
A Simple Program Transformation forParallelismSaumya DebrayMudita JainDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, U.S.A.fdebray, jainmg@cs.arizona.eduAbstractMost of the research, to date, on optimizing program transformations for declar-ative languages has focused on sequential execution strategies. In this paper, weconsider a class of commonly encountered computations whose \natural" speci�ca-tion is essentially sequential, and show how algebraic properties of the operatorsinvolved can be used to transform them into divide-and-conquer programs that areconsiderably more e�cient, both in theory and in practice, on parallel machines.1 IntroductionAmong the advantages claimed for declarative programming languages are that(i) programs written in such languages are relatively easy to reason about, whichmakes it possible to automatically transform simple declarative speci�cations intoe�ciently executable code; and (ii) it is easy to exploit parallelism in programswritten in such languages. Nevertheless, most of the research on transformationof programs in high level languages has focused, to date, on execution strategiesthat are|explicitly or implicitly|sequential (see, for example, [1, 2, 4, 18]). Asa result, it is not at all certain that the application of such techniques leads toprograms that run faster on parallel implementations: performance improvements,if any, are purely incidental.In this paper, we focus on transforming declarative programs for e�cient parallelexecution. We consider a class of commonly encountered programs whose \natural"speci�cation is essentially sequential. We use algebraic properties of operators totransform such programs into a divide-and-conquer form that is considerably moree�cient on parallel machines, both in theory and in practice, but that do not appearto be \natural" speci�cations of the computation.The computations we consider are accumulative computations involving asso-ciative operators. The idea behind these accumulative computations is as follows:starting in some \state" �x, repeatedly perform the following computation as longas the state satis�es some condition a(�x): update the accumulator �y, using an as-sociative operator �, to accumulate some function1 d(�x) of the current state; andupdate the state �x so that the new state is give by some function e(�x) of the currentstate. Finally, when this accumulative process stops, update the accumulator a �nal1We use the word \function" here primarily to help the reader's intuition: as we will see, ourtransformation does not require determinacy.

time with some function b(�x) of the �nal state. Accumulative computations of thiskind, involving associative operators, are commonly encountered in a wide varietyof contexts, to the point that some authors have proposed augmenting program-ming languages with constructs designed speci�cally to handle such computations[13, 14].It is easy to show that this computation can be expressed using a procedurep de�ned as follows (to keep the program simple, the accumulator has not beenmade explicit here: it can easily be transformed to a tail-recursive procedure thatmanipulates an accumulator explicitly: see, for example, [4]). Here, �x is a tuple of\input" arguments and �y a tuple of \output" arguments:p(�x; �y) :� a(�x); e(�x; �x1); p(�x1; �y1); d(�x; �u) y = �u� �y1:p(�x; �y) :� :a(�x); b(�x; �y):For convenience in the discussion that follows, we refer to such procedures asassociative-accumulative procedures. A signi�cant aspect of this procedure is that itis essentially sequential: in order to compute the result at one level of recursion, itis necessary to wait until the rest of the recursive computation has been completed(a similar remark applies to the tail-recursive version that explicitly manipulatesan accumulator, since an iteration cannot proceed until the accumulator has beenupdated by the previous iteration).2 Notice that we do not make any assump-tions about whether or not the procedures d and b are deterministic (i.e., computefunctions).A Note on Notation: For notational convenience in the remainder of this pa-per, we depart from the \standard syntax" of logic programming languages in twominor ways. First, because the directionality of the procedures b, d, and e above,and the distinction between their input and output arguments, is crucial for ourtransformation, it is convenient to think of them as \functions" that return values(though they may be nondeterministic and may return multiple values) and writethem in a functional notation. Second, the two clauses given above for the procedurep|one that checks whether recursion should continue, the other whether it shouldstop|are necessarily mutually exclusive, and we �nd it useful to emphasize this bywriting them using a \guarded" syntax. Thus, we write the de�nition given abovefor p as follows:p(�x; �y) :� a(�x) [] p(e(�x); �y1); �y = d(�x) � �y1:p(�x; �y) :� :a(�x) [] �y = b(�x):We will use such notation often in the remainder of the paper, with the understand-ing that this can be easily expanded into the original relational notation wherevernecessary. However, code for example programs will be given in syntax close to thatof Prolog.2 The Basic TransformationTo motivate the transformation, consider the evaluation of a goal p(�t; �y) given thede�nition2It may sometimes be possible to extract a limited amount of parallelism by executing thedi�erent invocations of d(: : :) in parallel. All such opportunities for parallelism are retained byour transformation, which additionally restructures the computation to expose a great deal moreparallelism.

p(�x; �y) :� a(�x) [] p(e(�x); �y1); �y = d(�x) � �y1:p(�x; �y) :� :a(�x) [] �y = b(�x):Suppose the depth of recursion for the input �t is n, then the result(s) of the evalu-ation is given by d(�t) � d(e(�t))� � � � � d(en�1(�t)) � b(en(�t)) (1)where ej(�t) denotes the result of j applications of e to �t. The crucial insight behindthe transformation is that if we can (i) determine the depth of recursion n, and (ii)enumerate the exponents of e in the expression (1)|that is, the sequence 1 : : :n|e�ciently in parallel, then the subexpressions ei(�t) can also be evaluated in parallel.If this can be done e�ciently,3 so can the entire expression (1). In Section 2.1, wediscuss conditions under which the depth of recursion of an associative-accumulativefunction can be determined. In Section 2.2, we focus on the second issue, namely,the e�cient enumeration of the sequence 1; : : : ; n given the depth of recursion n,and its utilization in transforming the program into a divide-and-conquer form thatcan be evaluated e�ciently in parallel.2.1 Calculating the Depth of RecursionIn general, the depth of recursion of a recursive procedure depends on the \size"of its input, where the size of a term is given by a function, called a norm, thatmaps terms to natural numbers. Techniques for automatically inferring the normappropriate for a particular procedure, based on the types of its input arguments,have been investigated by Decorte et al. [6]. For our purposes, we assume thatinput and output arguments for procedures have been identi�ed via mode analysis;that the types for these arguments have been determined; and that the appropriatenorms for the input arguments of procedures have been given, either via programmerannotations, or through data
ow analysis as in [6]. Given a procedure p in a programP , let in type(p) denote the type of the input arguments of p. We focus on aparticular class of procedures where the size of the input arguments decreases by a�xed amount at each recursive call, and where the recursion stops once the argumentsize has reached some minimum value.De�nition 2.1 An associative-accumulative procedurep(�x; �y) :� a(�x) [] p(e(�x); �y1); �y = d(�x)� �y1:p(�x; �y) :� :a(�x) [] �y = b(�x):is size-driven with respect to a norm j � j if and only if there exist integers M;N � 0such that for every �t 2 in type(p), (i) j �t j � j e(�t) j = M ; and (ii) j �t j � N implies:a(�t).Note that e is not required to be a function: it may be nondeterministic, andcompute multiple solutions, as long as for all (appropriate) inputs �t it is the casethat for each solution computed for e(�t), the value of j e(�t) j is the same. This isthe case, for example, where given a set S, e(S) yields a subset of S obtained bynondeterministically removing an element from it.Given a size-driven associative-accumulative procedure where the argument sizedecreases by M at each recursive call, and where the recursion stops once the3This may not always be possible, e.g., if e computes the tail of a list, the evaluation of ei(L)requires a sequential traversal of i elements of L.

Input: A size-driven associative-accumulative procedurep(�x; �y) :� a(�x) [] p(e(�x); �y1); �y = d(�x) � �y1:p(�x; �y) :� :a(�x) [] b(�x; y):where � is associative.Output: The following procedures, where �(�x) is the recursion depth of p for inputarguments �x, and q is a new procedure not appearing in the original program:p(�x; �y) :� a(�x) [] q(�x; 1; �(�x); �y1); �y = �y1 � b(e�(�x)(�x)):p(�x; �y) :� :a(�x) [] �y = b(�x):q(�x;m; n; �y) :� m = n [] �y = d(em�1(�x)):q(�x;m; n; �y) :� m < n []m0 = b(m + n)=2c; q(�x;m;m0; �y1); q(�x;m0 + 1; n; �y2); �y = �y1 � �y2:Figure 1: The Basic Transformationargument size drops below N , it is straightforward to determine the recursion depth�(n) for an argument of size n:�(n) = minfk j n � kM � Ng = d(n �N)=Me.2.2 Transformation to Divide-and-Conquer FormFor any given k, the enumeration of the sequence 1; : : : ; k in O(log k) parallel stepscan be achieved by the following function: enum(m;n) enumerates the sequence ofintegers m; : : : ; n using a straightforward divide-and-conquer algorithm.enum(m;n) = if m = n then h m ielse enum(m;m0) :: enum(m0 + 1; n) where m0 = b(m + n)=2cHere, sequences are enclosed in angle brackets h� � �i, and `::' denotes concatenation ofsequences. This immediately suggests a technique for transforming an associative-accumulative procedure, with associative operator �, to a divide-and-conquer formthat can be evaluated more e�ciently in parallel. The idea is to pass an additionalpair of arguments m and n into the transformed procedure to specify the integerinterval [m;n]. The structure of the transformed procedure closely follows that ofthe function enum, given above: if the interval passed is a singleton, i.e., if m = n,the recursion terminates; otherwise, the input interval is subdivided into two parts,each of these processed recursively, and the result combined using �. The form ofthe transformed de�nition is shown in Figure 1. The transformation is illustratedby the following example:Example 2.1 The following procedure computes, for any n � 0, the factorial of n:fact(N, F) :- N > 0 [] fact(N-1, F1), F = N*F1.fact(0, 1).

In this case, a(n) � n > 0; b is the constant function 1; d is the identity function;e(n) = n�1; and the operator � is integer multiplication, *. Given an input n, theargument to the recursive call is n� 1, so the depth of recursion is n. Finally, sincee(n) = n � 1, the value of ek for any k � 0 is n � k. The transformed procedure,therefore, is:fact(N,F) :� N > 0 [] fact 1(N,1,N,F1), F = 1*F1.fact(0,1).fact 1(N,K,M,F) :� K = M [] F = N-(K-1).fact 1(N,K,M,F) :� K < M []K1 = b(K+M)/2c, fact 1(N,K,K1,F1), fact 1(N,K1+1,K,F2),F = F1*F2.The resulting procedures can easily be simpli�ed so as to improve their performance.First, 1*F1 = F1. Second, the second and third arguments of fact 1/4 representthe lower and upper bounds of an integer interval, and are necessarily nonnegativeintegers,4 so the computation `K1 = b(K+M)/2c' can be implemented by an integeraddition followed by a right shift of 1 bit, which is considerably less expensive. Theresulting program is:fact(N,F) :- N > 0 [] fact 1(N,1,N,F).fact(0,1).fact 1(N,K,M,F) :- K = M [] F = N-(K-1).fact 1(N,K,M,F) :- K < M []K1 = (K+M)>>1, fact 1(N,K,K1,F1), fact 1(N,K1+1,K,F2),F = F1*F2.2In the transformation described above, an integer interval is speci�ed using twoarguments that represent the two endpoints of the interval. Of course, any otherrepresentation of an interval could have been used: for example, we could have usedone endpoint and the length of the interval. The transformations correspondingto such alternate representations are straightforward to derive following the basicapproach outlined earlier, and the resulting procedures have essentially the samestructure and complexity as those obtained from the transformation described here,so we do not discuss them separately.The following theorem shows the correctness of the transformation: the proof isomitted due to space constraints.Theorem 2.1 Let p be any associative-accumulative procedure, and p0 the corre-sponding procedure obtained by the transformation shown in Figure 1. Then for anyinput arguments �t, the set of answer substitutions for the goal p(�t; �y) is the same asthat for the goal p0(�t; �y).It is not hard to see that any opportunities for AND-parallel execution in the originalprogram are retained in the transformed program. Thus, computations that could4This is inherent in the transformation itself, and does not require any program analysis, so itis quite reasonable to expect a compiler to generate the optimized code shown.

have been executed in parallel in the original program can still be executed in par-allel in the transformed program, and any performance bene�ts accruing from suchparallel execution|which is what would be obtained using a parallelizing compilersuch as &-Prolog's|are obtained also in the transformed program.2.3 Optimizations to the Basic Transformation: Granularity ControlAn issue that parallel implementations of very high level languages have to contendwith, in general, is that of task granularity. Because of the overheads associatedwith task creation and management, the creation of a large number of �ne-grainedparallel tasks can, in practice, cause a deterioration in the performance of a systemeven though these tasks are executed in parallel. On the other hand, a system thatis overly conservative in this regard, and creates too few parallel tasks, may failto exploit the available parallelism e�ectively, resulting in suboptimal performance.Thus, there is a need to balance the amount of parallelism exploited against theoverheads incurred in doing this. The question of task granularity control has beeninvestigated by a number of researchers (see, e.g., [5, 16]).The transformation described above is easily amenable to granularity control.Most of the computation in the transformed program shown in Figure 1 is carriedout by the auxiliary procedure q, which manipulates a (nonempty) integer interval:the recursion terminates if and only if the interval is a singleton, i.e., the upperbound is equal to the lower bound. This procedure can therefore be rewritten asq(�x;m; n; �y) :� n�m � 1 []m0 = b(m + n)=2c; q(�x;m;m0; �y1); q(�x;m0 + 1; n; �y2); �y = �y1 � �y2:q(�x;m; n; �y) :� n�m = 0 [] �y = d(em�1(�x)):Now suppose that for a given program and implementation, we decide|either fromuser-supplied information; or from pro�le information, as in [16]; or using programanalysis techniques, as in [5]|that it is worth creating a parallel task for thisfunction only if the interval being processed is of size at least N . Since the intervalprocessed by each recursive call is about half of the input interval, this means thatit is worth spawning the recursive calls in parallel only if the input interval is of size2N . The transformed function can then be implemented asq(�x;m; n; �y) :� n�m � 2N []m0 = b(m + n)=2c; q(�x;m;m0; �y1); q(�x;m0 + 1; n; �y2); �y = �y1 � �y2:q(�x;m; n; �y) :� n�m < 2N [] q seq(�x;m; n; �y):where q seq has the same behavior as q but processes the interval m: : :n sequen-tially. Let " be the identity for the operator �, then this procedure can be de�nedin the following tail-recursive form that can be e�ciently executed sequentially:q seq(�x;m; n; �y) :� q seq 1 (em�1(�x); n�m; "; �y):q seq 1 (�x; n; �w; �y) :� n = 0 [] �y = d(�x)� �w:q seq 1 (�x; n; �w; �y) :� n > 0 [] q seq 1 (e(�x); n� 1; d(�x)� �w; �y):One of the observations from the the granularity control experiments reported in[5] is that in general, keeping track of argument sizes for dynamic granularity con-trol can incur additional runtime overheads that can, in some cases, swamp the

performance gains resulting from granularity control and lead to a slowdown inthe execution speed of the program. It can be seen, however, that in the case ofthis transformation, the tests required for granularity control �t smoothly into thetransformed code, so that no additional overhead is incurred.3 Generalizations3.1 Adaptive PartitioningThe discussion of the transformation so far has assumed implicitly that, when pro-cessing an integer interval [m;n] with m < n, the appropriate place to split thisinterval for recursive processing is at b(m+n)=2c. This may be a reasonable choicein many cases, but does not appear to be a priori necessary for correctness, andother choices of the split point may sometimes be more appropriate. To this end,suppose we use a function split(m;n) to determine where to split an interval [m;n].What properties must such a function satisfy? Assume that, as before, recursionterminates when the interval being processed becomes a singleton. Thus, an inter-val [m;n] is split only if m < n. In this case, correctness requires only that eachof the two subintervals resulting from the split be smaller than the interval [m;n].This is satis�ed if split is contractive:De�nition 3.1 A function f : N �N �! N is contractive if m � f(m;n) < n forall m;n 2 N .To see that correctness is preserved if the function split is contractive, note thatwhenever the recursive clause is executed, the size of the integer interval associatedwith each of the recursive calls is strictly smaller than that of the input interval,and that recursion terminates when the input interval becomes a singleton. Thismeans that termination is preserved. Furthermore, only the non-recursive clausecorresponds to a leaf node in the expression tree being evaluated, and such leaf nodesare una�ected by the choice of the split point in the recursive clause. Thus, di�erentchoices of the split point a�ect only the shape of the expression tree evaluated butnot its leaves. Since the operator � is assumed to be associative, the value of theexpression tree depends only on its leaves. This means that other choices fo the splitpoint based on a contractive function do not a�ect the result of the computation.Applications of adaptive partitioning are given in Sections 4.1.2 and 4.2.2.3.2 Multi-way Divide and ConquerIntuitively, the transformation discussed above is guided by analogy with a divideand conquer scheme that enumerates a sequence of integers 1; : : : ; n by dividingthe input interval into two halves, enumerating each one, and concatenating theresults. If we pursue this analogy, it is easy to see how our basic transformationcan be generalized to multi-way divide-and-conquer, by simply dividing the intervalinto k sub-intervals of more or less equal size at each stage, for any �xed k � 2.In this case, since the recursive computation involves division by k, the base caseshould account for the remainders possible from this, namely, 0; : : : ; k � 1. Thus,recursion should stop if n � m < k. The details are straightforward, and due tospace constraints we do not present them separately. The following example showshow this works (this is provided more for the reader's amusement than as a serioussuggestion for a realization of the factorial function, but the technique can be quiteuseful for exploiting parallelism in less trivial computations).

Example 3.1 The factorial function de�ned in Example 2.1 can be transformedto use a 5-way divide-and-conquer algorithm as follows:fact(N, F) :- N > 0 [] fact 1(N, 1, N, F).fact(0, 1).fact 1(N, K, M, F) :- M-K < 5 [] fact 2(M-K, N-(K-1), 1, F).fact 1(N, K, M, F) :- M-K >= 5 []M1 = floor((M+K)/5), fact 1(N, K, M1, F1),M2 = floor(2(M+K)/5), fact 1(N, M1+1, M2, F2),M3 = floor(3(M+K)/5), fact 1(N, M2+1, M3, F3),M4 = floor(4(M+K)/5), fact 1(N, M3+1, M4, F4),fact 1(N, M4+1, N, F5),F = F1*F2*F3*F4*F5.fact 2(0, S, P, F) :- F = S*P.fact 2(N, S, P, F) :- N > 0 [] fact 2(N-1, S-1, S*P, F).2 The correctness argument for the transformation to multi-way divide-and-conquer follows the same lines as that for the basic transformation, and is notrepeated here.4 Applications to Program SynthesisIn this section we show how the ideas discussed earlier can be applied (with userguidance) to transform simple but ine�cient programs into more complex but e�-cient (not necessarily parallel) algorithms.4.1 SearchingTo motivate our approach, we start with a very simple search procedure: given anarray of integers A and an integer X, the call search(L, X, Found) binds Found to1 if X occurs in the list L, and to 0 if it does not. The procedure search/3 can bede�ned as follows:search(A,X,Found) :� search(A,X,1,Found).search(A,X,I,F) :� I > size(A) [] F = 0.search(A,X,I,F) :� I � size(A) []found(A,I,X,F1), search(A,X,I+1,F2), F = F1 _ F2.In this case, of course, the predicate found/4 is quite trivial|found(A, I, X, F)binds F to 1 if the Ith element of A is X, and to 0 otherwise|and we could havewritten the de�nition for search/4 much more simply. As we will see, however,the formulation given above is useful in that it allows us to express various othersearch problems in a very similar way. For example, if instead of a \
at" array wehad arbitrarily nested arrays, and wanted to recursively traverse these nested arrayswhen looking for an element, we could reuse the de�nition given above simply byrede�ning found/4 appropriately. We hope that the reader will agree that, evenif we ignore any bene�ts accruing from such
exibility, the de�nition given above

has the merits of being simple and \obviously correct." Notice also that whilethe de�nition given above indicates only whether a given value occurs in a givenarray, it is easy to modify it so that it computes a position in the array where thevalue occurs, if there is such a position, or 0 if it does not occur in the array: theprocedure found/4 has to be modi�ed in the obvious way, and the operator _ hasto be replaced by max.The procedure search/4 de�ned above is easy to recognize as an instance of asize-driven associative-accumulative computation. Applying the basic transforma-tion yields, with very little e�ort, a program that can search an array of n elementsin parallel in O(log n) time: we omit the code for this due to space constraints.4.1.1 Transformation to Binary SearchThe divide-and-conquer search algorithm obtained from the basic transformationabove can be improved with more knowledge about the input array. Suppose wehave a predicate must be in/4 such that, given an array A, and indices I and J,must be in(X, A, I, J) is true if and only if X must occur between within thesubarray of A spanned by the interval I, : : : , J if it occurs as an element of A at all.The procedure search/6 can then be rewritten as:search 1(A,X,I,K,M,F) :� K = M [] found(A,I,X,F).search 1(A,X,I,K,M,F) :� K < M []K1 = floor((K+M)/2),(must be in(X,A,K,K1) !search 1(A,X,I,K,K1,F) ; search 1(A,X,I,K1+1,M,F)).In particular, suppose we know that A is sorted, so that must be in/4 can be de�nedas follows, where A[J] denotes the Jth element of A:must be in(X,A,I,J) :� X � A[J].Substituting this back into the de�niton of search/6 yields an implementation ofbinary search. The resulting program can be further optimized in various ways.Since the auxiliary predicate search/4 is called from exactly one place, and can be\in-lined" away. The techniques of Ramakrishnan et al. [15] can be used to detectthat the third argument of search/6 is never de�ned or used, and can therefore bediscarded. This yields the program:search(A,X,Found) :� size(A) < 1 [] Found = 0.search(A,X,Found) :� size(A) � 1 [] search 1(A,X,1,size(A),Found).search 1(A,X,K,M,F) :� K = M [] found(A,K-1,X,F).search 1(A,X,K,M,F) :� K < M []K1 = floor((K+M)/2),(X � A[K1] ! search 1(A,X,K,K1,F) ; search 1(A,X,K1+1,M,F)).4.1.2 Transformation to Interpolation SearchThe transformation to binary search always splits the interval under considerationat the middle. However, if we have additional information about the distributionof values in an interval, it makes sense to use this information to focus on a \neigh-borhood" where the value must lie, instead of blindly dividing the interval at its

midpoint. Such a search procedure is called an \interpolation search," and is verye�cient for inputs where the values are more or less uniformly distributed [11].Using adaptive partitioning, as discussed in Section 3.1, it is trivial to transformthe binary search program obtained above to an interpolation search. Suppose weare searching an array A for a value x. The split function for this is de�ned asfollows (see [11]):split(A; x;m; n) = bm + (x� A[m])(n�m)=(A[n]� A[m])c.It is easy to show that this function is contractive, whence adaptive partitioningbased on this function is correct.4.1.3 Searching with Non-uniform DistributionsThe interpolation search described in the previous section works well if the inputvalues are more or less uniformly distributed. However, the adaptive partitioningtechnique used for the transformation to interpolation search program can easilybe used to handle non-uniform distributions as well, as long as the distribution isknown, or can be approximated, beforehand. The essential idea, in this case, isthat when processing an interval [m;n], the split point m0 should be chosen suchthat the probability that the value being searched for is in the interval [m;m0] isas close as possible to the probability that it is in [m0 + 1; n]. These probabilitiescan be determined fairly easily for any given distribution of input values, and thetransformation thereafter follows the lines described earlier.4.2 Finding Roots of EquationsEquation-solving can be formulated as a search problem where, given a function fand an interval [m;n], we search the interval to �nd a value x0 such that f(x0) = 0to within some tolerance ". A straightforward program to do this is given by thefollowing, where found(I, Eps, R) binds R to I if I is a root to within a toleranceof Eps, and to 1 otherwise:solve(I,J,Eps,Root) :� I � J []found(I,Eps,R1), solve(I+Eps,J,Eps,R2), Root = min(R1,R2).solve(I,J,Eps,Root) :� I > J [] Root = 1.Applying our basic transformation to this program yields a straightforward divide-and-conquer program for searching for roots in parallel: again, the code is omitteddue to space constraints.4.2.1 Transformation to the Bisection MethodAs in Section 4.1.1, we can improve the program above with more information aboutthe function under consideration: as before, de�ne a predicate must be in such thatmust be in(I; J) is true if f has a root in the interval [I; J]. The predicate solve 1can then be rewritten as follows:solve 1(I,Eps,M,N,Root) :� M = N [] found(I+(M-1)*Eps,Eps,Root).solve 1(I,Eps,M,N,Root) :� M < N []M1 = floor(M+N)/2,(must be in(M,M1) !solve 1(I,Eps,M,M1,Root) ; solve 1(I,Eps,M1+1,N,Root)).

In particular, a continuous function f has a zero in an interval [m;n] if the sign off(m) is di�erent from the sign of f(n), so must be in/2 can be de�ned as:must be in(I; J) :� sign(f(I)) 6= sign(f(J)).The resulting program �nds roots of equations using what is essentially the bisectionmethod [17].4.2.2 Transformation to (Modi�ed) Newton-RaphsonInstead of blindly splitting the input interval at the midpoint at each recursivestep, we can use adaptive partitioning. A simple approach to doing this would beas follows: given an interval [m;n], approximate the function f under considerationby a straight line tangential to f at the endpoint n, determine where this linecrosses the x-axis (i.e., becomes 0), and use this point to split the input interval.The resulting split function is given by the following (see, for example, [17]), wheref 0 denotes the �rst derivative of f :split(m;n) = n� f(n)=f 0(n).If we were to use this split function, the resulting program would use the Newton-Raphson method. However, the split function so de�ned is not contractive, andso does not satisfy our criteria for correctness. There are two problems: if f 0(n)is su�ciently small, the value of n � f(n)=f 0(n) may be smaller than m; and iff(n)=f 0(n) is negative, the value of n� f(n)=f 0(n) will be greater than n; in eithercase, the requirements for contractive functions are violated. An obvious �x is tosplit at the midpoint of the interval if this happens. The resulting split function is:split(m;n) = if m � n� f(n)=f 0(n) or f(n)=f 0(n) < 0 then b(m + n)=2celse n� f(n)=f 0(n).The resulting program is:solve 1(I,Eps,M,N,Root) :� M = N [] found(I+(M-1)*Eps,Eps,Root).solve 1(I,Eps,M,N,Root) :� M < N []M1 = split(M,N),(must be in(M,M1) !solve 1(I,Eps,M,M1,Root) ; solve 1(I,Eps,M1+1,N,Root)).This program uses a nontrivial, and better-behaved, modi�cation of the Newton-Raphson method very similar to one described by Dekker [7].5 PerformanceWhile the divide-and-conquer programs resulting from our transformation may un-cover more parallelism than the original program, it is not immediately obviouswhether they are, in practice, \better" than either the original programs, or theprograms one might get using existing parallelizing compilers such as that of &-Prolog [9]. The reason for this is that the transformation introduces some additionalcosts|two additional arguments have to be tested, manipulated and passed aroundin the transformed program|and it is not obvious that these costs are adequately

Program Version No. of Processors1 2 3 5 10 15 20TR 16.5 16.5 16.5 16.5 16.5 16.5 16.5dp(255) &-P 16.5 16.5 16.5 16.5 16.5 16.5 16.5D&C 35.0 17.6 11.2 7.4 4.0 3.0 2.5TR 1434.9 1434.9 1434.9 1434.9 1434.9 1434.9 1434.9e(100) &-P 1522.7 821.3 588.4 400.0 257.5 213.9 186.1D&C 1498.9 750.6 502.3 306.0 165.8 122.6 100.2Table 1: Summary of Performance Numbers (in milliseconds)o�set by the bene�ts of increased parallelism. In order for the transformation tobe of practical interest, it is not enough for it to uncover more parallelism than theoriginal program, or to obtain better speedups: it must be shown that the actualparallel execution speed of the transformed program surpasses that of the originalprogram using a reasonable number of processors.In this section, we give experimental results for two small benchmark programs.The �rst program, dp(255), computes the dot product of two vectors of length 255;the second, e(100), computes the value of the constant e =Pi�0 1i! = 2.71828: : :bysumming the �rst 100 terms of the series. Three versions of each program weretested: a straightforward tail-recursive program (TR), the parallel program ob-tained using the &-Prolog compiler on the tail-recursive program (&-P), and thedivide-and-conquer program obtained using our transformation (D&C). The num-bers reported were obtained by �rst running each program under &-Prolog [9] on aSparcstation-1, and then using the IDRA tool [8] to compute ideal speedups under&-Prolog for more than one processor. In each case, the tail-recursive programwas entirely sequential and showed no speedups. The &-Prolog compiler found noparallelism in the dp(255) program|it deemed the arithmetic computations toolightweight to be worth doing in parallel|but parallelized e(100) to compute facto-rials in parallel. In the divide-and-conquer version, the recursive calls were executedin parallel.The results of our experiments are summarized in Table 1: here, boldface en-tries indicate the \break-even point" for the transformed programs, i.e., the pointat which the transformed program is faster than both the tail-recursive sequen-tial implementation and the parallel program obtained from the original programusing a parallelizing compiler such as the &-Prolog compiler. E�ective speedupcurves are given in Figure 2. The numbers indicate that the uniprocessor perfor-mance penalty incurred by the transformed program is not very large, even forrelatively simple programs, and that the parallel performance of the transformedprogram quickly surpasses that of both the original program and that obtained us-ing the parallelizing compiler: the break-even point is 3 processors for the dp(255)benchmark, and 2 processors for e(100). Moreover, as the number of processorsis increased, the divide-and-conquer programs exhibit signi�cantly better speedupsthan the programs obtained using the parallelizing compiler, and as a result widensthe performance gap between the two (the tail-recursive versions are essentiallysequential and show no speedups).In a signi�cant sense, these benchmarks are interesting precisely because theyare small: they represent the \worst case" for our transformation. The computa-

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

E
ff
e
c
ti
v
e
 S

p
e
e
d
u
p

Number of Processors

divide-and-conquer
sequential tail-recursive, simple parallel

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18 20

E
ff
e
c
ti
v
e
 S

p
e
e
d
u
p

Number of Processors

divide-and-conquer
simple parallel

sequential tail-recursive(a) dp(255) (b) e(100)Figure 2: Speedup Curvestion performed at each level of recursion is fairly small, and because of this theperformance of these programs is much more sensitive to the additional costs in-troduced by the transformation, such as parameter passing, comparison operations,and procedure calls, than would be the case if each iteration involved more substan-tial computations. Nevertheless, the performance of the programs obtained usingour transformation is quite good. This suggests that for larger programs, where thecomputations involved are more \heavyweight" and the additional costs incurredrelatively less signi�cant than for smaller programs, the performance can be ex-pected to be correspondingly better. (Unfortunately, practical limitations of thecurrent version of IDRA prevented us from studying signi�cantly larger programs:for example, using our transformation to multiply two 64 � 64 matrices producedso many parallel tasks that the trace �le generated was over 20 MB in size, tookover 3 hours to read in, and required too much resources during processing.)6 Related WorkConceptually, our ideas are closely related to parallel pre�x computation [10]. Whileparallel pre�x algorithms are generally formulated in terms of computing pre�xes,in parallel, of some given string, we address the slightly di�erent problem of startingwith an encoding of a family of strings (the original program) and producing anencoding of a family of trees (the transformed program). The literature on parallelpre�x algorithms also does not usually consider issues such as granularity control,multi-way divide-and-conquer, and adaptive partitioning.The program transformation work that is probably the closest to ours is that ofBush and Gurd [3]. These authors de�ne a transformation scheme for FP programsthat is similar in many ways to the basic transformation described in Section 2.However, they appear to consider only a restricted class of functions: those overintegers, and those using involving the list operators map, reduce, and generate, anddo not consider the possibility of nondeterminism. Our approach, by contrast, isapplicable to any domain that comes equipped with an associative operator and a

size function, and can deal with nondeterminism without any problems. Moreover,the treatment of Bush and Gurd does not give any indication of how generalizations,such as to multi-way divide-and-conquer, should be realized, or discuss applicationsto program synthesis. Finally, Bush and Gurd do not give any empirical evidenceof the practicality of their transformation.Also closely related is Millroth's work on compilation of Reform Prolog [12].The biggest di�erence between the two is that Millroth's work relies on low-levelaspects of the Reform Prolog system, while ours is formulated as a high-level source-to-source transformation. Because of this, our approach can be easily used on avariety of implementations, and also can be used with user guidance to implementfairly nontrivial transformations (for example, it is not clear how something analo-gous to the transformation discussed in Section 4.2.2 might be accomplished usingMillroth's techniques). On the other hand, Millroth's approach does not requireassumptions about operator associativity, and therefore may sometimes be able toexploit parallelism in programs where our approach would not. Finally, for theparallel execution of loops, Millroth relies on techniques developed for Fortran-likelanguages: he does not consider techniques such as multi-way divide-and-conquer oradaptive partitioning, or issues such as granularity control, that we have discussedhere (though in principle there is nothing that precludes these ideas from beingincorporated into his approach). More importantly, the reliance on Fortran-likeloop-parallelization techniques, unlike our approach, leaves unaddressed the ques-tion of parallel execution of loops involving nondeterministic computations, sincethese do not arise in Fortran-like languages and are not considered in standard textson Fortran implementation [19, 20].7 ConclusionsWhile it is generally believed that programs written in high-level programming lan-guages are amenable to manipulation by powerful semantics-based tools for trans-formation to more e�cient forms on the one hand, and to parallel execution onthe other, most of the work on program transformation appears to have focusedon sequential execution models. In this paper, we consider a class of computationsthat occur frequently in practice, and whose \natural" speci�cation is essentiallysequential. We describe a simple transformation scheme for such programs that al-lows them to be executed e�ciently in parallel, describe a number of generalizationsto the basic transformation, and show how the transformation can also be appliedto the derivation of e�cient sequential programs starting from simple and obviouslycorrect, but possibly ine�cient, programs. Finally, we present simulation resultsthat indicate that the runtime overhead incurred by programs obtained using ourtransformation is small, and that these programs are signi�cantly superior to boththe original programs, and to the programs that might be obtained using existingparallelising systems.Acknowledgements: We are grateful to Manuel Hermenegildo and members ofthe CLIP group at Universidad Politecnica de Madrid, Spain, for their help withthe &-Prolog and IDRA systems; and to Evan Tick and the anonymous referees forcomments on earlier versions of the paper. This work was supported in part by theNational Science Foundation under grant CCR-9123520.References[1] J. Arsac and Y. Kodrato�, \Some Techniques for Recursion Removal fromRecursive Functions", ACM TOPLAS vol. 4 no. 2, Apr. 1982, pp. 295-322.[2] R. M. Burstall and J. Darlington, \A Transformation System for Developing

Recursive Programs", JACM vol. 24 no. 1, pp. 44-67, Jan. 1977.[3] V. J. Bush and J. R. Gurd, \TransformingRecursive Programs for Execution onParallel Machines", Proc. Functional Programming Languages and ComputerArchitecture, Nancy, France, Sept. 1985, pp. 350{367.[4] S. K. Debray, \Optimizing Almost-Tail-Recursive Prolog Programs", Proc.Functional Programming Languages and Computer Architecture, Nancy,France, Sept. 1985.[5] S. K. Debray, N. Lin andM. Hermenegildo, \Task Granularity Analysis in LogicPrograms," Proc. ACM SIGPLAN'90 Conference on Programming LanguageDesign and Implementation, June 1990, pp. 174{188.[6] S. Decorte, D. De Schreye, and M. Fabris, \Automatic Inference of Norms:a Missing Link in Automatic Termination Proofs", Proc. 1993 InternationalSymposium on Logic Programming, Vancouver, B.C., Nov. 1993, pp. 420{436.[7] T. J. Dekker, \Finding a Zero by means of Successive Linear Interpolation",in Constructive Aspects of the Fundamental Theorem of Algebra, eds. B. Dejonand P. Henrici, Wiley-Interscience, London, 1969.[8] M. J. Fern�andez, M. Carro, and M. Hermenegildo, \IDeal Resource Alloca-tion (IDRA): A Technique for Computing Accurate Ideal Speedups in ParallelLogic Languages", Technical Report FIM26.3/AI/92, Computer Science Fac-ulty, Technical University of Madrid, September 1992.[9] M. Hermenegildo and K. Greene, \The &-Prolog System: Exploiting Indepen-dent And-Parallelism", New Generation Computing vol. 9 nos. 3{4, 1991, pp.233{257.[10] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,Trees, Hypercubes, Morgan Kaufman, 1992.[11] U. Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley,1989.[12] H. Millroth, \Reforming Compilation of Logic Programs", Proc. 1991 Interna-tional Symposium on Logic Programming, San Diego, Oct. 1991, pp. 485{499.[13] R. S. Nikhil, Id Language Reference Manual, Computation Structures GroupMemo 284-2, Lab. for Computer Science, Massachusetts Institute of Technol-ogy, Cambridge, MA, July 1991.[14] K. Pingali and K. Ekanadham, \Accumulators: New Logic Variable Abstrac-tions for Functional Languages", Proc. Eighth Conference on Foundations ofSoftware Technology and Theoretical Computer Science, Pune, India, Dec..1988, pp.377{399. Springer-Verlag LNCS vol. 338.[15] R. Ramakrishnan, C. Beeri, and R. Krishnamurthy, \Optimizing ExistentialDatalog Queries", Proc. Seventh ACM Symp. on Principles of Database Sys-tems, Austin, TX, March 1988, pp. 89{102.[16] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors,MIT Press, 1989.[17] L. F. Shampline and R. C. Allen, Jr., Numerical Computing: an Introduction,W. B. Saunders, 1973.[18] H. Tamaki and T. Sato, \Unfold/Fold Transformations of Logic Programs",Proc. Second International Conference on Logic Programming. Uppsala, Swe-den, 1984.[19] M. Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press, 1989.[20] H. Zima, Supercompilers for Parallel and Vector Computers, ACM Press, 1991.

