
Register Allocation in a Prolog Machine

Saumya K. Debray

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794

Abstract: We consider the Prolog Engine described by D. H. D. Warren. An interesting feature of this

machine is its parameter passing mechanism, which uses register k to pass the kth. parameter to a pro-

cedure. Warren distinguishes between temporary variables, which can be kept in registers in such a

machine, and permanent variables, which must be allocated in memory. The issue in register allocation

here is one of minimizing data movement, and is somewhat different from that of minimizing the number

of loads and stores, as in a conventional machine. We describe three register allocation algorithms for

such a machine. These strategies rely on a high-level analysis of the source program to compute informa-

tion which is then used for register allocation during code generation. The algorithms are simple yet

quite efficient, and produce code of good quality.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This work was supported in part by the National Science Foundation under grant number DCR-8407688.

1. Introduction

With the growing interest in logic programming languages, especially Prolog, the issues of

specific architectures supporting such languages, and algorithms relating to such architectures,

become especially relevant. Warren, addressing the former issue, describes an abstract Prolog

machine and its instruction set [4]. This design has formed the basis of a number of Prolog

implementations, including ones at Quintus Systems, Argonne National Labs, UC Berkeley,

Syracuse University and SUNY at Stony Brook. An interesting feature of this machine is its

parameter passing convention: register k is used to pass the kth. parameter of a procedure call.

Warren distinguishes between ‘‘temporary’’ and ‘‘permanent’’ variables, and notes that tem-

porary variables can be kept in registers. He points out that by properly allocating registers to

temporary variables, the code generated for a program can be improved substantially, with a

significant reduction in the number of instructions that have to be executed, and a concomitant

increase in speed.

Warren sketches a fairly low-level approach to this problem in [4], which analyses the

abstract machine instructions generated to effect the optimization. The Berkeley PLM compiler

uses a backtracking-driven algorithm for register allocation [3]; this, however, can be quite slow.

This paper describes an alternative approach, which relies on a high level analysis of the source

program to produce annotations to the program. These annotations are then used by the code

generator while allocating registers to temporary variables. These algorithms differ from tradi-

tional register allocation algorithms (see, for example, [1, 2]) in that the analysis of the source

program produces information regarding which registers should be allocated to a variable, rather

than which variables should be allocated to registers.

The remainder of this paper is organized as follows: Section 2 discusses some preliminary

notions. Section 3 develops the basic ideas behind our algorithms, and Section 4 goes on to

describe three register allocation strategies. Section 5 outlines an extension of these ideas to glo-

bal register allocation. Section 6 concludes with a summary.

2. Preliminaries

This section considers some preliminary issues. The syntax of Prolog is described briefly,

followed by a discussion of temporary variables. The section concludes with a brief outline of

the instruction set of the Warren Prolog Engine.

2.1. Syntax

A Prolog term is either a variable, or a constant, or a compound term f(t1, ..., tn) where f is

an n-ary function symbol and t1, ..., tn are terms. A literal is either an atom p(t1, ..., tn) where p

is an n-ary predicate symbol and t1, ..., tn are terms, or the negation of an atom. A clause is a

finite sequence of literals. A clause is said to be Horn if it has at most one positive literal. A

Horn clause with exactly one positive literal is referred to as a definite clause. A predicate

definition consists of a sequence of definite clauses. A program consists of a set of predicate

definitions.

In this paper, we will adhere to the syntax of DEC-10 Prolog and write a definite clause as

p :− q1, q2, . . ., qn.

which can be read declaratively as ‘‘q1 and q2 and . . . and qn implies p’’. The clause can also

be interpreted procedurally as meaning that the body of procedure p is defined as the sequence of

procedure calls q1, q2, . . ., qn. The qi’s will be referred to as goals. Following DEC-10 syntax,

variables names will begin with upper case letters, all other names with lower case letters.

Given a literal p(t1, . . ., tn), if ti is a variable X for some i, then X will be said to occur at the top

level at argument position i in that literal.

2.2. Temporary Variables

A temporary variable in a Prolog clause, as defined by Warren, is a variable which has its

first occurrence in the head of the clause, in a compound term or in the last goal, and which does

not occur in more than one goal. The head is counted as part of the first goal. Any variable

which is not temporary is referred to as permanent. The point behind this distinction is that

while permanent variables must be allocated space in memory, in the activation record of the

procedure to which it belongs, temporary variables may be stored in registers. With the proper

allocation of registers to temporary variables, the efficiency of programs can be improved

significantly.

The reasons for this definition of temporary variables are the following: if the first

occurrence of a variable is in the head or in a compound term, then it is guaranteed to appear

deeper in the local stack or on the heap, so that pointers can safely be set to it, even if the vari-

able is kept in a register; if its first occurrence is in the last goal of a clause, then it must be allo-

cated on the heap to enable last goal optimization (a generalization of tail recursion optimiza-

tion) to be performed, but this turns out to be equivalent to treating the variable as temporary. A

temporary variable is not permitted to occur in more than one goal because no assumption is

made about the register usage in other procedures. Therefore, if a variable appears in more than

one goal, it cannot be kept in a register, but has to be saved in the activation record for the predi-

cate, i.e. made permanent.

2

We extend this definition of temporary variables slightly. To this end, we define the

notions of in-line predicates and chunks:

Definition: An in-line predicate is one which can be executed in-line by a sequence of Prolog

machine instructions, without having to branch to a procedure.

Typically, in-line predicates are those that perform primitive computations, e.g. arithmetic

and relational computations, unification, testing to see whether or not a variable has been bound

to a non-variable term, etc.

Definition: A chunk is a sequence of zero or more in-line predicate followed by a predicate

which is not in-line.

Each chunk in a clause represents the longest computation at that point which can be per-

formed with only one procedure call, at the end. Since the code for in-line predicates can be

executed without making any procedure calls, the constraints imposed by the parameter passing

convention are absent. For each in-line predicate in a chunk, we can determine which registers

are used; however, no assumptions are made regarding register usage in predicates that are not

in-line. Thus, register usage can easily be determined all through the chunk, upto its last goal.

This allows us to extend the definition of temporary variables to the following:

Definition: A variable is temporary if its first occurrence is in the head of a clause or in a com-

pound term or in the last chunk, and which does not occur in more than one chunk, with the head

being counted as part of the first chunk.

2.3. The Instruction Set

The instruction set we use is a superset of that originally proposed by Warren. There are

five basic groups of instructions: get instructions, put instructions, unify instructions, procedural

instructions and indexing instructions. In addition, there are other instructions for arithmetic

operations, language features such as cut, etc., which do not pertain directly to the subject of this

paper and will not be considered further. While a detailed description of the instruction set is

beyond the scope of this paper, we give a brief overview of the basic instruction groups. Details

may be found in [4-6].

The get instructions correspond to the arguments at the head of a clause and are responsible

for matching against the procedure’s arguments. The put instructions correspond to the

3

arguments of a goal in the body of a clause and are responsible for loading the arguments into

the appropriate registers. The unify instructions correspond to the arguments of a compound

term. In each group, there are instructions for constants (e.g. get_constant, unify_constant),

compound terms (e.g. put_structure), and the first and subsequent occurrences of variables. The

instructions for variables are parameterized by type, so that there is an instruction for temporary

and one for permanent variables. Thus, for the first occurrence of temporary and permanent

variables in the head we have, respectively, the instructions get_temp_variable and

get_perm_variable. The get_temp_variable instruction has the same functionality as the more

conventional movreg instruction for register to register moves, so we will use movreg in its

place.

The procedural instructions correspond to the predicates that form the head and goals of

the clause, and are responsible for control transfer and environment allocation associated with

procedure calling. These include call (for procedure calls), execute (similar to call, except that it

is used for the last goal in a clause and does last goal optimization) and proceed (analogous to

return). The indexing instructions are responsible for linking together the code for different

clauses of a predicate.

2.4. Soundness Criteria for Register Allocation Algorithms

Any admissible register allocation algorithm must be sound. Since temporary variables are

kept in registers, our soundness criteria are that, at all points between the first and last

occurrences of any temporary variable T, (i) T must be present in some register R, i.e. its value

must not be destroyed; and (ii) the fact that T is in register R must be known, i.e. it must not be

lost.1

This is perhaps stronger than necessary, since correctness of compilation requires only that

a temporary variable be present in a register when it is needed; it may be stored in the activation

record of the procedure, like a permanent variable, at any other point, and the register released.

This would also be closer to the treatment of variables in implementations of traditional pro-

gramming languages. However, this violates the spirit of distinguishing between temporary and

permanent variables, so we do not consider it.

Any variable appearing in more than one chunk is permanent by definition. Therefore, to

establish the soundness of a register allocation algorithm, it suffices to establish its soundness for

each chunk.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 If the number of registers is insufficient, the temporary variable will have to be spilled, i.e. made permanent.

We assume this throughout the paper, and do not state it explicitly.

4

3. Developing Register Allocation Algorithms

3.1. A Naive Register Allocation Strategy

The simplest register allocation strategy involves no analysis of the code at all. A list INUSE

of registers that are in use is maintained. If a register is not in INUSE, it will be said to be free.

When a register has to be allocated to a new temporary variable, an arbitrary free register is

chosen. When a register becomes free (e.g. after the last occurrence of the temporary variable it

had been allocated to), it is removed from INUSE. While the algorithm is simple, the code pro-

duced can be far from optimal.

3.2. Improving the Algorithm

It is possible, in principle, to perform register allocation using the naive strategy and subse-

quently improve the code generated by making a separate pass over it. We propose a simpler

solution which involves analysing variable occurrence information in the symbol table. For each

occurrence of a variable, we need to know (i) its type, i.e. temporary or permanent; (ii) which

argument in the goal it occurs in; and (iii) whether the variable occurs at the top level or within a

compound term. Since this information is already needed for subsequent code generation, no

extra overhead is incurred.

The key observation in our register allocation algorithms is that if a temporary variable V

occurs as the Nth. top-level argument of the last goal in a chunk, then, because of the parameter

passing convention, V will ultimately have to be moved to register N. It is therefore reasonable

to try to allocate register N to V in the first place. Additionally, for the first chunk of a clause the

situation is mirrored by top-level occurrences of variables in the head: if a temporary variable V

occurs as the Nth. top-level argument in the head of the clause, then it will be in register N at

entry to the clause. It is therefore reasonable to try to allocate register N to it, so as to avoid hav-

ing to move it. These ideas are incorporated into the register allocation scheme by associating a

set, called the USE set, with each temporary variable in a clause.

Definition: The set USE(T) associated with a temporary variable T is the set of argument posi-

tions corresponding to top-level occurrences of T in the last goal of that chunk, and in the head

of the clause if the chunk is the first in the clause.

Example: Consider the clause

p(X,f(X),Y) :− X = [a|_], q(Z,Y,X), r(Z).

The temporary variables in this clause are X and Y. The top-level occurrences of X are as argu-

ment 1 in the head and as argument 3 in the call to q (the last goal in the first chunk); thus,

5

USE(X) = {1,3}. Similarly, USE(Y) = {2,3}.

Our first ideas about a register allocation algorithm are as follows: we proceed as before, except

that when a temporary variable X has to have a register allocated to it, a free register r in USE(X)

is allocated to X whenever possible. We henceforth adopt the convention that registers are allo-

cated upwards from the low numbers, i.e. register 1 is considered for allocation first, then regis-

ter 2, then 3, and so on.

The code produced by this modified algorithm is still not entirely satisfactory, however.

What may happen is that a temporary variable may be allocated a register it does not really need,

but which is needed by some other variable. In order to prevent this from happening, we associ-

ate another set, the NOUSE set, with each temporary variable.

Definition: The set NOUSE(T) associated with a temporary variable T in a chunk is the set of

argument positions m corresponding to top-level occurrences of temporary variables U, U ≠ T, in

the last goal of the chunk, such that m $nomem USE(T).

The idea is that members of the NOUSE set of a variable are those registers that it does not

need, but which other temporary variables might need. As before, we consider only the last goal

in the chunk because we are not bound by any register usage convention for the in-line predi-

cates before it. Thus, for a clause

p(X,f(X),Y) :− X = [a | W], q(W,Y,X), r(Z).

we have NOUSE(X) = {2}, since the temporary variable Y occurs in argument position 2 in the

call to q/3, and 2 is not in USE(X). Note that even though the temporary variable W occurs in the

first argument position of this literal, 1 is not in NOUSE(X) because it is already in USE(X). Simi-

larly, NOUSE(Y) = {1}.

The register allocation algorithm is modified as follows: when allocating a register to a

temporary variable, if it cannot be allocated a register in its USE set, then it is allocated a free

register not in its NOUSE set.

Example: Consider the clauses

append([], L, L).

append([H |L1], L2, [H |L3]) :− append(L1, L2, L3).

In the first clause, USE(L) = {2,3} and NOUSE(L) = ∅ . L can be allocated either register 2 or

register 3; in both cases, the code generated is

getnil 1

6

get_temp_value 2, 3

proceed

In the second clause, we have USE(H) = ∅ , NOUSE(H) = {1,2,3}; USE(L1) = {1}, NOUSE(L1) =

{2,3}; USE(L2) = {2}, NOUSE(L2) = {1,3}; USE(L3) = {3}, NOUSE(L3) = {1,2}. From this, H is

allocated register 4, L1 is allocated register 1, L2 is allocated 2, and L3 is allocated register 3.

The code generated is

get_list 1

unify_temp_var 4

unify_temp_var 1

get_list 3

unify_temp_value 4

unify_temp_var 3

execute append/3

3.3. Handling Conflicts

We have tacitly assumed, thus far, that a register can be dedicated to a temporary variable

throughout the lifetime of that variable. However, owing to the parameter passing convention of

the Prolog machine, this does not suffice to avoid conflicts. The problem is that the allocation

strategy we have developed so far does not take into account the fact that a conflict may arise

because a register is needed to pass a parameter of a call. What can happen is that a temporary

variable may be allocated register n, which is then found to be needed for the nth. parameter of a

call. There are two basic ways of dealing with such conflicts: avoidance and resolution.

In conflict avoidance, all possible sources of conflict are computed beforehand, and regis-

ters allocated based on this information so that no conflict ever arises. In conflict resolution, on

the other hand, no effort is made to avoid conflicts ab initio; instead, conflicts are resolved as

and when they arise. The two methods may be thought of as eager and lazy implementations of

conflict-handling. The next section considers these strategies in more detail, and introduces a

hybrid strategy, employing elements of both, which is superior to either.

4. Algorithms for Register Allocation

This section describes three algorithms for register allocation and compares the quality of

the code produced by each.

7

4.1. Algorithm I: Conflict Avoidance

As noted in the previous section, conflicts can arise during register allocation because a

temporary variable may be allocated a register that is then needed as a parameter register before

the last occurrence of that variable has been encountered. In the Conflict Avoidance strategy, all

possible sources of conflicts are computed beforehand, and registers allocated so as to avoid

conflicts. With each temporary variable is associated a set, its CONFLICT set, which contains

those registers which could lead to a conflict if allocated to it. Clearly, conflicts can only arise

from parameters in the last goal of a chunk. Therefore, temporary variables not occurring in the

last goal of the chunk cannot give rise to conflicts. Finally, it is obvious that a variable can never

be in conflict with itself. Thus, we have the following definition:

Definition: The set CONFLICT(T) associated with a temporary variable T in a chunk is defined as

follows: if T occurs in the last goal of the chunk, then it is the set of argument positions in the

last goal in which T does not occur at the top-level; otherwise, it is the empty set.

Example: Consider the clause

p(X,f(X),Y,W) :− X = [a | _], W > Y, q(Z,Y,X).

Then, CONFLICT(X) = {1,2}, CONFLICT(Y) = {1,3}, CONFLICT(W) = ∅ .

The allocation process has two phases. In the first phase, the USE, NOUSE and CONFLICT sets

are computed for each temporary variable by analysing variable occurrences in the source pro-

gram. The second phase is part of the code generation phase, where the actual allocation of

registers to temporary variables is done. Whenever a temporary variable T is encountered which

has not had a register allocated to it, a register is allocated as follows: if a free register R that is

in USE(T) can be found, it is allocated to T. Otherwise, a free register which is not in NOUSE(T)

∪ CONFLICT(T) is allocated.

This allocation procedure can be shown to be sound according to the criteria described ear-

lier. We omit the proof of soundness here.

The principal advantage of Conflict Avoidance is its simplicity. However, as a result of the

eager conflict-handling this strategy implements, it sometimes produces code that resolves

conflicts too early, thereby leading to wasted effort. This is illustrated by the following:

Example: Consider the clause

p(X,Y,Z,a) :− q(Z,X,Y).

8

The code produced using conflict avoidance is

movreg 1,5

movreg 2,6

movreg 3,1

get_constant a,4

movreg 5,2

movreg 6,3

execute q/3

If, however, the instruction get_constant a,4 fails, the three movreg instructions before it will

have been executed to no avail. We turn our attention next to strategies that rectify this problem.

4.2. Algorithm II: Conflict Resolution

A second approach to handling conflicts is to take no steps a priori to prevent their

occurrence, but to resolve them as and when they do happen. With this approach, therefore,

CONFLICT sets are not computed. The algorithm involves two phases. During the first, USE and

NOUSE sets are computed for each temporary variable; the second phase involves actual register

allocation, conflict resolution and code generation. A table, contents, of register contents is

maintained, indexed by register number, so that for any register we can determine its contents.

Another table, register, is maintained, indexed on temporary variable name, and allows us to

determine, given any temporary variable, which register is currently assigned to it.

The computation of USE and NOUSE sets in the first phase is straightforward. In the second

phase of the algorithm, when a temporary variable is encountered in the process of code genera-

tion that has not been assigned a register, it is assigned a register as before: if a free register can

be found that is also in the USE set of the variable, then this register is assigned to the temporary

variable, otherwise a free register is assigned that is not in its NOUSE set. The tables contents and

register are updated to reflect this. Code generation for all goals of the chunk except the last

proceeds as for Conflict Avoidance. For the last goal of the chunk, however, when code is being

generated for the kth. parameter park, if contents[k] is a temporary variable T and T ≠ park, then

a register R different from k, which is not in NOUSE(T) ∪ INUSE, is chosen and the variable T is

moved to register R (by generating a ‘‘movreg k, R’’ instruction), thereby resolving the conflict.

The tables contents and register are updated accordingly: contents[R] is set to T, and

register[T] is set to R. After this, code is generated for building and loading the kth. parameter

into register k. The algorithm can be shown to be sound according to the criteria mentioned ear-

lier.

9

Conflict Resolution represents a lazy approach to conflict handling, and thus avoids the

problem of extra code executed because conflicts were resolved too early. Returning to the ear-

lier example

p(X,Y,Z,a) :− q(Z,X,Y).

Here, USE(X) = {1,2}, USE(Y) = {2,3}, USE(Z) = {1,3}, NOUSE(X) = {3}, NOUSE(Y) = {1},

NOUSE(Z) = {2}. The inital register assignments are, therefore: X = 1, Y = 2, Z = 3 (recall that

register 2 is not free when X is being assigned a register, so it is assigned the other regiter in its

USE set, viz. register 2, and similarly for the other variables). Each temporary variable is left in

the register it occurred in, and conflicts have to be resolved only after unification of the fourth

parameter in the head succeeds. The code generated is

get_constant a,4

movreg 1,4

movreg 3,1

movreg 2,3

movreg 4,2

execute q/3

The code produced is clearly superior to that obtained from Conflict Avoidance.

The problem with the ‘‘pure’’ conflict resolution strategy described above is that there is no

lookahead when a conflict is resolved, i.e. no attempt is made to see whether this could lead to

further conflicts. This can result in cascading conflicts, whose resolutions incur a space and time

penalty that might have been avoided. The following example ilustrates this:

Example: Consider the clause

p(X,a,b) :− q(c,d,f(X)).

Here, USE(X) = {1}, NOUSE(X) = ∅ , and X is allocated register 1. When code for the call to q

has to be generated, there is a conflict in the first parameter, so X is moved to the next available

register, which happens to be register 2; at the next step, another conflict occurs, and X has to be

moved again; and so on.

In the next section, we consider a third register allocation strategy, a hybrid of Conflict

Avoidance and Conflict Resolution, which rectifies this problem. This turns out to be better than

either of the two strategies considered so far.

10

4.3. Algorithm III: Mixed Conflict Resolution and Avoidance

When a conflict occurs between a temporary variable and a parameter, a new register has to

be allocated in order to resolve the conflict. Thus, we are faced with a register allocation prob-

lem again. With pure conflict resolution, the Conflict Resolution strategy is applied again at this

point. However, this may lead to recurring conflicts and result in inefficient code.

As noted earlier, the reason Conflict Resolution produces better code than Conflict

Avoidance is that in Conflict Resolution, temporary variables tend to be left in registers as long

as possible. What this means is that failures tend to occur earlier, so that fewer instruction exe-

cutions are wasted. However, once a conflict occurs and the variable has to be moved to another

register, it should be moved to a register where it will not generate any more conflicts. In this

way, at most one movreg is required per temporary variable to handle conflicts, as in the case of

Conflict Avoidance, but the execution of this movreg instruction is delayed as far as possible. In

other words, when allocating a register to resolve a conflict, we should use the Conflict

Avoidance strategy rather than apply the Conflict Resolution strategy recursively. Note also that

the advantages of Conflict Resolution apply only to variables whose first occurrence is at the top

level in the head of the clause, since in this case the variable is already in a register and need not

be moved until a conflict occurs. If the first occurrence is not at the top level in the head, the

variable has to be moved to a register anyway, and by the same argument as before, Conflict

Avoidance is preferable in this case.

This suggests a hybrid allocation strategy. The data structures maintained are: for each

temporary variable, its USE, NOUSE and CONFLICT sets; and two tables, contents and register, as

for Conflict Resolution. The algorithm proceeds in two phases, as before. In the first phase, USE,

NOUSE and CONFLICT sets are computed for each temporary variable. The second phase invloves

the actual register allocation, code generation and conflict handling. When a temporary variable

is encountered during code generation in this phase that has not been allocated a register, it is

allocated a register as follows: if its first occurrence is at the top level in the head of the clause,

then the register is allocated using Conflict Resolution, else the register is allocated using

Conflict Avoidance. The tables contents and register are updated accordingly. Code generation

for all goals in the chunk except the last proceeds as for Conflict Avoidance. For the last goal of

the chunk, however, when code is being generated for the kth. parameter park, if contents[k] is a

temporary variable T and T ≠ park, then a register R different from k and which has been allo-

cated using Conflict Avoidance is chosen, and the variable T is moved to it (by generating a

‘‘movreg k, R’’ instruction), thereby resolving the conflict. The tables contents and register are

updated accordingly: contents[R] is set to T, and register[T] is set to R. After this, code is gen-

erated for building and loading the kth. parameter into register k. The algorithm is sound

11

according to the criteria mentioned earlier.

The mixed strategy overcomes the deficiencies of the pure Conflict Avoidance and Conflict

Resolution strategies, and produces code superior to that produced by either strategy. This is

illustrated by the following example:

Example: Consider the clause

p(X,Y,f(Z)) :− q(a,b,Z,g(X,Y)).

The variables X and Y occur at the top level in the head, and are allocated according to the

conflict resolution strategy. Thus, they are not moved until the unification of the third parameter

in the head has succeeded. Then, conflicts are found to occur, and these are resolved using

Conflict avoidance, so that further conflicts do not occur. The code generated is

get_structure f, 3

unify_temp_variable 3 ; USE(Z) = {3}

movreg 1, 5

put_constant a, 1

movreg 2, 6

put_constant b, 2

put_structure g, 4

unify_temp_value 5 ; X is in register 5

unify_temp_value 6 ; Y is in register 6

execute q/4

5. Global Register Allocation

The register allocation algorithms presented in the previous section were based on a

definition of temporary variables that assumed that no information was available regarding the

usage of registers by other predicates. This assumption constrains temporary variables to occur

in at most one chunk in the body of a clause. Since such algorithms allocate registers using only

local register usage information, we refer to them as local allocation algorithms. It is possible,

however, to use register usage information across predicates to improve register allocation. We

do not consider details of such global allocation algorithms here, but simply outline the basic

idea behind such schemes.

If we consider the optimized code for append/3 illustrated earlier, we notice that only regis-

ters 1 through 4 are used in this predicate. After any call to append/3, therefore, all registers

other than 1 through 4 are unchanged. Once this information is available to the compiler, it can

modify its register allocation in predicates that call append/3 to take advantage of this fact. This

12

is illustrated by the following example:

Example: Consider the clause

p(X,Y,Z) :− append(X,Y,W), q(W,Z).

In this case, the variable Z appears in two chunks, and is therefore a permanent variable. This

means that, by our earlier definitions, it has to be kept in the activation record in memory rather

than in a register. However, given the knowledge that append/3 affects only registers 1 through

4, we can store Z in register 5, say, across the call to append, and restore it before the call to q.

The code generated is:

movreg 3, 5 ; save Z in a safe register

put_perm_variable 2, 3

call append/3

put_perm_value 2, 1

movreg 5, 2 ; restore Z

execute q/2

This replaces register-memory moves by register-register moves, which are usually much

cheaper, and also effects a reduction in the activation record size. In the general case, a per-

manent variable would be a candidate for this kind of global allocation if its first occurrence was

in the head or in a structure. Since a decision to keep a permanent variable in a register affects

the register usage of that predicate, the global allocation algorithm will have to take such

changes into account when doing global register allocation in other predicates.

One simple scheme for global register allocation could proceed as follows: define a relation

is-called-by between predicates as follows: p is called by q if p appears in the body of a clause

for q, or there is some predicate r such that r is called by q and p is called by r. The program is

partitioned into sets of predicate definitions {S1, ..., Sn} such that if i < j, then no predicate p

defined in Sj is called by any predicate q defined in Si. Global register allocation is performed on

predicates in Sk only after it has been done for all predicates in S1 ... Sk−1, with permanent vari-

ables being saved in registers across a call only if the call is to a predicate defined in Sj, for some

j < k.

6. Summary

This paper considers the problem of efficient register allocation for temporary variables in

the Warren Prolog Engine. What makes the register allocation problem different in this case is

the parameter-passing convention used in the machine. The approach we take is high-level in

13

