require that r1 is not over-written between instructions I1 and I2. In anycase, LRE on executable code requires of a care-ful cost-bene�t analysis, as Section 4 will discuss.If the cost-bene�t analysis is too optimistic, per-formance degradation may appear.Alias and register liveness analysis are well-knowndata-
ow problems already described in the litera-ture [19]. From now on, we assume that both of themhave been computed before applying the LRE opti-mization. Then, the more accurate are these analysis,the more opportunities appear for LRE. A signi�cantnumber of opportunities may be lost if the alias ana-lyzer is not able to decide whether two references are incon
ict. Also, discovered LRE opportunities are lostif the register liveness analyzer is not able to �nd an3



available register to e�ectively bypass the redundantvalue.LRE on Intermediate Code vs. ExecutableCodeIt is interesting to point out the di�erence betweenperforming LRE on intermediate code (as done bycompilers) and on executable code: our proposed op-timization must deal with the limitations of a smallregister �le. By contrast, most compilers will performLRE by taking a new \pseudo-virtual" register fromthe in�nite virtual register pool to bypass the valuebetween the two loads. Interestingly, it may happenthat at a later stage, when the register allocator runs,the compiler re-inserts the redundancy due to lack ofmachine registers (a problem that LRE on executablecode does not su�er from).Working on executable code also has the added dif-�culty that alias analysis becomes even more di�cult,since no information on the original program variablesis available. On the other side, the one advantageof working on executable code is that estimating thecosts and bene�ts of inserting and removing instruc-tions is rather more accurate than when working onintermediate level code.4 Pro�le-Guided LREInformation about the program execution behaviorcan be very useful in optimizing programs. Our pro-posal is to be aware of pro�le information to guideLRE. Pro�le information consists of a frequency foreach basic block and a probability for each branch inthe program. We next outline the algorithms used andpresent the cost-bene�t equations that use the basicblock frequency information gathered in a pro�le runto choose the candidates for removal.4.1 Eliminating Close RedundancyThe results presented in Section 2 show that between25% and 40% of all the redundancy detected can becaptured using a redundancy window of just 16 en-tries. This indicates that the �rst source of redun-dancy that we should target our optimization at is lo-cated either within the same basic block or in groupsof small basic blocks.LRE on Extended Basic BlocsWe have already seen the easiest form of LRE in theexample given in Section 3, where we look for redun-
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Figure 3: Elimination of redundant load within ex-tended basic blocks; LRE must be only applied cou-pled to a cost-bene�t analysis.dancy within a basic block. A natural extension of thisscheme is to perform LRE on Extended Basic Blocks1.The implementation of LRE on an extended basicblock is straight-forward using a bottom-up search tothe EBB root. For every load in the EBB, we searchbottom-up for other loads or stores that may be asource of redundancy, as shown in Figure 3. If we canprove, again, that addresses a1 and a2 point to thesame memory location and that no intervening storehas modi�ed said location2, then it is safe to removeI2 and bypass the value from r1 to r2.However, as already discussed, introducing a\move" instruction increases the cost of executing ba-sic block BB1. What if, as in Figure 3, the hot pathdoes not 
ow through BB2? In this case, a move in-struction has been inserted in the critical path, al-though the bypassed value will be most often dis-carded. There is no bene�t in applying LRE to I2 inthis example and we might risk lowering performance.The lesson to learn is that it is not always bene�-cial to remove a redundant load, and it is necessaryto apply LRE carefully. We need to be compute asprecisely as possible the cost and bene�t of applyingthe optimization for each particular load.The equations we use to compute the bene�ts (B)and costs (C) of removing a certain load are as follows:1An EBB is a set of basic blocks with a single entry pointbut multiple exit points.2If an intervening store can be proved to write to the samelocation, then it becomes itself the source of redundancy and thealgorithm works the same way. The problem is when an inter-vening store has an unknown address. In such case, bypassingis not safe and redundancy elimination can not proceed.4



B = latload �BBfreq2C = latmove � (BBfreq1 +BBfreq2 )LRE , C � BAs it can be seen, the bene�t computation includesthe latency of the load being eliminated times the fre-quency of its basic block. On the other hand, thecosts include the latencies of the two \move" instruc-tions introduced weighted by the execution frequen-cies of the two basic blocks where they appear. Notethat the costs are pessimistic, as they always includeboth \move" instructions, even though they might belater removed by the copy propagation phase. Ouralgorithm checks �rst whether either the source of re-dundancy register or the �nal destination register (r1and r2 in our example, respectively) can be chosento bypass the redundant value, avoiding some of the\move" insertions and keeping the cost C more real-istic.4.2 Eliminating Distant RedundancyThe LRE approach described in the previous Sectionwas targeted at close redundancy. However, goingback to Figure 1 in Section 2 there is still a lot of re-dundancy that can be caught if we can explore largerdistances between instructions. Of course, in orderto catch this distant redundancy, we need to applyLRE to regions of code that expand beyond an EBBand which, therefore, contain complicated control 
owstructures.The major di�erence with the previous Section isthat when working on a candidate load to be removed,we need to examine all the possible control 
ow pathsthat may reach the load in order to decide whetherthe load is truly redundant or not. Two situationsmay arise:Full redundancy The candidate load is indeed re-dundant with respect to all the control 
ow pathsthat reach it.Partial redundancy The candidate load is redun-dant on some paths, but not all, that reach it.Fully Redundant LoadsThe second algorithm we will evaluate is targetedat detecting fully redundant loads. For every candi-date load, we scan all potential paths that may reachit looking for a source instruction that may renderthe load redundant. If redundancy is found on allpaths and, again, all intervening stores have knownaddresses that do not alias with the load, then the
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Figure 4: Elimination of a multi-path redundant load.That is, the redundant load is fully redundant for everypath that reaches to it.load becomes a candidate for removal. An example isshown in Figure 4.Once a load is a candidate we apply to it the cost-bene�t equations already described. However, we haveto extend the cost (C) equation to account for all themove instructions that must be inserted on each of theredundancy paths, as shown below:C = latmove � �BBfreqred +Pni=1BBfreqsrci �As before, this cost is a pessimistic upper bound,since an appropriate choice of registers to bypass thevalue may avoid some of the \move" instructions.Again, the load will maintain its \candidate" statusonly if the bene�ts of removing it out-weight the costsof adding the \move" instructions. If this is the case,then our algorithm starts looking for available regis-ters to bypass the value. First of all, we start checkingwhether the destination register (r3 in our example)can be used to bypass the value from all source paths.That is, if r3 is not live on the paths that lead fromBB1 and BB2 to BB3. Choosing r3 as the bypass reg-ister results in avoiding the move instruction in BB3.If the destination register can not be used, the basicblocks that are the source of the redundancy (BB1 andBB2 in Figure 4) are sorted according to their execu-tion frequency. Now, we start with the most executedbasic block and check whether we can use the sourceredundancy register (r1 in our example) to bypass thevalue on all the other paths. That is, if r1 happens to5



be free on the path(s) that leads from BB2 to BB3,then by choosing r1 as the bypass register we save amove instruction in BB1. We iterate for every sourcebasic block until a free register is found (that is, if r1is not available on the path from BB2 to BB3, thenwe will try to use as bypass register r2, again to savea \move" instruction in BB2). If after this process noregister is found, then we simply look for any registerthat might be available on all paths simultaneously{note that this would match the pessimistic cost anal-ysis outlined above. If still no register is found, thenthe redundant load can not be removed.Clearly, this is an expensive optimization thatshould be applied only once. Furthermore, as we willsee in Section 5, it may happen that after all the ex-pensive alias analysis, we can not remove a load simplybecause we have no register available.Partially Redundant LoadsSo far, all the LRE algorithms discussed were onlyable to remove loads that are fully redundant. Theupside of the previous algorithms is that the removala of particular load is always a safe transformation,because there is always a static source of redundancyfor the load removed. However, a high percentage ofdynamic redundancy comes from loads that are redun-dant only on some control 
ow paths. We call theseloads partially redundant loads.We can see an example of a partially redundantload in Figure 5. Imagine that instruction I2 is aninvariant instructions inside the loop (suppose thatneither a0 nor location pointed by a0 are changing inthe loop). If we apply the algorithm of the previousSection, it will fail to remove the load because it isnot fully redundant: instruction I2 is redundant onthe loop back-edge with the store I1, but it is not onthe entry point of the loop. A similar situation arisesfrequently even without considering loops.The partial redundant load must be removed byinserting a copy of the instruction on the control 
owpaths where it is not available, thus making the loadfully redundant. In the example, this means that acopy of the redundant load must be inserted in theloop preheader.Partial LRE involves insertion of new instructions.As this insertions are usually done on a di�erent ex-tended basic block, the inserted instruction becomesspeculative. In general, it is safe to perform specu-lation for instructions that cannot cause exceptions,but this is not the case for speculative loads. Whenspeculating loads, the optimizer must be careful notto introduce side-e�ects into a program that did not
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(a) (b)Figure 5: Elimination of a partially redundant load.Removing the redundant load requires to insert in-stances in less-frequent paths, in order to make theload fully redundant.exhibit them before. In order to deal with safe loadinsertions only, our implementation of partial LRE isrestricted to global and stack references. Access toglobal variables is always safe, because they are alwayslive in the whole execution of a program. Local vari-ables located in the stack are considered only if neitherthe stack pointer changes within the function (exceptthe entry and exit points) nor other callee functionstore values in the stack out of its stack frame.For the implementation of our partial LRE opti-mization, we have followed the approach described byHorspool and Ho [14]. They proposed a general pro�ledriven PRE algorithm based upon edge pro�les. Themain idea is to insert copies on less frequently executedpaths in favor of more frequently executed paths, asshown if Figure 5. We have adapted their algorithm to(a) only consider redundant load operations and (b)to deal with our cost-bene�t analysis.The cost of removing a redundant load on partialLRE is then as follows:Cbypass = latmove � �BBfreqred +Pni=1BBfreqsrci �Cinsert = latload �Pmi=1EDGfreqiC = Cbypass + CinsertBeing n the number of partial redundancies and mthe number of load insertions needed. Cost involvesnot only bypassing the value, but inserting the newload operations that make the candidate load becomefully redundant. To obtain a register to bypass thevalue, we use the same algorithm already describedfor the fully redundant loads case. The algorithm has6



to be extended, however, to also look for register avail-ability at the new insertion points where we insert aload to make our candidate load fully redundant.4.3 A Combined LRE algorithmWe have implemented the proposed LRE approacheswithin the alto link-time optimizer [21]. In order tomaximize the optimization opportunities we use thefollowing scheme.First we run an inlining pass using the already ex-isting Alto framework. The reason is that our LRE al-gorithms are not inter-procedural and, yet, the callingconventions do introduce an important amount of re-dundancy at compile time. Thus, since we are workingon the �nal binary, it is a good opportunity to removethis calling convention overhead.Then we apply the close-distance LRE, that is, theLRE on extended basic blocks. Indeed, we re-run LREon extended basic blocks several times during opti-mization, since computing the data-
ow equations foran EBB and performing the load redundancy searchesis relatively cost-e�ective.Next, we run one of the long-distance algorithms,whether fully-redundant LRE or partially redundantLRE (Section 5 presents results for both cases)3.These are expensive optimizations and, therefore, weperform them only once, after performing also a space-and time-intensive data 
ow analysis. To maximizethe bene�ts of the LRE optimization, we apply theanalysis phase of LRE to every function and keep alist of all the candidates for removal sorted by netbene�t. Then, the most executed loads (\hot" loads)are the ones that are tried to remove �rst, when thechance of �nding available registers inside the functionis higher.After running the long-distance algorithms, we re-run the close-distance LRE (LRE on EBB), to catchany new opportunities opened up by the previous LREphase. Since this is a cheap optimization, it doesn'tcontribute much to the overall running time of thealgorithm.Finally, to keep the running time of the LRE al-gorithm under control we use a parameter � in theinterval (0; 1]. Basic blocks are sorted according totheir relative execution frequency and the LRE opti-mization is only applied to loads within basic blocksthat have en execution frequency larger than 1 � �.Thus, setting � = 1:0 will cause the algorithm to ap-ply LRE to every single load in the code, but it will3Note that the partial-LRE algorithm, of course, subsumesthe behavior of the fully-redundant LRE algorithm.

Benchmark Input099.go 50 10124.m88ksim dcrand.lit (train input)126.gcc gcc.i129.compress 50000 e 2231130.li boyer.lsp (train input)132.ijpeg specmun (test input)134.perl primes.in (ref input, 51 lines)147.vortex persons.250 (train input)Table 1: SPEC95 integer benchmark suite and theirinputs.also cause a large increase in optimization time. Theidea is to apply LRE only to the \hot loads" in theprogram. For all our experiments we have used a �value of 0:75.5 Performance evaluation5.1 Experimental frameworkWe have implemented the proposed LRE approacheswithin the alto link-time optimizer [21]. The bench-marks used were the eight programs in the SPEC95integer benchmark suite. The eight programs and theinputs used for our experiments are listed in table 1.Note that we have used variants of the o�cial SPECinput sets to keep simulation time down to a manage-able value.All programs were compiled with full optimiza-tions, using the vendor-supplied C compiler on an Al-phaServer 8400 equipped with an Alpha 21264 micro-processor. For processing by Alto, the compiler wasalso invoked with linker options to retain informationand to produce statically linked executables4The executables were instrumented using Pixie andexecuted on the SPEC training inputs to obtain an ex-ecution frequency pro�le. Finally, these binaries andtheir pro�les were processed by Alto using di�erentdegrees of pro�le-guided LRE, for obtaining di�erentmeasures about the e�ect of this optimization.5.2 LRE Algorithm E�ectivenessWe start evaluating the e�ectiveness of the three LREalgorithms under study (LRE on EBB for catching4We used statically linked executables because Alto relieson the presence of relocation information for its control 
owanalysis. The Tru64 Unix linker refuses to retain informationfor non-statically linked executables.7



EBB Fully PartialBenchmark Pot Ben Rem Pot Ben Rem Pot Ben Rem099.go 542 436 430 584 470 454 754 532 489124.m88ksim 572 481 462 705 607 585 858 664 615126.gcc 2962 1886 1833 2996 1917 1854 3088 1960 1884129.compress 246 191 185 253 201 195 287 215 209130.li 917 389 382 1238 671 640 2027 958 913132.ijpeg 369 309 303 386 324 316 491 378 363134.perl 1096 894 872 1109 904 878 1152 928 891147.vortex 1966 1759 1718 1970 1763 1722 2236 1918 1841Table 2: Static LRE numbers for the SPEC95 integer benchmark suite. Pot: potential number of opportunities,Ben: opportunities that are bene�cial using the cost/bene�t analysis, Rem: loads actually removed (there was aregister to bypass the redundant value).close redundancy and fully-LRE and partial-LRE forcatching distant redundancy) by comparing the num-ber of dynamic loads executed against the programbaseline. As a baseline, this section and all furthersections use the fully-optimized benchmarks after be-ing run through Alto with inlining turned on. That is,we are comparing the e�ectiveness of the algorithmsimplemented against what could be considered state-of-the-art optimized machine code.Figure 6 presents the reduction in number of dy-namic loads for each benchmark with respect to theoriginal baseline. As it can be seen, all programs doshow improvements typically around 5%, with somerather better cases such as m88ksim and compress.Comparing our results to Table 2 in Lo et al [17], wecan see that we achieve less bene�ts. However, we be-lieve the reason for that is that we are working on �nalmachine code while they were measuring reduction indynamic loads before code generation and register al-location. Factoring this in, our results are very muchin line with those presented in [17], yet we do not havethe advantage of high quality alias analysis as they do.The results show also that working only on EBBsis not enough to catch the close-redundancy we pre-sented in Section 2. Except maybe for perl andvortex, LRE applied to EBBs yields a small reductionin dynamic loads. By contrast, fully-LRE improvesthe overall results for �ve programs and partial-LREonly yields extra improvements for compress.In order to better understand this results, it isworth looking at the internals of our algorithm. Ta-ble 2 breaks down the opportunities for LRE for eachof the three algorithms under evaluation. For each al-gorithm, three numbers are presented: Pot, Ben andRem. Column \Pot" indicates the number of loadsconsidered by the algorithm as candidates for removal.
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Figure 6: E�ect of di�erent LRE degrees in number ofloads at run time. The baseline is optimized binarieswithout any LRE at all.Note that this number is computed after memory dis-ambiguation has determined that there are no con-
icting aliases that prevent LRE. The second column,\Ben", are the number of candidates remaining afterapplying our cost bene�t analysis based on BB fre-quencies. For example, the large drop in gcc indicatesthat the costs of removing those loads out-weight thebene�ts. Finally, column \Rem" indicates the num-ber of static loads actually removed. The di�erencesbetween column \Ben" and \Rem" are attributed tolack of registers to bypass the value from the sourceto the redundant load.The lack of registers to bypass a value is directlyresponsible for only a minority of the \lost opportuni-ties". The largest drop corresponds to column \Ben",where our cost-bene�t analysis discards many oppor-tunities for load removal. Since our cost equations areconservative, they always assume that a move instruc-tion will be inserted, regardless of whether registers8
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Figure 7: E�ect of di�erent LRE degrees in executiontime. The baseline is optimized binaries without anyLRE at all.are really available or not. We are currently investi-gating other cost formulations that integrate the costcomputation with the register availability computa-tion.5.3 Speedup using LRECounting the number of dynamic loads removed is cer-tainly of interest to understand the e�ectiveness ofeach algorithm. However, the �nal measure of inter-est is whether execution time is reduced or not. Tothis end, we have decided to use the SimpleScalar 3.0simulation toolset [6] to get an accurate measure ofthe di�erences between applying or not the LRE algo-rithms 5. Our out-of-order simulator models a Com-paq Alpha 21264 con�guration [15]. Detailed simula-tion parameters are described in Table 3.The results of our simulations are presented in Fig-ure 7. Of course, since loads are only a fraction ofall instructions executed in a program, reduction inexecution time is smaller than the corresponding re-duction in number of dynamic loads. Thus, for exam-ple, the 30% reduction in dynamic loads in m88ksimonly translates into an 8% reduction in overall execu-tion time. Overall, however, the decrease in executiontime shows that we have hit (removed) some loads thatindeed were on the program's critical path and, there-fore, contributed heavily to overall execution time.5.4 E�ects of load latencyAnother interesting measure to gauge the importanceof the LRE transformation is to see what will hap-5Variations in real execution time due to interactions withother processes and OS variations were too large to allow e�ec-tive measurement of speedups
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3 3 3 3 3 3 3 34 4 4 4 4 4 4 45 5 5 5 5 5 5 5Figure 8: E�ect of load latency (from 3-cycle to 5-cyclehit latency)pen in the future, as L1-cache latency continues toincrease. Current CPUs are typically at a 2-cycle or 3-cycle latency and the trend is towards hyper-pipeliningand, therefore, longer latencies. In this section we re-simulated all the benchmarks changing the L1-cachelatency from its value to 3 cycles up to 4 and 5 cycles.Furthermore, for each experiment we also re-compiledevery benchmark, since all our cost/bene�t analysisare dependent on the latency of the loads. At largerlatencies, it is more likely that the cost/bene�t equa-tions tend to favor the substitution of a load by oneor more \move" instructions.The results can be seen in Figure 8. The �rst thingto observe, as expected, is that the longer the latencythe worse the execution time of all programs. How-ever, as latency increases, the importance of perform-ing LRE also grows. Consider, for example, the caseof vortex. After applying partial-LRE, the executiontime at a 5-cycle latency is better than the originalexecution time using a 3 cycle latency.5.5 E�ects of register �le sizeAnother interesting experiment that our simulationenvironment allows is to vary the number of logicalregisters available to the compiler. While we clearlydo not expect in the near future that microprocessorvendors increase the number of registers in their in-struction sets, it is a very interesting experiment fromthe compiler's point of view. By increasing the logicalregister set, we can get insight into how many oppor-tunities for load removal could be re-gained by betterregister allocation or, in our case in executable code,by better register re-shu�ing.We modi�ed both Alto and the SimpleScalartoolset to be able to optimize and simulate Alpha bi-9



Parameter ValueFetch width 4 instructions.L1 I-cache 64Kb, 4-way set-associative, 64-byte line, LRU, 1-cycle hit latency.Branch predictor Combined predictor of a 2-level adaptative predictor with 8K 2-bitcounters, 16-bit global history, and a bimodal predictor of 8K entrieswith 2-bit counters. 3-cycle extra mispredict latency.Decode/Commit width 4 instructions.Issue mechanism 4-way out-of-order issue, wrong-path issue included.Instruction window size 128 entries.Functional units 4 simple integer, 1 integer mult/div, 4 simple FP, 1 mult/div.Load/store queue (LSQ) 64 entries, stores in LSQ may bypass values to later loads.L1 D-cache 64Kb, 2-way set-associative, 64-byte line, LRU, 3-cycle hit latency.L2 uni�ed I/D-cache 1Mb, 4-way set-associative, 64-byte line, LRU, 12-cycle hit latency.16 bytes to main memory, 16 cycles �rst chunk, 2 cycles interchunk.Instruction TLB 1Mb, 4-way set-associative, 4Kb page, LRU, 30-cycle miss penalty.Data TLB 1Mb, 4-way set-associative, 4Kb page, LRU, 30-cycle miss penalty.Table 3: Simulation parameters for an Alpha 21264 con�guration.
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8Figure 9: E�ect of register �le size. Number of logicalinteger registers varies from 32 to 128 registers.naries containing 64 and 128 integer registers (the de-fault being 32). Of course, we re-optimized all thebinaries with the new integer register �le sizes and re-simulated them on SimpleScalar. The results can beseen in Figure 9.First of all, having more registers improves execu-tion time whether we apply LRE or not, as the blackbars in Figure 9 show. When we turn to the results forthe LRE algorithm, we see that only the go programreally takes advantage of the extra registers. Thissuggests that register pressure may be less of a prob-lem than originally anticipated and that, probably, weshould focus future work on improving the number ofcandidates that our LRE algorithm targets (i.e., the\Pot" column in Table 2).

6 Related workWhile a number of systems have been described foroptimization of executable code [24, 9, 12, 21], to thebest of our knowledge, any elimination of redundantloads carried out by these systems is limited to fairlysimple load removal.Load redundancy elimination can be seen asa particular case of Partial Redundancy Elimina-tion (PRE), where the expressions to be consideredfor removing are only load operations. PRE [16, 8] isa well known scalar optimization that subsumes var-ious ad hoc code motion optimizations (as commonsubexpression elimination and loop invariant code mo-tion) by attempting to remove redundancies that oc-cur only on some control 
ow paths. Horspool andHo [14] described a new formulation of PRE based ona cost-bene�t of the 
owgraph, by using edge pro�les(our current implementation of partial LRE optimiza-tion is based in their equations). Gupta, Berson andFang [13] extended this pro�le driven PRE algorithmby using path pro�les.Register Promotion allows scalar values to be allo-cated to registers for regions or their lifetime, wherethe compiler can prove that there are no aliases forthe value. Promotion carries out elimination of bothredundant loads and dead stores. Cooper and Lu [18]examined promotion over loop regions. Their resultsindicate that the main bene�t of promotion comesfrom removing store operations. Lo et al use a variantof SSA-PRE to remove unnecessary loads and storesover any program region. However, they not consider10



the e�ect of spilling because it simulate with an in-�nite symbolic register set before register allocation.Both previous works only counted the improvementcompared to the total number of load and store in-structions. Posti�, Greene and Mudge [23] presentedrecently a register promotion algorithm at link-time,although their algorithm does not use any PRE ap-proach at all. They also present numbers for longregister �les, but the gain in this case seems to comefrom several ad hoc techniques for promoting globaland constant values into a dedicated subset of the longregister �le.Bod��k, Gupta and So�a [5] developed a load redun-dancy analysis, and design a method for evaluating itsprecision. However, their paper is only focused in theanalysis, they do not perform any elimination of re-dundant loads at all.7 Summary and future direc-tionsThis paper has presented three algorithms to per-form load redundancy elimination on executable �les.We have instrumented the SPECint95 programs andshown that between 50% and 75% of all memory ref-erences can be considered \redundant"', since theyaccess memory locations that had already been ref-erenced by another load or store instruction within aclose dynamic distance (less than 256 references awayin our dynamic window experiments).We have presented an algorithm targeted at catch-ing the close-distance redundancy by looking at re-dundancy within an extended basic block. This �rstalgorithm is able to remove less than 5% of all loadsand, therefore, yields speedups below 4% in executiontime. The results seem to indicate that an extendedbasic block is too small of a region to catch the redun-dancy measured in our redundancy experiments. Thesecond algorithm presented, LRE for fully redundantloads found on arbitrary control 
ow regions, yields anaverage increase of a 10% in candidate loads consid-ered to be removed. Despite this small increase, fully-LRE does detect some of the critical loads and thusincreases speedups up to an 8%. The third algorithmdiscussed, LRE for partially redundant loads, signif-icantly increases the number of static loads removed(a 30% over the EBB algorithm). However, the ex-tra cost of the algorithm only shows its strengths oncompress, where an extra 12% of dynamic loads areremoved over the fully-LRE algortithm.In the third part of the paper we have explored
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