
Pro�le-Guided Context-Sensitive Program Analysis �Saumya DebrayDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, U.S.A.debray@cs.arizona.eduAbstractInterprocedural analyses can be classi�ed as either context-insensitive, which tend to sacri-�ce precision to gain e�ciency, or context-sensitive, which are more precise but also moreexpensive. This paper discusses a pro�le-guided approach to interprocedural analysis that iscontext-sensitive, and hence more precise, for the \important" call sites for a function, andcontext-insensitive, and hence more e�cient, for the \unimportant" call sites. Experiments in-dicate that this approach can be signi�cantly more e�cient than a traditional context-sensitiveanalysis without sacri�cing much of the pragmatic value of the dataow information gathered.1 IntroductionFor code analysis and optimization purposes, compilers typically construct a control ow graph foreach function in a program [1]. Control ow across function boundaries is often represented usingan interprocedural control ow graph (e.g., see [15]), which consists of the control ow graphs of allthe functions in the program, together with edges representing calls and returns that link the owgraphs of di�erent functions. A function call is represented using a pair of nodes, a call node and areturn node: there is an edge, called the call edge, from a call node to the entry node of the callee,with a corresponding edge, called a return edge, from the exit node of the callee to the return node.Interprocedural program analyses can be classi�ed as being either context-sensitive or context-insensitive, depending on the manner in which dataow information is propagated from a call site,through a called procedure, and back to the basic block to which execution returns at the end of thecall. Traditionally, these have been viewed as fundamentally di�erent approaches to interproceduralanalysis. A context-insensitive program analysis does not give any special treatment to call edges orreturn edges, except possibly for the book-keeping that might be involved in going from the caller'sname space to the callee's or vice versa. The dataow information at the entry to a function iscomputed as the meet of the information at the various call sites for that function,1 the dataowinformation eventually obtained at the exit node for the function is then propagated to the returnnode at each of its call sites. As a result, the analysis algorithms remain relatively simple ande�cient. The drawback, however, is that of loss in precision, because information can be propagatedalong unrealizable paths in the interprocedural control ow graph, i.e., paths that can never occurat runtime because of mismatched call/return edges.The problem of imprecision can be addressed using a context-sensitive analysis. Such analysespropagate information only along realizable execution paths, i.e., they don't propagate informationfrom the call node of one call site, through the body of the callee, and then to the return node ofa di�erent call site. Since the results of analysis for one call site are not \polluted" by dataowinformation from another call site, this leads to more precise dataow information, but the analysisalgorithms and data structures become more complex and potentially more expensive. For example,comparing context-insensitive and context-sensitive control ow analyses for object-oriented lan-guages, Grove et al. report that for many programs, even modest amounts of context-sensitivitylead to huge increases in resources used, going from around 1 minute of analysis time and 1{10� This work was supported in part by the National Science Foundation under grant CCR-9711166.1The discussion here is couched in terms of a forward analysis; the situation is analogous for backward analyses.1

MB of memory to over 24 hours(!) of time and/or 450 MB of memory [12]. Comparing pointeralias analyses for C programs, Ruf reports that the context-sensitive version is 2{3 orders of mag-nitude slower than the context-insensitive version [17]. These experiences suggest that it would beworthwhile to try and reduce the cost of context-sensitive analyses if this could be done withoutsigni�cantly a�ecting the pragmatic utility of the information produced by them.In practice, it turns out that the dynamic distribution of calls for the di�erent call sites of afunction typically tends to be skewed towards a small number of frequently executed call sites. Forexample, in the SPEC-95 benchmark m88ksim, the most frequently called function, uext(), has 19call sites, of which only two are frequently executed; these two call sites account for almost 95% ofthe calls to this function at runtime.2 In the SPEC-95 benchmark perl, the most frequently calledfunction, eval(), has 40 call sites: of these, the two most frequently executed call sites account forover 81% of the calls to the function, and if we consider the top four call sites, we get over 98% of thedynamic calls to it. Figure 1 shows, for the eight SPEC-95 integer benchmarks, the fraction of thetotal number of dynamic calls in a program (plotted along the y-axis) that are accounted for whenwe consider at most a �xed fraction of each function's call sites (plotted along the x-axis). It can beseen that considering at most half of the call sites of each function allows us to account for almost75% of all the dynamic calls in the program; if we disregard li and m88ksim, considering only a thirdof the call sites of each function su�ces to account for close to 80% of all the dynamic calls.3 Whatthis means is that most call sites aren't executed all that often. For the frequently executed callsites of a function, a context-sensitive analysis gives us the precision that we desire, but at the costof expending considerable time and space resources analyzing the infrequently executed call sitesto a function. A context-insensitive analysis doesn't incur these overheads, but the e�ciency gainscome at the cost of sacri�cing precision for all of the call sites, including the frequently executedones for which we would like precise dataow information. Pragmatically, therefore, neither of thesetwo approaches to interprocedural analysis is entirely satisfactory.This paper describes a pro�le-guided approach to context-sensitive interprocedural analyses thatattempts to address this situation in a way that obtains the precision bene�ts of context-sensitivityfor frequently executed call sites but doesn't waste a lot of resources on infrequently executed ones.Using this approach, \classical" context-sensitive and context-insensitive analyses are no longerseen as two fundamentally distinct approaches to program analysis, but rather as simply the twoextreme points of an entire spectrum of di�erent analyses. The intermediate points of this spectrum,which have cost-bene�t tradeo�s in between the two extremes, can be interesting and useful froma pragmatic perspective. We illustrate our ideas using an alias analysis for executable code [9],where the alias information is used for instruction scheduling; however, the underlying ideas arequite general and applicable to other context-sensitive interprocedural analyses as well.2 Pro�le-Guided Context-Sensitive AnalysisThe intuition behind our idea is very simple. Our goal is to incur the time and space overheadsof a context-sensitive analysis only for the important call sites of a function. To this end, we useexecution pro�le information to partition the call sites of each function into equivalence classes. Theidea is to carry out inter-procedural analysis in such a way that it is context-insensitive within eachpartition, but context-sensitive across partitions. In terms of inter-procedural execution paths, thismeans that the analysis propagates dataow information along paths such that a call edge from afunction f to a function g is matched up with a return edge from g to a function h if and only if thecorresponding call sites in f and h are in the same partition. Note that in the special case where,for each function, all of its the call sites are grouped into the same partition, we get a traditionalcontext-insensitive analysis. On the other hand, in the case where every call site for each functionis in a di�erent partition by itself, we get a traditional context-sensitive analysis.2Unless otherwise mentioned, execution pro�les for SPEC-95 benchmarks refer to their training inputs, since thatis what a compiler would use to guide its decisions.3The reason the fraction of dynamic calls don't go to 1.0 until we consider all call sites is that, for a given fractionon the x axis, we consider at most that fraction of a function's call sites. Because of this, functions that have exactlyone call site aren't considered until x = 1:0. 2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
of

 d
yn

am
ic

 c
al

ls

Fraction of callsites considered

compress
gcc
go

ijpeg
li

m88ksim
perl

vortexFigure 1: Call site execution frequency distributions: SPEC-95 integer benchmarksConsider a function f that has six call sites c1; : : : ; c6. Call sites c1, c2 and c3 are executed alarge number of times; the remainder are infrequently executed. Further, suppose that the dataowinformation available about the arguments to f at call sites c2 and c3 di�er only on one argument,which happens to be used only in a very infrequently executed portion of the body of f . The analysisof f could then be carried out as follows:{ Since call sites c4, c5, and c6 are infrequently executed, it doesn't really matter, pragmatically,if the dataow information obtained for these call sites is precise or not. We could, therefore,simply \merge" the dataow information about the arguments to f (i.e., compute their meet)at these three call sites, analyze f once using this merged information, and propagate theresulting information at the exit from f to the return blocks for these call sites.{ Since call sites c2 and c3 happen to disagree only on an unimportant argument|that is,one that is used only in an infrequently executed portion of f|we could merge the dataowinformation at these two call sites, analyze f once using the merged information, and propagatethe results back to this pair of call sites. This would lose information about the argument thesecall sites disagree on, but since this argument is only used in an infrequently executed portionof the body of f , the pragmatic impact of this loss of information is likely to be small.In this case, we have partitioned the call sites for f into three sets: fc1g, fc2; c3g, and fc4; c5; c6g.Note that, while the partitioning is driven by pro�le information, it need not be a simple-mindeddecision made purely by the relative execution frequency of the di�erent call sites for a function. Itis possible, and can be useful, to take into account the perceived utility of the dataow information(whose evaluation may very well use execution pro�le information as well) in di�erent partitions.This was done, in the example above, for call sites c2 and c3, which were placed into the samepartition even though they are both frequently executed.We sketch here the changes necessary to adapt a traditional context sensitive analysis to use ourpro�le-guided approach, which are fairly minor. We make the following assumptions:1. The analysis is carried out over a domain of values D that is a complete meet-semilattice withmeet operator ^ and greatest element > (i.e., x ^> = >^ x = x for all x 2 D).2. For each procedure p in the program, the analysis maintains a function Summaryp: given (anencoding of) a calling context � for a procedure p, Summaryp(�) returns a pair (�x; �y), where�x summarizes the dataow information at the entry to p for any call originating at the givencalling context, and �y describes the corresponding dataow information at the exit from p.3

3. The dataow information currently available for a procedure p and calling context �, at theentry to p, is given by the function EntryInfop(�):EntryInfop(�) = � �x if (�x; �y) = Summaryp(�) is de�ned> otherwise4. The analysis of a procedure p for a calling context �, with dataow information �u at the entryto p, is carried out by a procedure analyze proc(p; �u; �). If the analysis is in a recursion cycle,this procedure computes an approximation for the exit information instead of analyzing thebody of the procedure. Otherwise, it maps the dataow information �u to the locals of p toobtain an initial set of dataow facts �v; initializes the analysis of the body of p using thedataow information �x = �v ^ EntryInfop(�), i.e., using the meet of the previously recordedentry information for that calling context and the current information at the call site; analyzesthe body of p starting with this initial dataow information; and updates Summaryp(�) to be(�x; �y), where �y is the resulting dataow information at the exit from p.None of this is very new, and we don't pursue the details further. There are also obvious re�nements,such as storing in Summaryp only the dataow information that may be a�ect or be a�ected by toa caller of p; these are not directly relevant for our purposes and so are not discussed here. Atraditional context-sensitive analysis involves initializing dataow values to > and then repeatedlytraverse its call graph, analyzing each procedure at each of its call sites with the appropriate dataowinformation available at that call site, until there is no change anywhere.In order to adapt this to a pro�le-guided analysis, we proceed as follows. Suppose that we havethe inter-procedural control ow graph for a program P , together with a partitioning on the callingcontexts of each procedure in P induced by execution pro�le information for P (for simplicity ofpresentation we assume here that this partitioning is �xed prior to analysis; in practice, it may changeduring analysis, as in the example discussed above, but it isn't di�cult to extend the discussion hereto accommodate this). The only change, compared to a traditional context-sensitive analysis, isthat the encoding for a calling context at a call site is now determined by the partition that callingcontext is in, so that calling contexts in the same partition have the same encoding.To see that this simple change achieves what we want, consider the analysis of a procedure p fora particular context �, such that the dataow information at the call site under consideration is �u.The procedure analyze proc starts by taking the meet of the dataow information �u (appropriatelymapped to p's name space) together with the information EntryInfop(�) describing the currentlyknown entry information for that calling context. Since contexts in the same partition have thesame context encoding, this e�ectively computes the meet of �u with the currently known entryinformation at each context that is in the same partition as �. After p has been analyzed, theresulting information at the exit from p is used to update Summaryp(�): the e�ect of this is topropagate the resulting dataow information to all calling contexts in the same partition as �. Ine�ect, this realizes an analysis that is context-insensitive for calling contexts that are in the samepartition, but is context-sensitive across partitions.3 An Example Analysis: Alias Analysis of Executable CodeThe previous section discussed pro�le-guided analyses in general terms. We next describe our ex-periences with an implementation of a particular pro�le-guided analysis. The primary issue thathas to be addressed is the mechanism for partitioning the set of call sites in a program given anexecution pro�le. An evaluation of speci�c criteria we tested is given after a quick overview of ouranalysis problem.The ideas described in this paper were motivated by an alias analysis algorithmwe have developedfor executable code [9]. The basic idea in this algorithm is to reason about arithmetic computationsmodulo some pre-selected value k: a set of addresses is then represented by an address descriptor,which is a pair hI; Si, where I is an instruction, called the de�ning instruction for (a register described4

by) that address descriptor, and S a set of residues, modulo k, with respect to the value computedby instruction I. Since k is �xed, so is the set of possible residues modulo k, which means that Scan be represented as a bit vector. Additionally, as a matter of practicality, at vertices in the (inter-procedural) ow graph that have multiple predecessors, we use a widening operation to \merge"the information coming in along the incoming control ow edges. The essential idea behind thisoperation is that if we have two incoming edges at a vertex in the ow graph such that the valuesfor a register r being propagated along these edges is described by address descriptors hI1; S1i andhI2; S2i respectively, and I1 6= I2, then the information about r is widened to ?, denoting a lack ofinformation. This allows us to associate a single address descriptor with a register at each programpoint of interest, rather than a set of descriptors, and keeps the memory requirements of the analysisreasonable. Overall, this leads to a reasonably time and space e�cient analysis algorithm.The original formulation of our analysis was context-insensitive [9]. This turns out to lead to anundesirable loss in precision in a number of situations. An example of this can be seen in the functionalignd() in the SPEC-95 benchmark m88ksim. The callers of this function pass it, as arguments inregisters r17 and r18, pointers into distinct structures in their stack frames; the function containsa very heavily executed loop containing a basic block that has a series of indirect loads and storesthrough these pointers, with the following structure:...store r7, 0(r18)load r6, 0(r17)... use r6, de�ne r6store r6, 0(r18)load r23, 0(r17)... use r23, de�ne r23store r23, 0(r17)load r8, 0(r18)...We would like to schedule the load instructions in this block to better hide their latency. In theabsence of accurate aliasing information about registers r17 and r18, however, we are unable tomove the load instructions past the immediately preceding store instructions. This signi�cantlyconstrains the quality of instruction scheduling possible in this block.It turns out, unfortunately, that the context-insensitive version of our alias analysis [9] doesn'thelp us in this situation. The problem is that, since registers r17 and r18 are loaded with pointersinto the caller's stack frame at each call site to alignd(), the de�ning instruction for each of theseregisters is di�erent at each call site. Because of this, when we compute the meet of the incominginformation at the entry node of the function, the information associated with these registers iswidened to ?, as described above: that is, all of the information is lost. On the other hand,abandoning the widening would cause a huge increase in the cost of the analysis.The obvious solution to this problem would be to use a context-sensitive interprocedural analysis.However, the de�ning instructions for a register are generally di�erent at di�erent call sites to afunction, which means that the aliasing information associated with di�erent call sites will also bedi�erent. This implies that very little sharing of information across call sites is possible, and alsothat the callee will have to be analyzed separately for each such call site. Given that executableprograms|especially statically linked programs, where all of the code for the various library routinesis available for analysis|tend to be signi�cantly larger than the corresponding source level entities,this indicates that the cost of a traditional context-sensitive analysis is likely to be quite high.We chose, instead, to use a pro�le-guided analysis. Before going into details, we specify what itmeans for a basic block to be considered hot. Given a value � in the interval (0,1], we determine thelargest execution frequency threshold N such that, by considering only those basic blocks that haveexecution frequency at least N , we are able to account for at least the fraction � of the total number5

Program Standard Callsite Freq. Based Relevance Conservative� = 1:0 � = 0:8 � = 0:67 � = 1:0compress 861 365 312 306 240 340(100.0%) (42.4%) (36.2%) (35.5%) (27.9%) (39.5%)gcc 25109 9701 4643 4003 9382 3671(100.0%) (38.6%) (18.5%) (15.9%) (37.4%) (14.6%)go 3062 2023 1010 903 1813 925(100.0%) (66.1%) (33.0%) (29.5%) (59.2%) (30.2%)ijpeg 2019 1027 862 838 669 858(100.0%) (50.9%) (42.7%) (41.5%) (33.1%) (42.5%)li 2651 1101 840 808 967 822(100.0%) (41.5%) (31.7%) (30.5%) (36.5%) (31.0%)m88ksim 2766 884 717 678 728 705(100.0%) (32.0%) (25.9%) (24.5%) (26.3%) (25.5%)perl 5693 1428 970 897 1262 889(100.0%) (25.1%) (17.0%) (15.8%) (22.2%) (15.6%)vortex 10107 4505 2344 2125 4328 2046(100.0%) (44.6%) (23.2%) (21.0%) (42.8%) (20.2%)Geo. Mean 100.0% 41.1% 27.3% 25.4% 34.1% 25.6%Table 1: Analysis Costs: Total call sites analyzedof instructions executed by the program (as indicated by its basic block execution pro�le). Anybasic block whose execution count is at least N is then said to be hot with respect to the threshold�. For example, given � = 0:95 (the value we use for our experiments), the hot basic blocks of aprogram consist of those that allow us to account for at least 95% of the instructions executed atruntime. We use pro�le information to partition the call sites for each procedure as follows: if a callsite is considered to be \important" according to some criterion, it is given its own partition whereit is the only member; otherwise, it is put into a partition that contains all \unimportant" call sites.We experimented with three classes of criteria for determining the importance of call sites:1. Callsite Frequency-based Cuto�s : Here the decision as to whether a call site is important ornot is made based on its execution frequency relative to the execution frequency of the othercall sites to the function. Speci�cally, we use a cuto� threshold �, and mark the call sites ofeach function in descending order of execution frequency until the fraction of the dynamic callsto the function accounted for by the marked call sites is at least �. In the case where � = 1:0,all call sites to a function with non-zero execution frequency are considered to be important.2. Relevance-based Cuto�s : Here the frequency-based criteria are augmented by the notion of\relevance." We de�ne a function f as being relevant if either (i) f contains a hot basicblock; or (ii) there is a relevant function g that is reachable from f in the call graph of theprogram. The intuition is that a function is relevant if it is possible for the (forward) dataowinformation computed for it to inuence the dataow information at a frequently executedbasic block. Thus, in this case a call site is considered important if its execution frequency ishigh enough relative to the other call sites to the function, and the called function is relevant.3. Conservative : Here a call site is considered important if its contribution to the runtimeexecution pro�le of the called function is high enough that, even if all other call sites for thecallee are ignored, some basic block in the callee would be hot.Our experiments were carried out in the context of alto, a link-time optimizer we have constructedfor the DEC Alpha architecture [14]. Programs were compiled with the DEC C compiler V5.2-036invoked as cc -O4, with linker options to retain relocation information and to produce staticallylinked executables. Low-level pro�le information was generated with pixie, using the SPEC traininginputs. Timings were obtained on a lightly loaded DEC Alpha workstation with a 300 MHz Alpha21164 processor with 512 Mbytes of main memory, running Digital Unix 4.0.6

Table 1 shows the number of call sites considered by a number of di�erent criteria we experi-mented with.4 Here, \Standard" refers to a traditional context-sensitive inter-procedural analysis.For each program, the top row gives the actual number of call sites considered, while the numbersbelow these show the ratio compared to the \Standard" column. It does not come as a great surprisethat pro�le-guided techniques lead to a decrease in the number of call sites considered: what is in-teresting, perhaps, is the magnitude of the reduction. Simply disregarding only those call sites thatare never executed (Callsite frequency based cuto�s, � = 1:0) leads to close to a 60% reduction, onthe average, in the number of call sites considered (and amount of memory used). When relevanceinformation is also taken into account, the average number of of callsites considered drops to justover a third of that for the standard analysis. More stringent criteria further reduce the number ofcall sites considered, to around a quarter of the number considered by the standard analysis.Table 2 shows the time taken by the analysis under di�erent selection criteria for call sites.Disregarding call sites that are not executed leads to a reduction in analysis time of over 60%on the average. When relevance is also taken into account, the analysis time drops to just over33% of the time for the standard analysis, on the average. Callsite frequency based criteria withlower cuto� thresholds give analysis times that are, on the average, about 18%{20% of that of thestandard analysis. Even though the number of call sites processed using the conservative criterionis comparable to that for the call site frequency based criterion with � = 0:67, the additional workinvolved in identifying important call sites for the former leads to analysis times that are, on theaverage, about 40% of the standard analysis, i.e., about double that for the call site frequency basedscheme with � = 0:67. These averages are somewhat distorted by the gcc benchmark, however: theproblem with this program is that it contains many functions with a large number of call sites whosefrequency distributions are not as sharply skewed as those of the other programs. Because of this,the relatively simple-minded algorithms we use to preprocess the program and identify importantcall sites end up being quite expensive overall. As a result, some of the pro�le-based analyses forthis program ended up being more expensive than the standard analysis. If we don't consider gcc,for the remaining seven benchmarks we get an average of about 31% for the callsite frequency basedscheme with � = 1:0 and 26% for the relevance-based scheme with � = 1:0.Together, these tables indicate that by using pro�le information to avoid analyzing unimportantcall sites, we can achieve signi�cant reductions in the space and time requirements for an analysis.By itself, this result doesn't come as a huge surprise: indeed, by su�ciently reducing the numberof distinct call site partitions for the functions in a program, we can approach the e�ciency of acontext-insensitive analysis. The key question, then, is whether these performance improvements areaccompanied by a signi�cant degradation in the quality of dataow information for the frequentlyexecuted portions of the program. This issue is addressed in the next section.4 Using the Analysis Information: Cloning for Instruction SchedulingOur goal is to use interprocedural alias analysis to determine whether the information available for aparticular call site for a function makes possible code improvements|in this case, better instructionschedules|within the function that are not possible in general. If this turns out to be the case,we clone the function as necessary (provided that the resulting code improvements are judged tobe signi�cant enough to warrant the code growth) to allow this to be done. Our approach tocloning is conceptually similar to that of Cooper et al. [7, 8], except that we use pro�le-guidedconsiderations for low level code improvements to guide our cloning decisions, rather than focusingon inter-procedural constant propagation. To limit the amount of code growth, cloning is consideredonly for important call sites. Further, we require that the alias information available at such a callsite C should allow us to identify a pair of memory references I and J (at least one of which mustbe a store instruction), in some basic block B within the function, as accessing non-overlappingmemory locations, such that (i) I and J cannot be identi�ed as being non-overlapping without the4Our analysis maintains information about a �xed number of registers for each call site, so its memory usage isdirectly proportional to the number of call sites considered. In particular, this means that the ratios of memory usagefor these criteria are identical to the ratios shown in Table 1. For this reason they are not shown separately.7

Program Standard Callsite Freq. Based Relevance Conservative� = 1:0 � = 0:8 � = 0:67 � = 1:0compress 6.72 3.47 3.03 3.02 2.05 3.70(100.0%) (51.6%) (45.2%) (44.9%) (30.5%) (55.1%)gcc 633.24 1176.37 235.41 176.49 1177.49 480.38(100.0%) (1.858) (37.2%) (27.9%) (1.859) (75.9%)go 82.40 57.51 34.03 25.33 54.55 88.00(100.0%) (69.8%) (41.3%) (30.7%) (66.2%) (1.068)ijpeg 26.85 7.85 7.43 7.37 5.63 8.33(100.0%) (29.2%) (27.7%) (27.4%) (21.0%) (31.0%)li 18.70 8.47 6.48 5.73 6.52 6.35(100.0%) (45.3%) (34.7%) (30.7%) (34.8%) (34.0%)m88ksim 45.98 8.87 6.57 6.30 8.18 12.53(100.0%) (19.3%) (14.3%) (13.7%) (17.8%) (27.3%)perl 661.27 89.40 45.08 41.47 87.73 86.00(100.0%) (13.5%) (6.8%) (6.3%) (13.3%) (13.0%)vortex 407.42 92.91 22.28 19.35 91.93 177.51(100.0%) (22.8%) (5.5%) (4.7%) (22.6%) (43.6%)Geo. Mean 100.0% 38.9% 20.8% 18.4% 33.2% 40.5%Table 2: Analysis Time (secs)alias information from C, i.e., based on purely local reasoning; (ii) it is possible to reorder I andJ , i.e., there is no chain of def-use dependences between them that forces one to be executed beforethe other; and (iii) B is a hot basic block. After the interprocedural alias analysis, we examine, foreach function, each of its important call sites, and determine the set of memory reference instructionpairs in that function that can be identi�ed as being non-overlapping based on the alias informationat that call site, and that satisfy the additional criteria mentioned above. The call sites for eachfunction are then grouped into buckets such that two call sites are in the same bucket if and onlyif they have the same set of independent pairs of memory reference instructions. A clone is createdfor a bucket if the combined execution freqency of the relevant call sites is high enough that at leastone independent memory reference pair in the resulting clone would fall in a hot basic block.The extent of cloning is shown in Table 5: each entry in this table is of the form m=n, where mindicates the number of clones created, and n the total number of instructions added by the cloningprocess. It can be seen that the total amount of cloning is not very large, with only a relativelysmall number of clones being created. The largest amount of code growth occurs for go (17%), vortex(12%), and li (9.4%); the remaining programs experience code growths of less than 5% each. Thisindicates that the cloning criteria discussed earlier in the section are not unduly liberal.Turning to the question of quality of dataow information obtained using pro�le-guided analysis,Table 3 shows, for each of our benchmarks, the number of independent instruction pairs identi�edin functions that were cloned. Since a function is cloned only if we determine that the dataowinformation available at a call site enables an optimization that would not otherwise be enabled,this is an indication of the extent to which the context-sensitive analysis is useful. Notice thatthe analyses that disregard call sites that are not executed and/or not relevant �nd exactly thesame number of independent instruction pairs in hot basic blocks as the standard analysis. Notsurprisingly, the more restrictive criteria lead to a drop in the number of independent instructionpairs identi�ed; the drop is most pronounced for the programs gcc and li.However, a reduction in the static count of the number of independent instructions found doesnot, by itself, indicate a problematic lack of precision, since it may happen that the di�erences aredue to instructions in infrequently executed portions of the program. The runtime importance of thepairs of independent memory references found is shown in Table 4, where each pair of independentmemory references in a cloned function is weighted by the execution frequency of the basic blockin which those references occur. There are two points to be noted here. The �rst is that this is ameasure of opportunities for optimization in the important basic blocks in the program, and thus a8

Program Standard Callsite Freq. Based Relevance Conservative� = 1:0 � = 0:8 � = 0:67 � = 1:0compress 0 0 0 0 0 0({) ({) ({) ({) ({) ({)gcc 192 192 146 142 192 107(100.0%) (100.0%) (76.0%) (74.0%) (100.0%) (55.7%)go 197 197 189 161 197 189(100.0%) (100.0%) (95.9%) (81.7%) (100.0%) (95.9%)ijpeg 0 0 0 0 0 0({) ({) ({) ({) ({) ({)li 37 37 33 33 37 3(100.0%) (100.0%) (89.2%) (89.2%) (100.0%) (08.1%)m88ksim 118 118 118 118 118 111(100.0%) (100.0%) (100.0%) (100.0%) (100.0%) (94.1%)perl 41 41 41 41 41 39(100.0%) (100.0%) (100.0%) (100.0%) (100.0%) (95.1%)vortex 216 216 201 201 216 35(100.0%) (100.0%) (93.1%) (93.1%) (100.0%) (16.2%)Table 3: E�cacy of Analysis: independent instruction pairs identi�ed (static counts)reasonable measure of the pragmatic quality of the dataow information obtained, even though thescheduler may decide to not reorder a pair of memory references that are deemed to be independentfrom the alias information. The second is that while this doesn't account for possible independentreferences in blocks that are not hot, note that with � = 0:95, such blocks account for only 5% ofthe dynamic instruction count of the program, so their signi�cance for code optimization purposesis small. The conclusions from Table 4 are encouraging: analyses that disregard call sites that arenot executed and/or not relevant do as well as the standard context-sensitive analysis, and eventhe more stringent criteria, which eliminate most call sites as unimportant, do quite well: if weignore compress and ijpeg, for which the interprocedural analysis uncovered no important memoryreference pairs, with � = 0:8 the dynamic counts for the remaining programs (Table 4) is about 90%of that obtained using the standard analysis, while with � = 0:67 we get about 84% of that with thestandard analysis. Considering that these analysis take about 20% of the time and 25% of the space,on the average, as the standard analysis, the tradeo� they represent does not seem unreasonable.Overall, we conclude from these results that a relevance-based approach with � = 1:0, i.e., wherewe ignore any call site that is that either not executed, or whose analysis cannot inuence the dataowinformation at any frequently executed basic block, gives the best results. This approach does aswell as the classical context-sensitive analysis in terms of pragmatic utility, but is considerably moree�cient in both space and time than a classical context-sensitive analysis, requiring only about athird of the space and time used by the classical analysis. Moreover, lower values of the cuto�threshold � also yield reasonable tradeo�s between e�ciency and precision.We are currently in the process of integrating this into our scheduler. Preliminary results areencouraging: e.g., for the m88ksim benchmark, we see a 3% improvement in running time (whichgoes from 229.6 secs to 222.5 secs) because of scheduling using the improved alias information;however, we have not had the time to carry out extensive performance evaluations. We expect tohave more complete empirical results shortly.5 Related WorkWhile there is a considerable body of work on context-sensitive interprocedural analyses (e.g., see[10, 13, 18]) and pro�le-guided program optimization (e.g., see [3, 5, 6, 11, 16]), there does not seemto be a great deal of work on the use of execution pro�les to guide program analyses. The onlywork that we are aware of on this topic, and the work that is most closely related to ours, is that ofAmmons and Larus [2], who consider how dataow analyses may be modi�ed to invest extra e�ort inanalyzing frequently executed paths within a procedure in order to obtain better information along9

Program Standard Callsite Freq. Based Relevance Conservative� = 1:0 � = 0:8 � = 0:67 � = 1:0compress 0.00 0.00 0.00 0.00 0.00 0.00({) ({) ({) ({) ({) ({)gcc 0.39 0.39 0.32 0.30 0.39 0.25(100.0%) (100.0%) (82.2%) (76.6%) (100.0%) (64.9%)go 7.48 7.48 7.02 6.10 7.48 7.24(100.0%) (100.0%) (93.8%) (81.7%) (100.0%) (96.8%)ijpeg 0.00 0.00 0.00 0.00 0.00 0.00({) ({) ({) ({) ({) ({)li 1.68 1.61 1.39 1.30 1.61 0.70(100.0%) (95.5%) (82.7%) (77.5%) (95.5%) (41.6%)m88ksim 32.68 32.68 32.67 32.65 32.68 32.59(100.0%) (100.0%) (100.0%) (99.9%) (100.0%) (99.7%)perl 0.20 0.20 0.19 0.19 0.20 0.18(100.0%) (100.0%) (96.2%) (95.5%) (100.0%) (90.5%)vortex 767.50 767.50 672.43 586.89 767.50 473.14(100.0%) (100.0%) (87.6%) (76.5%) (100.0%) (61.6%)Table 4: E�cacy of Analysis: independent instruction pairs identi�ed (dynamic counts, �106)those paths, possibly incurring an additional time and space cost. Conceptually, our approach is adual of theirs in the sense that the key idea in our approach is to invest less e�ort on unimportantprogram fragments in order to reduce the time and space costs of the analysis. Also, Ammons andLarus consider intra-procedural analyses, while we focus on inter-procedural analyses. Notice thatour approach could nevertheless be used to pursue goals similar to those of Ammons and Larus,in the following way: given a particular space and/or time \budget" for an analysis, one could useeither an ordinary analysis that examines the entire program, or a more sophisticated analysis thatis more expensive, but also more precise, using our ideas to ignore the unimportant portions of theprogram. Using the more sophisticated analysis would provide more precise information for theimportant areas of the program, but the added expense of such an analysis would be mitigated bynot applying it to the unimportant portions of the program. Overall, such an approach could allowa compiler to obtain better dataow information for the important portions of a program whileexpending a comparable analysis e�ort and remaining within a particular time or space \budget."Zhang et al. describe how, for pointer alias analysis of C programs, a program can be partitionedsuch that objects in di�erent partitions can be analyzed independently of each other, possibly usingdi�erent algorithms [19]. They show that a judicious mix of ow-sensitive and ow-insensitivepointer alias analyses can reduce analysis costs without signi�cantly sacri�cing the quality of theinformation obtained. While their goals are conceptually very similar to ours, the technical detailsare very di�erent. They also don't use pro�le information to guide their decisions about whether touse a ow-sensitive or ow-insensitive analysis for a particular partition, but this isn't inherent intheir model, which could be modi�ed easily enough to take pro�le information into account.Chambers et al. have observed that the degree of context-sensitivity of an inter-proceduralanalysis can be controlled by selective merging of calling contexts [4, 12]. However, they don'tconsider using pro�le information to control the processing of di�erent call sites to a function.Moreover, while this doesn't appear to be inherent in their framework, their examples seem to suggestthat, once certain parameters controlling the degree of context-sensitivity have been selected, all thefunctions in the program are analyzed in the same way, regardless of their pragmatic importance.6 ConclusionsTraditional context-insensitive interprocedural analyses are simple and e�cient, but can be impre-cise; context-sensitive analyses, which are typically more precise, have the drawback of being morecomplex and expensive. Pragmatically, it turns out that most functions typically have a skewedexecution frequency distribution|that is, most runtime calls are accounted for by a small number10

Code Growth due to cloningProgram Original Standard Callsite Freq. Based Relevance Conservative� = 1:0 � = 0:8 � = 0:67 � = 1:0compress 316/20707 0/0 0/0 0/0 0/0 0/0 0/0gcc 2465/353002 34/9228 34/9228 30/7992 29/7806 34/9228 22/7139go 945/83929 16/14235 16/14235 15/14197 18/15788 16/14235 15/14197ijpeg 788/62639 0/0 0/0 0/0 0/0 0/0 0/0li 722/40832 6/3836 6/3836 5/3801 5/3801 6/3836 1/83m88ksim 638/53498 2/1050 2/1050 2/1050 2/1050 2/1050 1/222perl 722/97079 6/4469 6/4469 6/4469 6/4469 6/4469 5/4406vortex 1446/155030 17/18802 17/18802 14/15392 14/15392 17/18802 8/7675Table 5: Code growth due to cloning (Functions/Instructions)of call sites|which means that neither approach is entirely satisfactory. This paper describes asimple approach whereby pro�le information can be used to partition the call sites of each functionsuch that the interprocedural analysis is context-sensitive across partitions but context-insensitivewithin each partition. This allows an analysis to be context-sensitive, and hence precise, for theimportant call sites of a function, and context-insensitive, and hence e�cient, for the unimportantones. Experiments indicate that the resulting analyses can be signi�cantly cheaper than a tradi-tional context-sensitive analysis without signi�cantly compromising the pragmatic quality of theinformation obtained.AcknowledgementsThanks are due to Scott Nettles for helpful comments on an earlier draft of this paper.References[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers { Principles, Techniques and Tools, Addison-Wesley, 1986.[2] G. Ammons and J. R. Larus, \Improving Data-ow Analysis with Path Pro�les", Proc. SIG-PLAN '98 Conference on Programming Language Design and Implementation, June 1998,pp. 72{84.[3] R. Bod��k, R. Gupta, and M. L. So�a, \Complete Removal of Redundant Expressions", Proc.SIGPLAN '98 Conference on Programming Language Design and Implementation, June 1998,pp. 1{14.[4] C. Chambers, J. Dean, and D. Grove, \Frameworks for Intra- and Interprocedural DataowAnalysis", Technical Report 96-11-02, Dept. of Computer Science and Engineering, Universityof Washington, Seattle, 1996.[5] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \Pro�le-guided automatic inlineexpansion for C programs", Software Practice and Experience vol. 22 no. 5, May 1992, pp. 349{369.[6] R. Cohn and P. G. Lowney, \Hot Cold Optimization of Large Windows/NT Applications",Proc. MICRO 29, Dec. 1996.[7] K. D. Cooper, M. W. Hall, and K. Kennedy, \Procedure Cloning", Proc. 1992 InternationalConference on Computer Languages, pp. 96{105.[8] K. D. Cooper, M. W. Hall, and K. Kennedy, \A Methodology for Procedure Cloning",ComputerLanguages 19(2), April 1993, pp. 105{118. 11

[9] S. K. Debray, R. Muth, and M. Weippert, \Alias Analysis of Executable Code", Proc. 1998ACM Symposium on Principles of Programming Languages, pp. 12{24.[10] M. Emami, R. Ghiya and L. J. Hendren, \Context-Sensitive Interprocedural Points-to Anal-ysis in the Presence of Function Pointers", Proc. SIGPLAN '94 Conference on ProgrammingLanguage Design and Implementation, June 1994, pp. 242{256.[11] J. A. Fisher, \Trace Scheduling: A Technique for Global Microcode Compaction", IEEE Trans-actions on Computers, C-30(7):478{490, July 1981.[12] D. Grove, G. DeFouw, J. Dean, and C. Chambers, \Call Graph Construction in Object-OrientedLanguages", Proc. 12th. Annual Conference on Object-Oriented Programming, Systems, Lan-guages, and Applications (OOPSLA), Oct. 1997, pp. 108{124.[13] W. Landi and B. G. Ryder, \A Safe Approximate Algorithm for Interprocedural Pointer Alias-ing", Proc. SIGPLAN '92 Conference on Programming Language Design and Implementation,June 1992, pp. 235{248.[14] R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere, \alto : ALink-Time Optimizer for the DEC Alpha", Draft, Sept. 1998. Available atwww.cs.arizona.edu/people/debray/papers/alto.ps.[15] E. W. Myers, \A Precise Inter-Procedural Data Flow Algorithm", Proc. 8th ACM Symposiumon Principles of Programming Languages, Jan. 1981, pp. 219{230.[16] K. Pettis and R. C. Hansen, \Pro�le-Guided Code Positioning", Proc. SIGPLAN '90 Conferenceon Programming Language Design and Implementation, June 1990, pp. 16{27.[17] E. Ruf, \Context-Insensitive Alias Analysis Reconsidered", Proc. SIGPLAN '95 Conference onProgramming Language Design and Implementation, June 1995, pp. 13{22.[18] R. P. Wilson and M. S. Lam, \E�cient Context-Sensitive Pointer Analysis for C Programs",Proc. SIGPLAN '95 Conference on Programming Language Design and Implementation, June1995, pp. 1{12.[19] S. Zhang, B. G. Ryder, and W. Landi, \Program Decomposition for Pointer Aliasing: A Steptoward Practical Analyses", Proc. Fourth Symposium on the Foundations of Software Engineer-ing, Oct. 1996.
12

