
The Revenge of the Overlay:
Automatic Compaction of OS Kernel Code via On-Demand

Code Loading∗

Haifeng He, Saumya Debray, Gregory Andrews
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

{hehf, debray, greg}@cs.arizona.edu

ABSTRACT
There is increasing interest in using general-purpose operating sys-
tems, such as Linux, on embedded platforms. It is especiallyimpor-
tant in embedded systems to use memory efficiently because em-
bedded processors often have limited physical memory. Thispaper
describes an automatic technique for reducing the memory foot-
print of general-purpose operating systems on embedded platforms
by keeping infrequently executed code on secondary storageand
loading such code only if it is needed at run time. Our technique is
based on an old idea—memory overlays—and it does not require
hardware or operating system support for virtual memory. A pro-
totype of the technique has been implemented for the Linux kernel.
We evaluate our approach with two benchmark suites: MiBench
and MediaBench, and a Web server application. The experimen-
tal results show that our approach reduces memory requirements
for the Linux kernel code by about 53% with little degradation in
performance.

Categories and Subject Descriptors:D.3.4 [Programming Lan-
guage]: Processors–code generation, compilers, optimization; D.4.2
[Operating Systems]: Storage Management–secondary storage, stor-
age hierarchies

General Terms: Algorithms, Design, Experimentation, Perfor-
mance.

Keywords: Code compaction, Code clustering, Binary rewriting,
Embedded systems.

1. INTRODUCTION
Technological trends in recent years have led to the growinguse

of general-purpose operating systems, such as Linux, in embedded
contexts. While this is in many ways a simpler and more economi-
cal approach to managing operating systems for embedded devices,
it has the disadvantage that such operating systems—precisely be-
cause they are general-purpose—contain features and code that are

∗This work was supported in part by NSF Grants CNS-0410918
and CNS-0615347.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07 September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

not needed in every application context, and which incur unneces-
sary overheads, e.g., in execution speed or memory footprint. Such
overheads are especially undesirable in embedded processors and
applications because they usually have resource constraints, such
as a limited amount of memory. This makes it important to try and
reduce the memory footprint of embedded code—including theop-
erating system—as much as possible.

This paper focuses on automatic techniques for reducing themem-
ory footprint of operating system kernels in embedded systems.
Prior work in this area has generally focused on in-memory tech-
niques: eliminating unnecessary or duplicate code [3, 8] and com-
pressing infrequently executed code for on-demand decompression
[2] (Section 5 gives a more complete discussion of related work).
These approaches are able to accomplish significant code size re-
ductions: unnecessary code elimination achieves size reductions of
18%–24% [3, 8], while augmenting this with compression of unex-
ecuted code gives an additional 7%–12% reduction in overallmem-
ory footprint [2]. However, these approaches have the limitation
that all of the entire kernel code, whether or not it is compressed, is
kept in memory, which can unnecessarily limit the amount of code
size reduction achievable.

Keeping all of the kernel code in memory might be reasonable if
most or all of the code was actually executed. It turns out, however,
that (at least for embedded applications) most of the kernelcode is
executed infrequently, if at all. When running the MiBench embed-
ded application suite [7] on a minimally configured Linux kernel,
for example, we found that out of a total of 213,862 instructions
(occupying a total of 633.7 KB of memory), only 71,298 instruc-
tions (occupying 202.8 KB of memory)—i.e., about 32%—were
actually executed. However, although about 68% of the kernel code
is not executed, existing code optimization techniques areable to
prove only about 20% of the code to be unreachable; the remaining
code cannot be discarded because in theory it could be executed
depending on other inputs to the applications running. However,
keeping this code in memory uses up a scarce resource.

While embedded systems typically have a limited amount of
main memory, they often have a considerably greater amount of
secondary storage available, e.g., in the form of flash memory. This
paper describes an automated approach that takes advantageof this
feature to reduce the main memory requirements of the OS kernel.
The essential idea behind our approach is to keep rarely usedcode
on secondary storage, and load it into main memory if and whenit
is needed. We apply clustering to the whole-program controlflow
graph of the kernel to group “related” code fragments together; this
has the effect of dividing up the OS kernel code into partitions
and allows us to reuse the main memory buffer, into which code
is loaded on demand, for different partitions at different times. If

necessary, a very minor modification of the kernel code suffices to
deal with multi-threading issues. The result is reminiscent of the
old idea of code overlays, except that in our case the entire pro-
cess of clustering the code into partitions, and transforming it to
manage the code overlays, is automatic. Our approach does not
require hardware or operating system support for virtual memory.
Therefore, it is also applicable to low-end embedded systemwith-
out virtual memory or MMU hardware support. Experiments with
the Linux kernel indicate that we are able to reduce the main mem-
ory code size requirements of the OS kernel by around 53% with
very little degradation in performance.

2. BACKGROUND
OS kernel code is quite different from ordinary applicationcode.

A significant problem is the presence of considerable amounts of
hand-written assembly code that often does not follow the famil-
iar conventions of compiler-generated code, e.g., with regard to
function prologues, epilogues, and argument passing. Thismakes
it difficult to use standard compiler-based techniques for whole-
system analysis and optimization of kernel code. To deal with this
problem, we decided to use binary rewriting for kernel compaction.
However, while processing a kernel at the binary level provides a
uniform way to handle code heterogeneity arising from the com-
bination of source code, assembly code and legacy code such as
device drivers, it introduces its own set of problems. Sincethe
topic of binary rewriting of operating system kernels is somewhat
orthogonal to the topic of this paper, we only briefly summarize the
issues that arise; this topic is discussed in more detail elsewhere
[13].

The main differences between operating system kernels and or-
dinary applications fall under the following categories:

Data in text section. The Linux kernel contains a significant amount
of data embedded within the text section. For example, in
Linux version 2.4, the page tables are placed within the text
section. Such embedding of data within the instruction stream
complicates the disassembly process.

Hand-written assembly code.Unlike application programs, which
are typically written in high-level languages such as C or
C++, operating system kernels typically contain a significant
amount of hand-written assembly code. This complicates the
problem of program analysis.

Use of indirection. Operating system kernels often use indirect con-
trol transfers through function pointers to enhance extensibil-
ity and maintainability. This makes precise program analysis
difficult.

Implicit Entry Points. In an ordinary application program, the en-
try point is well-defined. This simplifies the task of disas-
sembly and program analysis. By contrast, operating system
kernels have multiple implicit entry points in the form of sys-
tem calls and interrupt handlers.

Implicit Control Flow. Operating systems contain implicit con-
trol flow paths, e.g., for exception handling, that are not read-
ily evident from examining the code. This complicates the
task of program analysis and transformation.

For the reasons given above, binary rewriting techniques applicable
to application code do not always carry over directly to kernel code.
They also mean that code optimization techniques developedfor
application code (e.g., some of the work on dynamic code loading
from secondary storage discussed in Section 5) may not be directly
applicable to OS kernel code.

3. CODE COMPACTION
As mentioned earlier, the main idea behind our approach is to

keep the commonly executed OS kernel code (the “hot” code) in
main memory while moving the rarely executed code (the “cold”
code) to secondary storage, and with appropriate adjustments to
load cold code into memory when (if) it is needed. The code trans-
formation needed to accomplish this basic functionality isconcep-
tually straightforward: on each control flow edge that goes from the
hot code to the cold code, insert some code to load the cold code
from secondary storage into memory; and adjust addresses tore-
flect the fact that the cold code may execute at a different location
in memory than its original address when it is loaded. Note that
while code for on-demand loading is inserted along control flow
edges from the hot code in memory to the cold code in secondary
storage, no corresponding code is needed on edges from the cold
code to the memory-resident code. This is because the memory
resident code always stays in memory, while the code loaded from
secondary storage is not modified and so does not need to be writ-
ten back to secondary storage.

This straightforward idea is much too simplistic, however.We
have to reserve enough space in memory to accommodate any code
that may have to be loaded; we call this region of memory thecode
buffer. If all we do is that described above, then the code buffer has
to be large enough to accommodate all of the cold code, resulting
in no net space savings (it would actually make things a little worse
because of the additional code needed for on-demand loadingof
code from secondary storage).

It is evident from this discussion that we have to do three things
in order to make our approach profitable. First, we have to deter-
mine how much code is to be memory-resident and how much is to
be kept in secondary storage: increasing the amount of code moved
to secondary storage leads to a reduction in the memory footprint of
the kernel, but can potentially lead to runtime overhead increased
because of the need to load code into memory during execution.
Second, we have to load the cold code in smaller chunks so as to
reduce the time and energy cost of loading code. Finally, themem-
ory region where these code chunks are loaded has to be reused, i.e.,
the code buffer needs to be able to hold different chunks of code at
different times. If the code loaded from secondary storage is par-
titioned intok chunks, of sizesn1, . . . , nk, then this code buffer
reuse makes it possible to use a buffer of sizemaxk

i=1ni instead
of

P

k

i=1
ni as in the case with no reuse. However, these require-

ments raise some technical issues, which we discuss in the remain-
der of this section. We deal with first issue via a user-specifiable
threshold that controls the amount of code that is memory-resident;
this issue is discussed in Section 3.1. The second requirement im-
plies that we have to be able to divide the cold code into different
chunks in some reasonable way, so as to minimize the total num-
ber of loads from secondary storage; we discuss this in Section 3.2.
The third requirement introduces some complications into the han-
dling of control transfer between two different dynamically loaded
code chunks; this issue is discussed in Section 3.3.

3.1 Upper-Bound of Memory Requirement for
Kernel Code

The amount of memory required for kernel code is determined
by two factors: the size of the code that is always kept in memory
and the size of code buffer, i.e., the memory region that is used to
keep the code that is loaded dynamically. The sum of these two
values gives an upper bound on the memory usage for the kernel
code.

In our approach, the code that is always kept in memory(memory-
resident) consists of two categories:

Input: A basic blockbbl

Output: The estimated final size ofbbl

Method:

N = the total memory size of original instructions
in bbl .

if bbl contains a control flow edge to a different clusteror
an indirect edge (means control target is unknown)do
return N + size increased due to code transformation.

(see Section 3.3).
else

return N .
fi

Figure 1: The BlockSize function

– Thecore code, which is the code that has to be in memory
to make the kernel work correctly. This includes the sched-
uler, the memory management, the trap and interrupt han-
dling code in the kernel, and—in the final overlay-based ver-
sion of our system—the code that manages overlay. Our cur-
rent implementation identifies such code by having the user
designate a specific set of kernel functions as core code.

– The “hot” code, i.e., frequently executed code that is kept
in memory in addition to the core code for performance rea-
sons. Our approach uses a user-specified parameterγ that
determines how much code is kept in the memory. In our
current implementation,γ is specified as the percentage in-
crease allowable in the size of the core code relative to its
size in the input binary. Thus, if core code occupies 100 KB
in the input kernel binary andγ = 10% = 0.1, then the
memory-resident code in the transformed kernel is allowed
to be up to 10% larger than the core code in the input binary,
i.e., up to 110KB.

We assume that the size of code buffer is given as an input param-
eter (the experimental results reported in this paper were based on
the size of code buffer= 2 KB). The size of code buffer, denoted
asBufSz , limits how large each code chunk(cluster) can be in or-
der to be accommodated in the code buffer. With parameterγ and
BufSz , the upper-bound of memory usage for kernel code equals
to

size(core code) × (1 + γ) + BufSz .

3.2 Code Clustering
In order to minimize the number of reads for code from sec-

ondary storage, we use a greedy node-coalescing algorithm for
clustering. We begin with an edge-weighted whole-program con-
trol flow graph for the kernel. The edge weights, representing ex-
ecution frequency counts, are obtained via edge profiling. Since
there is a significant amount of indirect control transfers through
function pointers in the kernel, we also perform target profiling for
all indirect control transfer instructions to collect the weights for
indirect edges and add them into the whole-program control flow
graph.

From the edge-weighted whole-program control flow graph, we
construct an edge-weighted graph, thecluster graph, whose nodes
represent the code clusters and whose edges represent control trans-
fers between clusters.

The details of our clustering algorithm are shown in Figure 2.
The algorithm operates on chains of basic blocks that must becon-
tiguous in memory, e.g., due to fall-through edges or the return
from a function call. There are four major steps in the algorithm:

1. Create a cluster graph

Initially, each chain is assigned to a separate cluster; there
is an edgee between two clustersa and b if there are any
control flow edge betweena and b, and the weight of the
edgee is computed as the total weight of all the control flow
edges between the blocks ina andb.

2. Compute the code size and cluster size for each node

The cluster size of each node determines how much code a
cluster can hold. For each node other than the nodeC for the
core code, the cluster size is given byBufSz , the size of the
code buffer. The cluster size ofC is the final size of code
that is always in memory. The upper-bound is determined by
the size ofcore code and the code-size bound specified by
the parameterγ.

The code size for a cluster is computed as the total size of all
of the basic blocks in that cluster. The functionBlockSize,
shown in Figure 1, is used to compute the memory size of a
basic block. This is given by the total size of the instructions
in the basic block together with the size of any additional
code that is inserted to support overlays. The reason for the
latter code is that if there is an inter-cluster control transfer
in a basic block, the control transfer instructions in the basic
block have to be modified to deal with overlays (see Section
3.3).

3. Node coalescing

The algorithm then processes the cluster edges in descend-
ing order of weight, iteratively coalescing the end-pointsof
edges whenever possible until no further coalescing can be
carried out. Two nodesa andb can be coalesced if doing so
will not cause the size of the resulting (coalesced) node to
violate the following conditions:

– If neithera nor b is the core nodeC, then the size of
resulting node must not exceed the cluster size of either
node, which is equal toBufSz .

– If either ofa, b is C, the size of resulting node should
not exceedmax(C .cluster_size,BufSz). In this case,
the code of the other node becomes “hot” code and
memory-resident as well.

4. Defragmentation

At the end of this step, there are usually some small clusters
left over; a defragmenting step is carried out at the end to
merge such clusters with larger ones where possible.

In the algorithm, the bound parameterγ controls the final size
of memory-resident code. Ifγ = 0, only the core code will be
kept in memory; all other code, including even hot code, willbe
kept in secondary storage, likely resulting in a large number of
reads into the code buffer and a concomitant high runtime over-
head. Larger values ofγ mean that some additional code can be
kept memory-resident; since we process cluster edges in descend-
ing order of weight, this will cause some of the frequently executed
code (which must be small enough to fit into the additional mem-
ory space that is now available) to be coalesced with the cluster
corresponding to the core code. This will result in reduced runtime
overheads because less code will have to be loaded at runtime. Our
experimental results, reported in Section 4, confirm this.

Input:

1. An edge-weighted control flow graph for a program, together with a functionBlockSize that gives an estimate of total memory
size of each basic block

2. A set of functionsF that must reside in memory. The code for these functions comprises thecore code.

3. A boundγ on the final size of the memory-resident code.

4. An integerBufSz > 0 giving the size of code buffer.

Output: A cluster graph for the program.

Method:

1. Create a cluster graphG = (V, E) as follows:

– V contains a single nodeC corresponding to thecore code, as well as a node for each basic block chainB such thatB 6= C.
– There is an edge(a, b) between nodesa andb in the cluster graph if there is a control transfer edge between some basic

block ina and some basic block inb. The weightw(e) of an edgee = (a, b) is given by the total edge weight of all control
flow edges between blocks ina and those inb.

2. Compute the code size and cluster size for each node:

– For each nodea in the cluster graph, leta.code_size =
P

{BlockSize(bbl) | bbl ∈ a}.
– LetC .cluster_size = C .code_size × (1 + γ).
– For each nodea 6= C, let a.cluster_size = BufSz .

3. [Node coalescing.] Process the edges of the cluster graphG in descending order of weight, iteratively coalescing nodes:

while ∃(a, b) ∈ E s.t. (a.code_size + b.code_size) ≤ max(a.cluster_size, b.cluster_size) do
Coalesce the endpointsa, b and mergeb with a, setting:

a.code_size = a.code_size + b.code_size;
a.cluster_size = max(a.cluster_size, b.cluster_size).

Update edge weights for all clusters adjacent toa, b appropriately.
od

4. [Defragmentation.] Coalesce small clusters into larger ones where possible:

while ∃a, b ∈ V s.t. (a.code_size + b.code_size) ≤ max(a.cluster_size, b.cluster_size) do
Mergeb with a, setting:

a.code_size = a.code_size + b.code_size;
a.cluster_size = max(a.cluster_size, b.cluster_size).

od

5. Return the resulting cluster graph.

Figure 2: The Clustering Algorithm

3.3 Code Transformation
Once clustering has been done, the next step is to transform the

kernel code to support overlays. We add a small amount of code
into the core cluster (i.e., the cluster that contains the core code)
for managing code loading at runtime. We call this code asoverlay
manager. The overlay manager consists of:

– A dynamic loader, which is passed an address that is the tar-
get of a control transfer instruction into the code that needs
to be loaded into the memory. The dynamic loader looks up
this address in the cluster address table1 to identify the clus-
ter that it belongs to, then loads the code for that cluster from
secondary storage into the code buffer.

1The cluster address table stores the starting address of each dy-
namically loaded clusters(since dynamically loaded clusters are
placed in contiguous address space, it is enough to keep onlythe
starting address of each dynamically loaded cluster in the table).
The table is loaded into the memory at the very beginning when
kernel starts.

– Two control transfer routines: _dynamic_call and
_dynamic_jmp. The first of these,_dynamic_call, han-
dles the case where control transfer into the target cluster
is a function call, while the second routine,_dynamic_jmp,
handles the case where the control transfer is a jump instruc-
tion. Conceptually, these two routines are very similar in
their essential functionality: they invoke the dynamic loader
to load the target cluster into memory, translate the targetad-
dress into the appropriate offset within the code buffer, then
branch to that location. The only difference between them
is that when the control transfer is a function call, the return
from that call continues execution at the instruction afterthe
call instruction, and some extra book-keeping is necessaryto
handle this, as described below.

The inter-cluster control flow edges where the target cluster is
not (or, in the case of indirect control transfer, may not be)the
core cluster need to be changed so that the overlay manager can
take over the control of the execution. The transformation is rather
straightforward. We transform the code to push the target address

cluster B

contents = cluster Acode buffer :

call f
m

offset

Areturn address = cluster instr. following call instruction
= instr. at offset in code bufferm

(a) at the point of a call tof

code buffer :

m

offset contents = cluster B

f:

. .
 .

return

return address
= some instruction in cluster
= instr. at offset in code bufferm

B

(b) at the point of return fromf

Figure 3: The problem with function calls across dynamically loaded clusters

of inter-cluster control flow edges on the stack and then branch to
the appropriate control transfer routines:

– A direct unconditional jump ‘jmp ℓ’ is transformed to code
that simply pushes the target address and jumps to
_dynamic_jmp:

push ℓ
jmp _dynamic_jmp()

– The code for an indirect jump ‘jmp *r’ is similar as a direct
jump:

push *r
jmp _dynamic_jmp()

– A conditional jump instruction ‘Jcc ℓ’ is transformed to code
of the form

Jcc A

. . .

A: push ℓ
jmp _dynamic_jmp()

The transformation for function calls is analogous to that shown
above for unconditional jumps and indirect jump, except that it
branches to_dynamic_call. Since the transformation makes
changes to the stack, the control transfer routines need to clean up
the stack before it branches to the code buffer.

The control transfer routines_dynamic_call and_dynamic_jmp
are very similar except that there is one important difference be-
tween these routines that arises from a subtlety in dealing with
function calls from one dynamically loaded cluster into another.
This is illustrated in Figure 3. Suppose we have a function call
from a dynamically loaded clusterA to a functionf in a differ-
ent dynamically loaded clusterB. Figure 3(a) shows the machine
state at the point of the call: the code buffer contains cluster A,
and the return address, at some offsetm in the code buffer, is the
instruction following the call instruction. Since clusterB is also
dynamically loaded, this call causes the code forB to be loaded
into the code buffer, thereby overwriting the code forA that had
been there. When control returns from the functionf , therefore,

the return address—which is simply the address of offsetm in the
code buffer—actually points to an instruction in clusterB rather
than one in clusterA.2

We deal with this problem as follows. The control transfer rou-
tine _dynamic_call checks to see whether the return address is
within the code buffer. If it is, it creates a restore stub routine dy-
namically for the return address. The purpose of the restorestub
routine is to reload the clusterA from which the call originated,
then jump to the appropriate offset within the code buffer. The re-
turn address passed to the callee is modified to point to the restore
stub. The restore stub simply invokes the dynamic loader with the
appropriate address to cause the cluster for the originating call to
be loaded,3 then cleans up the stack and branches to the location
within the code buffer corresponding to the instruction following
the original call instruction.

The mechanism is able to handle chains of calls among different
clusters properly as well. For example, suppose that there is a call
chains,a → b → c → d, wherea, b, c, andd are functions
belonging to different clusters. There are 3 different restore stubs
created for this call chain–one for each call-site. When a function,
sayd, returns, the program control first jumps to the corresponding
restore stub for callc → d and the restore stub calls dynamic loader
to load the cluster of whichc belongs to into the code buffer. Then
the program counter is set at the appropriate location in thecode
buffer so that the execution can be continued in functionc. The
other two restore stubs act in a similar way when the functionc and
b returns.

The size of a restore stub is very small and consumes little amount
of memory. For efficient purpose, a multiple instances of restore
stubs are created initially and during runtime, the number of re-
store stubs will be increased if necessary. In practice, we choose
to first create 20 restore stubs and reuse them. Because the Linux
kernel has a small fixed-size stack (only 4KB in our tested kernel),
the call stack of the Linux kernel is usually not very deep. This
number is large enough for all the experiments we tested.

2In an architecture with variable-length instructions, such as the In-
tel x86, the return address may not even refer to a valid instruction.
3Since the return address is actually within the code buffer in this
case, the routine_dynamic_call maps it back to an address that,
when passed to the dynamic loader by the restore stub, causesit to
load the appropriate cluster into memory.

/* include/linux/sched.h */
struct task_struct {
 ...
 struct thread_struct thread;
 ...

};

int cluster_id;

/* arch/i386/kernel/process.c */
void __switch_to (struct task_struct *prev_p,
 struct task_struct *next_p)
{
 ...

 ...
 ...
}

if (address_is_within_code_buffer ((next_p->thread).eip) {
 ovl_dynamic_loader (next_p->cluster_id);
}

Figure 4: Source code changes to handle multi-threading

3.4 Context Switches and Interrupts
There are two issues that have not been addressed in the discus-

sion so far. The first is that of multi-threading, which is a feature
typical of modern general-purpose operating system kernels. The
second is that of control transfers due to interrupts.

We extend our approach to handle multi-threading via minor
(manual) modifications to the kernel code, as follows. We adda
single new field to the thread state (in the Linux kernel, the struc-
ture task_struct) to identify the cluster whose code is being
executed by that thread. The additional memory requirements for
this are small, just 4 bytes per thread. This field is initialized and
updated by the dynamic loader as needed during execution. The
code for the scheduler is modified to check the program counter
value for a thread that is about to run, and to invoke the dynamic
loader to load the appropriate cluster into the code buffer if this
address is within the code buffer. The code changes necessary are
shown in Figure 4, where the additional code that has to be intro-
duced in our approach has been highlighted.

One issue we have not discussed is that of dealing with inter-
rupts. The problem of dealing with interrupt in the kernel is, when
the kernel is executing a code clusterA in the code buffer and an in-
terrupt happens, if the the interrupt handler brings a different code
clusterB into the code buffer,B will overwrite clusterA in the
code buffer. Once the interrupt handler finishes and the kernel ex-
ecution returns back to its previous normal execution, ifA is not
reloaded into the code buffer, an error will happen. In our current
implementation, we handle this is issue by making sure that inter-
rupt handlers are part of the core code and therefore always remain
in memory so that interrupt handler will not load new code cluster
into the code buffer. This, however, will obviously increase the size
of core code. There are other ways to handle this. One approach is
to have two code buffers: one is dedicated to the normal kernel ex-
ecution other than interrupt handling; while the other is dedicated
only to the interrupt handling. Another approach is to modify the
return process of interrupt handler so that the required code cluster
is loaded into the code buffer before the interrupt handler returns.
We are currently working on investigating and evaluating these dif-
ferent methods.

4. EXPERIMENTAL RESULTS
We have implemented our ideas using the PLTO binary rewriting

system for the Intel x86 architecture [14] and evaluated them using
version 2.4.31 of the Linux kernel. PLTO is also used to collect
profiles for the kernel. An OS kernel like Linux kernel, does not

have well-defined entry and exit points as the ordinary application
to server as natural points to start and end profiling. Therefore, our
system uses a special(new) system call to begin profiling as well
as ending profiling and write out profile data. More details ofour
profiling mechanism is discussed in [13]. In our current implemen-
tation, the dynamically loaded code is still stored in memory, but in
a separate section in the kernel binary. The code is loaded into the
code buffer throughmemcpy function call. We plan to change the
implementation to load code from secondary storage once we setup
a developing environment that can simulate an embedded system
integrated with flash memory.

To get an accurate evaluation of the efficacy of this system, we
began with a minimally configured kernel where as much unneces-
sary code as possible has been eliminated by configuring the kernel
carefully. For our experiments, we therefore configured theLinux
kernel to remove modules, such as the sound card and video sup-
port, that are not required to run our benchmarks. We considered
two versions for the kernel: one with networking support, the other
without. The kernel code was compiled withgcc version 3.4.4 us-
ing the compilation flags of ‘-Os’, which instructs the compiler
to optimize for code size. The code sizes for the resulting kernels
(only the.text sections) are as follows:

Kernel Code size(bytes)

2.4.31, w/o networking 590,022
2.4.31, with networking 890,793

In order to simplify the booting process of the Linux kernel,we
modified the kernel boot up fileinittab so that the Linux kernel
will run in single user mode (level 1). All the experiments are con-
ducted using a Intel Pentium 4 3 GHz desktop machine with 2GB
memory installed.

We used three sets of benchmarks to evaluate our ideas: MiBench
[7], a widely used and freely available collection of benchmark pro-
grams for embedded systems; MediaBench, a suite of programs
used for evaluating multimedia and communications systems[9];
and httpd, the Apache HTTP server (version 2.0.50), which was
used because it exercises more of the kernel code, and in different
ways, than the programs in the MiBench and MediaBench suites.
Our experiments with MiBench and MediaBench used the version
of the kernel compiled without networking, whilehttpd was tested
on the kernel version containing networking.

4.1 Compaction Results
Table 1 shows the behavior of our clustering algorithm and the

compaction results for the different benchmarks; the data presented

Core code size Cluster Statistics Compaction Results
bound(γ) No. of Ave. cluster Max. cluster Total memory Memory size

(%) Clusters size (bytes) size (bytes) size (bytes) reduction (%)

M
iB

en
ch

0 250 1634 2023 255,566 56.7
2 247 1635 2041 260,068 55.9
4 244 1634 2025 264,639 55.1
6 241 1635 2032 269,288 54.4
8 238 1636 2039 273,748 53.6
10 235 1638 2045 277,988 52.9

M
ed

ia
B

en
ch 0 250 1639 2045 254,573 56.9

2 248 1632 2025 259,041 56.1
4 245 1633 2022 263,629 55.3
6 242 1633 2025 268,332 54.5
8 239 1634 2026 272,762 53.8
10 236 1635 2000 277,073 53.0

ht
tp

d

0 385 1650 2039 368,600 58.6
2 381 1649 2042 374,948 57.9
4 377 1650 2043 381,289 57.2
6 373 1650 2044 387,557 56.5
8 368 1654 2042 394,121 55.8
10 364 1653 2045 400,620 55.0

Table 1: Clustering statistics and compaction results for different core code size bounds with code buffer size = 2 KB

corresponds to a code buffer size of 2 KB. This value was chosen
because it is the page size on flash memory chip considered in Sec-
tion 4.2.

The first column indicates the benchmark suite being considered.
The second column gives the core code size boundγ indicating how
much the core code is allowed to grow in size. The third column
gives the number of clusters formed. The fourth and fifth columns
give the average and maximum cluster size, respectively. The sixth
column gives the total memory size, computed as the sum of the
sizes of the memory-resident code, the code buffer and the memory
allocated by overlay manager, which includes the restore stubs (600
bytes) and the cluster address table (= no. of clusters× 4 bytes).
The size of the memory-resident code is obtained as the size of
the .text section in the compacted kernel.4 The final column
gives the percentage reduction size, measured relative to the size
of the original kernel (Recall that the MiBench and MediaBench
programs were evaluated on a kernel without networking support,
with original size 590,022 bytes, while thehttpd benchmark was
evaluated on a kernel with networking support, with original size
890,793 bytes).

It can be seen from Table 1 that, as expected, increasing the value
of the code size boundγ leads to a decrease in the total number of
clusters. The average cluster size remains almost the same ,while
the maximum cluster size varies for all differentγ. Since the code
buffer size is being held constant in our experiments (2 KB),the to-
tal memory size reduction achieved decreases asγ—and therefore
the amount of memory-resident code—increases. The memory size
reductions achieved are fairly consistent across our benchmarks,
and range from about 56%–58% forγ = 0 to about 53%–55% for
γ = 0.1. The next section examines the effect of different values
of γ on the runtime cost of code loading.

4.2 Cost of Code Loading
4There is some code in the.init.text section used during the
kernel bootup process, but we did not include this in our sizecom-
putations because this section is deallocated, and its memory freed
up, after the initial portion of booting.

Table 2 shows the effect of different core code growth boundson
the runtime cost of on-demand code loading. We show data for two
different costs: the first set of data (columns 3–5) show the cost of
booting the kernel and starting a shell(for runninghttpd, the booting
process also includes starting network and httpd server); while the
second set (columns 6–8) show the kernel-level cost of running the
benchmark applications. Columns 3 and 6 give the total number
of accesses for code loading while columns 4 and 7 give the total
amount of code loaded into the code buffer. The application codes
were run as follows: for the MiBench suite, we ran both the small
and large input sets that came as part of the suite; for MediaBench,
we used the run scripts provided with the benchmark applications;
for httpd, we used the command5

ab -n 5000 -c 2 http://test_addr

which sends a total of 5000 requests, 2 at a time, to the test machine
whose IP address is given bytest_addr. For both sets of data, boot-
ing the kernel and running the benchmark programs, the number of
accesses for code loading and the total amount of code loadedinto
code buffer decrease as the code growth boundγ is increased.

Since our experiments were done on a relatively fast desktopen-
vironment, the small amount of time spent in the operating system
kernel, together with the granularity of the system clock, made it
difficult to reliably measure the effect of our dynamic code loading
scheme on the total time spent within the kernel. Instead, wegive
a rough estimate of the effect of such a scheme in an embedded
context.

First, we estimate the time taken for dynamic code loading out of
flash memory secondary storage using manufacturer’s data sheets
for a typical commercial flash memory currently in use. For this,
we (quite arbitrarily) chose the Micron MT29f2G08AAb NAND
flash memory [10]. This is a 2 GB flash memory unit where data is
stored in 2 KB pages. Data reads are done a page at a time (i.e.,the
smallest unit of data read is 2 KB), and it takes 130.9 microseconds
to read each page. We calculated the estimated cost of code loading

5ab is the Apache HTTP server benchmarking tool.

Core code size Kernel boot data Application execution data
bound(γ) No. of Total code Est. load No. of Total code Est. load

(%) accesses loaded(KB) cost(sec) accesses loaded(KB) cost(sec)

M
iB

en
ch

0 66,736 111,842 8.68 811,218 1,362,556 105.46
2 43,933 73,817 5.71 226,395 387,725 29.43
4 16,964 28,537 2.21 7,939 13,343 1.03
6 8,647 14,080 1.12 3,131 5,016 0.41
8 3,412 5,644 0.44 2,326 3,871 0.30
10 1,700 2,787 0.22 1,091 1,804 0.14

M
ed

ia
B

en
ch 0 65,964 109,222 8.58 40,109 67,016 5.21

2 27,802 46,825 3.61 17,992 30,100 2.34
4 11,389 19,037 1.48 4,131 7,015 0.54
6 5,831 9,472 0.76 2,532 4,244 0.33
8 3,130 5,009 0.41 929 1,536 0.12
10 1,723 2,861 0.22 646 1,069 0.08

ht
tp

d

0 96,111 163,719 12.49 162,027 261,364 21.06
2 23,735 39,375 3.09 51,229 78,517 6.66
4 11,078 18,326 1.44 10,451 17,194 1.36
6 2,861 4,657 0.37 341 567 0.04
8 1,620 2,708 0.21 529 906 0.07
10 1,030 1,696 0.13 405 688 0.05

Table 2: Runtime cost of dynamic code loading for different core code growth bounds

as

Est.Cost =
X

i

⌈
size(i)

2048
⌉ × access(i) × 130.9µs,

wheresize(i) is the size of clusteri andaccess(i) is the total num-
ber of times of which clusteri was loaded into code buffer. The
estimated cost of code loading is shown in columns 5 and 8 in Ta-
ble 2.

Secondly, we tried to evaluate the impact of dynamic code load-
ing on the performance of the application programs running on the
kernel. We estimate this by considering the time taken to runeach
of the three benchmarks on an unmodified kernel (i.e., the cost of
code loading is zero). On average, the total time for runningeach
benchmark on an unmodified kernel is as follows:

Benchmark Running time(sec)

MiBench 18.82
MediaBench 3.53
httpd 3.82

Using MiBench as an example, what the data shown is that, if we
were to use dynamic code loading on our desktop environment,us-
ing the flash memory described above, choosingγ = 0 would yield
a 56.7% reduction in code size, but would lead to an executiontime
of 18.82 + 105.46 = 124.28 secs, i.e., almost 7 times of the run-
time on an unmodified kernel. On the other hand, forγ = 10%, we
see a 52.9% reduction in code size while the total runtime goes to
18.82 + 0.14 = 18.96 seconds, an increase smaller than 1%. Fig-
ure 5 shows that for all three benchmarks, the overhead of dynamic
code loading reduces significantly when code growth bound isin-
creased from 0% to 4%. The reason for this dramatic performance
improvement is not hard to see: if the frequently executed parts
of the kernel is kept in memory, they will not have to be loaded
repeatedly from secondary storage.

It is important to note that these numbers are a conservativeup-
per bound on the runtime overhead that would actually be incurred
on an embedded platform. The embedded platforms our technique
is aimed at are likely to be considerably slower than the desktop

used for our experiments, which means that the time taken to run
the whole MiBench would be correspondingly much greater than
the 18.82 seconds used for these calculations. Since the flash mem-
ory characteristics remain the same, it seems reasonable tocon-
clude that the actual runtime overheads experienced on an actual
embedded system would be even lower.

5. RELATED WORK
Code compaction of operating system kernels has been consid-

ered by Chanetet al. [3, 2] and Heet al. [8]. They apply traditional
size-reducing compiler optimizations to eliminate dead, unreach-
able, and duplicate code [3, 8] and compression of rarely executed
code with on-demand decompression [2]. These works keep allof
the compacted kernel in memory, which limits the extent of mem-
ory footprint reduction they are able to achieve.

There has been a great deal of other work on automatic code
compaction (see the survey by Beszédeset al. [1]). Most of this
work focuses on application code and does not address the compli-
cations that arise in dealing with operating system kernels.

We are not aware of a great deal of other work on binary rewrit-
ing of operating systems kernels. Flowerset al. describe the use
of Spike, a binary optimizer for the Compaq Alpha, to optimize
the Unix kernel, focusing in particular on profile-guided code lay-
out [6]. This work focuses on improving execution speed rather
than reducing code size and therefore uses techniques very differ-
ent from ours.

Recently, some researchers have begun exploring the use of over-
lays out of flash memory to reduce memory requirements in embed-
ded systems. Parket al. describe a scheme for generating dynamic
code overlays for programs that can be modeled using synchronous
data flow, which makes it possible to determine a static schedule
for the program’s code [12]. Parket al. describe an application-
specific demand paging mechanism for low-end embedded systems
that do not have virtual memory [11]. Both works limit their focus
to application programs and do not address the numerous issues
peculiar to operating system kernels that arise in this context.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

R
un

tim
e

(s
ec

)

Code growth bound (%)

Mibench

Overlay kernel
Unmodified kernel

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10

R
un

tim
e

(s
ec

)

Code growth bound (%)

MediaBench

Overlay kernel
Unmodified kernel

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

R
un

tim
e

(s
ec

)

Code growth bound (%)

httpd

Overlay kernel
Unmodified kernel

Figure 5: The estimated runtime cost of kernel with overlay comparing with unmodified kernel

Eggeret al. describe dynamic code placement techniques and
memory management strategies for scratchpad memory in embed-
ded systems [4] [5]. Their interest focuses on improving theoverall
performance of system instead of reducing the memory require-
ment. They also apply their work only on application programs.

6. CONCLUSIONS
Recent years have seen an increasing trend towards the use of

general-purpose operating systems, such as Linux, in embedded
systems. This solution, however, this has the disadvantagethat
general-purpose OS kernels, by their very nature, contain alot of
code that is not needed in an embedded context. This is a prob-
lem because embedded devices typically have a limited amount of
memory available. This paper describes an approach to reducing
the memory requirements of the OS kernel using an on-demand
code overlay mechanism. Our approach is based on a post-link-
time binary rewriter that uses edge profile information to carry out
code clustering. Experiments with the Linux kernel show that we
are able to reduce the memory requirements of the kernel codeto
53% with little degradation in performance.

7. ACKNOWLEDGMENTS
We would like to thank Gernot Heiser and the anonymous re-

viewers for their helpful comments on drafts of this paper and Somu
Perinayagam for his work on the binary rewriter tool.

8. REFERENCES
[1] Á. Beszédes, R. Ferenc, T. Gyimóthy, A. Dolenc, and

K. Karsisto. Survey of code-size reduction methods.ACM
Computing Surveys, 35(3):223–267, 2003.

[2] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De
Bosschere. Automated reduction of the memory footprint of
the linux kernel.ACM Transactions on Embedded
Computing Systems. To appear.

[3] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De
Bosschere. System-wide compaction and specialization of
the Linux kernel. InProc. 2005 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’05), pages 95–104, June 2005.

[4] Bernhard Egger, Chihun Kim, Choonki Jang, Yoonsung
Nam, Jaejin Lee, and Sang Lyul Min. A dynamic code
placement technique for scratchpad memory using postpass
optimization. InCASES ’06: Proceedings of the 2006
international conference on Compilers, architecture and

synthesis for embedded systems, pages 223–233, New York,
NY, USA, 2006. ACM Press.

[5] Bernhard Egger, Jaejin Lee, and Heonshik Shin. Scratchpad
memory management for portable systems with a memory
management unit. InEMSOFT ’06: Proceedings of the 6th
ACM & IEEE International conference on Embedded
software, pages 321–330, New York, NY, USA, 2006. ACM
Press.

[6] R. Flower, C.-K. Luk, R. Muth, H. Patil, J. Shakshober,
R. Cohn, and P. G. Lowney. Kernel optimizations and
prefetch with the Spike executable optimizer. InProc. 4th
Workshop on Feedback-Directed and Dynamic Optimization
(FDDO-4), December 2001.

[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and T. Brown. MiBench: A free, commercially representative
embedded benchmark suite. pages 3–14, December 2001.

[8] H. He, J. Trimble, S. Perianayagam, S. Debray, and
G. Andrews. Code compaction of an operating system kernel.
In Proc. Fifth International Symposium on Code Generation
and Optimization (CGO), pages 283–295, March 2007.

[9] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: a tool for evaluating and synthesizing
multimedia and communications systems. InProc. 30th
IEEE International Symposium on Microarchitecture (Micro
’97), pages 330–335, December 1997.

[10] Micron Technology. Small block vs. large block NAND
devices. Technical Report Technical Note TN-29-07 (Rev.
B), February 2006.

[11] C. Park, J. Lim, K. Kwon, J. Lee, and S. L. Min.
Compiler-assisted demand paging for embedded systems
with flash memory. InEMSOFT ’04: Proceedings of the 4th
ACM international conference on Embedded software, pages
114–124, New York, NY, USA, 2004.

[12] H. Park, K. Oh, S. Park, M. Sim, and S. Ha. Dynamic code
overlay of sdf-modeled programs on low-end embedded
systems. InDATE ’06: Proceedings of the conference on
Design, automation and test in Europe, pages 945–946,
2006.

[13] M. Rajagopalan, S. Perinayagam, H. He, G. Andrews, and
S. Debray. Binary rewriting of an operating system kernel. In
Proc. Workshop on Binary Instrumentation and Applications,
October 2006.

[14] B. Schwarz, S. K. Debray, and G. R. Andrews. Plto: A
link-time optimizer for the Intel IA-32 architecture. InProc.
2001 Workshop on Binary Translation (WBT-2001), 2001.

