
Automated Bug Localization in JIT Compilers
HeuiChan Lim

Department of Computer Science
The University Of Arizona
Tucson, AZ 85721, USA
hlim1@email.arizona.edu

Saumya Debray
Department of Computer Science

The University Of Arizona
Tucson, AZ 85721, USA
debray@cs.arizona.edu

Abstract
Many widely-deployed modern programming systems use
just-in-time (JIT) compilers to improve performance. The
size and complexity of JIT-based systems, combined with
the dynamic nature of JIT-compiler optimizations, make it
challenging to locate and fix JIT compiler bugs quickly. At
the same time, JIT compiler bugs can result in exploitable
security vulnerabilities, making rapid bug localization impor-
tant. Existing work on automated bug localization focuses on
static code, i.e., code that is not generated at runtime, and so
cannot handle bugs in JIT compilers that generate incorrect
code during optimization. This paper describes an approach
to automated bug localization in JIT compilers, down to the
level of distinct optimization phases, starting with a single
initial Proof-of-Concept (PoC) input that demonstrates the
bug. Experiments using a prototype implementation of our
ideas on Google’s V8 JavaScript interpreter and TurboFan
JIT compiler demonstrates that it can successfully identify
buggy optimization phases.

CCS Concepts: • Security and privacy→ Software secu-
rity engineering; Web application security.

Keywords: Program Analysis, Debugging, Bug localization,
Dynamic Code, Self-Modifying Code

ACM Reference Format:
HeuiChan Lim and Saumya Debray. 2021. Automated Bug Lo-
calization in JIT Compilers. In Proceedings of the 17th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE ’21), April 16, 2021, Virtual, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3453933.3454021

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VEE ’21, April 16, 2021, Virtual, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8394-3/21/04. . . $15.00
https://doi.org/10.1145/3453933.3454021

1 Introduction
Many widely-deployed modern programming systems in-
clude a language interpreter, which provides portability, to-
gether with a just-in-time (JIT) compiler, which provides
performance: examples range from JavaScript code executed
in web browsers to enterprise software written in Java. Such
systems typically consist of multiple sophisticated interact-
ing components (e.g., an interpreter; a runtime system in-
cluding a profiler, a garbage collector, etc.; a JIT compiler),
and as a result tend to be large and complex, and thus may
be prone to bugs.

Bugs in the JIT compiler that can be particularly challeng-
ing to diagnose and fix are those that result in the generation
of incorrectly JIT-optimized application code, causing the
application to compute incorrect results or crash. When a
buggy JIT compiler emits incorrect code, the problem man-
ifests itself, not in the code that contains the bug (the JIT
compiler), but elsewhere, in the application code being opti-
mized. Moreover, the optimized code generated by the JIT
compiler is not available for static analysis, as with con-
ventional compilers, but is created dynamically and may be
modified multiple times during execution. At the same time,
incorrectly optimized code resulting from JIT compiler bugs
can result in security problems.
For example, Rabet describes a JIT compiler bug in the

Chrome web browser’s V8 JavaScript engine that causes
some initialization code in the application program to be
(incorrectly) optimized away, resulting in an exploitable vul-
nerability (CVE-2017-5121) [34].

The widespread adoption of systems that use JIT compil-
ers, combined with the potential for security vulnerabilities
arising from JIT compiler bugs, makes it important to locate
and fix such bugs quickly.
There is a considerable body of research on automated

bug localization: Section 7 gives a deeper discussion. To the
best of our knowledge, all of this work focuses on static code,
i.e., where code is not created or modified during execution.
Crucially, these approaches do not track dependencies

arising from the act of runtime code generation, e.g., where
code𝐴 generates code 𝐵 at runtime and a bug in𝐴 can result
in an incorrect instruction sequence generated for 𝐵. As a
result, existing work on automatic bug localization is inap-
plicable to the situation we consider: namely, where a bug
in the JIT compiler is manifested as buggy behavior in the

153

https://doi.org/10.1145/3453933.3454021
https://doi.org/10.1145/3453933.3454021

VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

dynamically generated code. To address this situation, we
propose an approach that explicitly models the JIT compila-
tion process and uses it to reason about the JIT compiler’s
behavior.

Experimental results from a prototype implementation of
our ideas, evaluated using bug reports for the TurboFan JIT
compiler [40] used in Google’s V8 JavaScript Engine, indicate
that our approach is effective in localizing JIT compiler bugs.
The remainder of this paper is organized as follows. Sec-

tion 2 briefly summarizes some background on interpreters
and JIT compilers. Section 4 discusses our research ideas for
bug localization. Section 5 describes experimental results
from a prototype implementation of our ideas. Section 6
discusses these results and possible future improvements.
Section 7 summarizes related work, and Section 8 concludes.

2 Background
This section briefly discusses some key concepts relevant to
our ideas. It may be skipped by readers familiar with this
material.

2.1 Interpreters and JIT Compilers

An interpreter implements a virtual machine (VM) in soft-
ware. Programs are expressed using the VM’s instruction set,
with each VM instruction represented as a data structure in
the interpreter’s memory. To mitigate the runtime perfor-
mance overheads typically incurred by interpreters, they are
often coupled with Just-in-Time (JIT) compilers, which dy-
namically optimize frequently executed code fragments into
native code. The overall structure of typical interpreter/JIT-
compiler system is therefore as follows: the input program
is read in and translated into an intermediate representation
(IR), which is then used to quickly generate byte-code or
unoptimized native code. Subsequently, as the program is
executed, frequently executed code fragments are identified
and JIT-compiled to more efficient code. Some JIT compilers
support multiple levels of optimization, where dynamically
generated code from one set of optimizations may subse-
quently be subjected to additional rounds of optimization
[37].
Commonly used IRs have a tree or graph structure, e.g.,

abstract syntax tree or control flow graph. For concreteness
in this discussion, we will assume that the IR is a graph and
thus contains a collection of nodes [18]. Each such node
can be thought of as having a set of (system-dependent)
properties, e.g., its type, the set of its inputs, its register color
(if graph coloring is used for register allocation), etc.

Optimizations within a JIT compiler are typically orga-
nized as a sequence of phases, where each phase refers to a
specific optimization to the IR (e.g., constant propagation)
together with any supporting program analyses [1, 10]. The
effect of performing an optimization is to modify the pro-
gram’s IR. We can use the properties associated with the

Figure 1. V8 Pipeline[16]

nodes in the IR to reason about the effect of optimization on
a program.

2.2 JavaScript Engine Pipeline

JavaScript engine is an interpreter and JIT compiler system
that is implemented specifically for JavaScript language. The
JavaScript engines that we can easily found are V8 in Google
Chrome[12], Chakra inMicrosoft Edge[13], SpiderMonkey in
Mozilla Firefox[31], and JavaScriptCore in Apple Safari[11],
etc. Internally, each engine has different implementations,
but they all follow the general pipeline.
When a JavaScript engine receives input code, it first

parses to it to generate the abstract syntax tree for the in-
terpreter. The interpreter generates byte-codes based on the
input syntax tree. Then, while running the byte-code, the en-
gine evaluates concurrently to identify which code is being
repeatedly executed (a.k.a hot code). If the engine evaluated
some code is “hot”, then it invokes the compiler to compile
and optimize the byte-code to native code [9, 30]. While the
optimized is being executed, it performs a check on each
piece of a code’s assumption that “what needs to be done.” If
this check fails, it deoptimizes the code and returns to the
byte-code stack frame [30, 36]. Figure 1 illustrates Google
Chrome’s V8 engine pipeline.

3 A Running Example
Figure 2 shows an example of a “Proof-of-Concept” (PoC)
for a V8 JIT compiler bug [27] that we will use as a running
example. In this program, the high iteration count of the
for loop triggers JIT compilation. The JIT compiler has a
bug at the simplified lowering phase that gets triggered by
the line of code a = i + -0, but this is not visible until a
garbage collection occurs (in this example, forced via the
call gc()). In the resulting JIT-optimized code, the value for

154

Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

var a, b; // should be var
for (var i = 0; i < 100000; i++) {

b = 1;
a = i + -0;
b = a;

}
print(a === b); // true
gc();
print(a === b); // false

Figure 2. An example of a PoC for a V8 JIT compiler bug

a is incorrectly written to a memory location where it is
supposed to be protected by the write barrier.

4 Research
We make the following assumptions about the JIT compiler
under analysis:

1. The optimization phases within the JIT compiler, and
the function(s) that implement each such phase, are
known.

2. We can obtain a machine-instruction-level execution
trace of the JIT compiler. There is enough symbol table
information available in the JIT compiler executable to
map eachmachine instruction executed to the function
it belongs to. This allows us to determine the sequence
of optimization phases executed for any given input
program.

3. We can identify the input program’s IR and determine
the values of the properties of IR nodes.

We assume that we have a bug report that contains a Proof-
of-Concept (PoC) input program that demonstrates the JIT
compiler’s buggy behavior. Such PoCs are typically submit-
ted when a bug is found and reported. This section discusses
how we use this information to identify the optimization
phase that most likely contains a JIT compiler bug.

4.1 Overview

Our approach to automated bug localization, starting from
this PoC, consists of the following steps:

1. We begin by automatically modifying this PoC to cre-
ate a set of new input programs.

2. We run each of these programs 𝑃𝑖 and collect an
instruction-level trace of their executions.

3. We analyze these execution traces to determine
whether or not 𝑃𝑖 manifested the bug and to identify
𝑃𝑖 ’s intermediate representation (IR) within the JIT
compiler together with the optimization phases
executed while optimizing 𝑃𝑖 .

4. From the information so gathered, we pick out the
candidates of where the bug may reside among the
tracked optimization phases.

5. Finally, we rank these candidates to identify the most
likely phase for where the bug is located.

The use of an instruction-level trace, rather than a higher-
level trace obtained using system-specific options or tools
(e.g., using V8’s –trace-turbo-graph) is motivated by two
considerations. First, the use of system-specific features can
inhibit portability across systems. Second, these higher-level
traces may not provide sufficiently detailed information
about how the JIT compiler manipulates IR nodes. However,
it does have the downside that the collection of instruction-
level traces can be expensive in both time and space.

The remainder of this section describes each of these steps
in more detail.

4.2 Modified PoC Generation

Conceptually, we can think of the process of automatic bug
localization as taking the code involved in a buggy execution
and determining which portions of it might contain the bug
and which portions definitely do not. The greater the amount
of code that can be excluded as “definitely not buggy” the
better the bug localization. To do this, we need a way to
distinguish possibly-buggy code from definitely-not-buggy
code. For manual debugging, software developers might use
their knowledge of the application code and/or programming
language to do this, but this does not seem easily automat-
able. A more easily automated approach, pioneered by Liblit
[23–25], is to compare a set of buggy program executions
with a set of non-buggy executions to identify execution be-
haviors that are common to the buggy executions but not the
non-buggy ones. This requires multiple program executions,
which requires multiple inputs.

In our case, unfortunately, we have only a single PoC
input.1 To deal with this situation, we modify the original
PoC input to create a set of additional input programs. This
modification process is guided by the following constraints.

1. To ensure that the newly generated programs are syn-
tactically correct, we modify the abstract syntax tree
(AST) of the original PoC rather than its source code.
We apply tree transformations that ensure that the
result is also a valid AST, then map the modified AST
back to source code.

2. To ensure semantic similarity between the newly gen-
erated programs and the original PoC, all AST node
modifications are constrained to preserve the type of
the node. Specifically, this means that a literal can only
be replaced by another literal; a binary arithmetic oper-
ator can only be replaced by another binary arithmetic
operator; an integer constant can only be replaced by
another integer constant; a string can only be replaced
by another string; etc.

1It is of course possible that there may be multiple PoC inputs submitted
for a particular JIT compiler bug, but this is not something we can count
on in general.

155

VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

3. JIT compiler optimizations are sensitive to the struc-
ture of the code being optimized, and large changes
to the input program can result in substantially dif-
ferent JIT compiler behavior, making it less useful for
automatic bug localization. To this end, we keep the
number of edits to the PoC code small. For example,
the prototype implementation described in Section 5
uses only a single AST modification to generate each
new program.

The second and third constraints produce programs that
are generally similar to the original PoC. This makes it likely
that the JIT optimizations they experience will resemble the
original PoC (though in generali, they will not be identical).
Example 4.1. Consider the PoC code shown in Figure 2.
The following are three of the new PoCs generated using
the modification process described above:

New program 1:
var a, b;
for (var i = 0; i < 100000; i++) {

b = 1;
a = i + +0; // Changed from '-' to '+'.
b = a;

}:
print(a === b);
gc();
print(a === b);

New program 2:
var a, b;
for (var i = 0; i < 100000; i++) {

b = 1;
a = i + -1; // Changed from '0' to '1'.
b = a;

}
print(a === b);
gc();
print(a === b);

New program 3:
var a, b;
for (var i = 0; i < 100000; i++) {

b = 1;
a = i & -0; // Changed from '+' to '&'.
b = a;

}
print(a === b);
gc();
print(a === b);

2

4.3 Correct and Incorrect Execution of PoCs

After generating new PoCs as described in the previous step,
we execute each generated program 𝑃 twice: once with JIT
optimization turned off (i.e., using only the interpreter) and
one with JIT optimization turned on. Since this work is con-
cerned only with JIT-compiler bugs, the interpreter-only

execution is considered to be “correct.” Thus, if 𝑃 has the
same observable behavior with and without JIT optimiza-
tion, the JIT compiler’s execution on input 𝑃 is deemed to
be non-buggy; otherwise it is deemed to be buggy.

The approach discussed above assumes that the AST mod-
ifications will generate a PoC variant that executes correctly.
While this cannot be guaranteed with absolute certainty, the
likelihood of obtaining a variant that executes without er-
rors can be increased by running the PoC generator a large
number of times. This issue is discussed further in Section 6.

4.4 Representing Optimization IR in Graphs

As mentioned earlier, we assume that the function(s) imple-
menting each JIT-compiler optimization phase is known to
the bug localization tool. Given an execution trace𝑇 for a JIT
compiler, we define the scope of a phase 𝜑 in 𝑇 as a subtrace
of 𝑇 that begins at the first instruction where a function im-
plementing the phase𝜑 is entered and ends at the instruction
where that function call returns. A phase may have multiple
distinct scopes in a trace, and a scope for a phase may be
nested within (i.e., be a subtrace of) scope for another trace.
We collect a machine-instruction-level trace of the JIT

compiler’s execution on each PoC code and analyze the trace
to determine (𝑖) the sequence of optimization phases exe-
cuted, and (𝑖𝑖) how these phases manipulate the input pro-
gram’s IR during JIT optimization. Algorithm 1 shows the al-
gorithm for this. The algorithm proceeds as follows. For each
instruction in the trace, we use the symbol table information
in the JIT compiler binary to map it to the corresponding
function name. We use this to identify the entry into and
return from the functions that implement each phase and
thereby identify the scope of each phase. This process of
phase identification is important as we are grouping the IR
nodes and the optimization activities when any modification
to the IR happened within the specific phase scope. We scan
the execution trace T and identify the instructions that gen-
erate or modify an IR node for each phase and we update
the graph𝐺 appropriately. We also identify instructions that
change any property of an IR node and update 𝐺 to record
this information. Our current implementation only considers
the property of a node that was removed from the IR and
disabled so that it will not be converted to a machine code.
At the end of the analysis, this produces an undirected graph
that represents the IR that the JIT compiler has generated
and optimized. The resulting graph𝐺 is then passed to next
step for analysis.

Example 4.2. Figure 3 illustrates the phase graph 𝐺 for
the PoC code shown Figure 2. A point to note is the large
number of IR nodes, and the density and complexity of their
structure, even for such a small and simple program. This
complexity is one of the factors that makes bug localization
in JIT compilers challenging. 2

156

Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

Algorithm 1: Optimization tracking on a graph
Input: An execution trace 𝑇
Result: Undirected graph 𝐺 that represents

optimized IR for 𝑇
1 function current_phase(𝐼):
2 𝑓 = function that instruction 𝐼 belongs to
3 if 𝑓 ≠ ⊥ and 𝑓 implements a phase 𝑝 then
4 if 𝐼 is the entry to function 𝑓 then
5 push 𝑝 on PhaseStack
6 return 𝑝;
7 else if 𝐼 is a return from function 𝑓 then
8 𝑝 = pop(PhaseStack)
9 return 𝑝;

10 else if PhaseStack is not empty then
11 return top(PhaseStack)
12 else
13 return ⊥

14 begin
15 𝑉 = ∅; /* the set of vertices of 𝐺 in the order of

generation */
16 𝐸 = ∅; /* the set of edges of 𝐺 */
17 𝐺 = (𝑉 , 𝐸)
18 PhaseStack = empty stack
19 for each instrucion 𝐼 in 𝑇 do
20 if 𝐼 generates a new IR node then
21 create a new vertex 𝑣 corresponding to

this new node
22 𝑣 .properties = ∅
23 add 𝑣 to 𝑉 in the order of generation
24 else if 𝐼 adds a node 𝑢 to an existing node 𝑣

then
25 add an edge (𝑢, 𝑣) to 𝐸
26 else if 𝐼 removes a node 𝑢 from an existing

node 𝑣 then
27 remove the edge (𝑢, 𝑣) from 𝐸

28 else if 𝐼 changes a property 𝑞 of an existing
node 𝑣 then

29 𝑝 = current_phase(𝐼)
30 add (𝑞, 𝑝) to 𝑣 .properties

4.5 Phase Graph Analysis

The next step of our analysis is to compare the phase graphs
constructed in the previous step to identify differences be-
tween the phase graphs for buggy and non-buggy executions
of the JIT compiler. As noted in Section 4.2, the different PoC
codes we consider are obtained by making a set of minimal

Figure 3. Phase graph for the PoC code of Section 3

edits to the original PoC, and so are structurally very similar
to the original PoC. Ideally, given two structurally similar in-
put programs where one results in a buggy execution in the
JIT compiler while the other gives a non-buggy execution,
the difference(s) between these execution behaviors—and,
therefore, in the corresponding phase graphs—should arise
only from the effects of the bug, thereby allowing us to local-
ize the bug. However, the situation is complicated by the fact
that the behavior of a JIT compiler can be highly sensitive
to the input program, such that even small differences in the
input program can cause significant differences in the behav-
ior of the JIT compiler. In particular, the set of optimizations
performed by the JIT compiler can be quite different. Such
differences in optimization include: (1) different transfor-
mations applied to the generated IR nodes within the same
optimization phase; (2) some optimization phases are not
triggered; or (3) some additional optimization phases are
triggered. The goal of the phase graph analysis phase is to
compare the differences between phase graphs and identify
the differences between them. We then use the differences
so identified to find candidate locations where the bug may
be residing.

To this end, let Φbuggy denote the set of phase graphs cor-
responding to buggy executions of the JIT compiler for the
set of PoCs we are analyzing, and Φnonbuggy denote the set of
phase graphs corresponding to non-buggy executions, de-
termined as discussed in Section 4.3. We consider pairs of

157

VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

phase graphs (𝑔1, 𝑔2) where 𝑔1 ∈ Φbuggy and 𝑔2 ∈ Φnonbuggy ,
and use Algorithm 2 to determine where 𝑔1 and 𝑔2 differ.

Algorithm 2: Graph analysis to find the differ-
ences

Input: Phase graph 𝑔1 = (𝑉1, 𝐸1), phase graph
𝑔2 = (𝑉2, 𝐸2)

Result: Set of phase candidates 𝐶
1 function get_phase_diff(𝑔1, 𝑔2):
2 return (𝑔1 .phases − 𝑔2.phases) ∪

(𝑔2.phases − 𝑔1.phases)
3 function get_node_diff(𝑔1, 𝑔2,𝐶, 𝑖):
4 if 𝑠𝑖𝑧𝑒 (𝑣1𝑖 .𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑_𝑛𝑜𝑑𝑒𝑠) ≠

𝑠𝑖𝑧𝑒 (𝑣2𝑖 .𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑_𝑛𝑜𝑑𝑒𝑠) then
5 add 𝑣1𝑖 .phase to 𝐶
6 else
7 for 𝑗 = 0 to

size(𝑣1𝑖 .𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑_𝑛𝑜𝑑𝑒𝑠) − 1 do
8 if 𝑣1𝑖 .𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 𝑗 ≠

𝑣2𝑖 .𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 𝑗 then
9 add 𝑣1𝑖 .phase to 𝐶

10 if 𝑣1𝑖 .𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ≠ 𝑣2𝑖 .𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 then
11 add 𝑣1𝑖 .phase to 𝐶

12 begin
13 𝐶 = get_phase_diff (𝑔1, 𝑔2)
14 for 𝑖 = 0 to size(𝑔1) − 1 do
15 get_node_diff (𝑔1, 𝑔2,𝐶, 𝑖)

Suppose that 𝑔1 ∈ Φbuggy and 𝑔2 ∈ Φnonbuggy . The
get_phase_diff function identifies the differences in phases
between two graphs. In other words, a phase exists in one
graph, but not in the other. The get_node_diff function
compares the nodes in two graphs sequentially for three
different things to set the two nodes are different. This is
because the nodes are generated sequentially following the
order of phases executed, which means that if two exactly
same PoCs are run at a different time and obtained graphs
from them, these two graphs’ node and phase orders are
equal.

The criteria we use to compare two nodes for equality are
(1) the number of nodes that are attached (line no.4), (2) the
nodes that are attached also matches (line no.8), and (3) the
properties of nodes (line no.10). If any of them fails to be
equal, then the two nodes are considered as not equal and
added to the candidates set (line no. 5, 9, and 11).

4.6 Candidate Selection

The graph analysis step described in the previous section
allows us to compare the phase graphs for a correct and an

incorrect execution and determine the set of optimization
phases that are different between these executions. We refer
to this as the difference set between the two-phase graphs.
Given sets of phase graphs Φbuggy and Φnonbuggy , correspond-
ing to the buggy and non-buggy executions respectively, we
use this graph analysis to compute, for each 𝑔𝑖 ∈ Φnonbuggy
and 𝑔 𝑗 ∈ Φbuggy , the size of the difference set between 𝑔𝑖
and 𝑔 𝑗 . To identify the set of possible optimization phases
that may contain the bug, we select a pair (𝑔𝑖 , 𝑔 𝑗) whose
difference set is the smallest among all such pairs. The re-
sulting difference set is taken to be the set of possible buggy
phases. We select a pair of phases with the smallest number
of differences because we want to find the graphs that are
closest to each other in terms of computation and optimiza-
tion such that one corresponds to the correct execution of
the JIT compiler while the other corresponds to an incorrect
execution. If there are multiple pairs with minimum values,
we choose one of them arbitrarily.

Example 4.3. Suppose that our set of phase graphs is
{𝐺1,𝐺2, . . . ,𝐺9}, where Φbuggy = {𝐺1,𝐺2,𝐺3,𝐺4,𝐺5,𝐺6} and
Φnonbuggy = {𝐺7,𝐺8,𝐺9}. In the table 𝑇 shown below, the
value in the cell 𝑇 (𝑖, 𝑗) represents the size of the difference
set between the graphs 𝑔𝑖 ∈ Φnonbuggy and 𝑔 𝑗 ∈ Φbuggy . For
example, graphs 𝐺1 and 𝐺7 differ in 11 optimization phases.

Φbuggy
𝑇 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6

Φnonbuggy

𝐺7 11 12 4 8 17 19
𝐺8 13 7 9 12 16 14
𝐺9 7 4 6 22 21 11

Each entry in this table is computed using Algorithm 2.
We can see that 𝑖 = 7 and 𝑗 = 3 minimizes the value of
𝑇 (𝑖, 𝑗). Thus, the set of possible buggy phases is given by the
difference set between 𝐺7 and 𝐺3. 2

4.7 Ranking the Candidates

The ranking of candidate phases from most likely to the
least likely phase where the bug may reside is decided by
two criteria:

1. If a phase 𝜑 ∈ 𝐶 , where 𝐶 is a set of candidate phases,
such that 𝜑 ∈ 𝐺𝑥 and 𝜑 ∉ 𝐺𝑧 , then 𝜑 is ranked higher
than other candidates. This is the most straightforward
case because this missing phase is the one that makes
difference in the output. For example, let’s say 𝐺𝑥 is
a graph from incorrectly executed code and 𝐺𝑧 is a
graph from the correctly executed graph. Then, it is
somewhat clear that the additional phase 𝜑 execution
caused the incorrect output as not having this phase
executed gave correct execution.

2. If there are more than one missing phases or no miss-
ing phases that are in C, then we rank them by the
order that the phase was executed. This is because
there is a possibility that the following phases in the

158

Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

Table 1. Bug reports considered for our evaluation
Report# Date V8 version Problem summary

5129 June 2016 8.3.1 MachineOperatorReducer changes x - y < 0 to x < y which is not safe
when x - y can overflow [4]

8056 Aug. 2018 7.0.0 Function reducer assumes that the prototype is an initial one and has no
element, but does not implement a check for this assumption [5].

791245 Dec. 2017 6.5.0 Write barrier to heap is sometimes incorrectly eliminated [27]
961237 May 2019 7.6.0 null is truncated to +0 even in contexts such as -0 == null because it

was not handling the TypeCheck correctly [6]
1072172 April 2020 8.4.0 In the Typer phase Math.max and Math.min generate the wrong type by

mistakenly removing the Type::MinusZero property of the input nodes.
[7]

candidate are impacted by the first place of the phase
that has a bug as a result from one phase flows to the
next.

4.8 A Concrete Example

This section discusses a concrete example of the application
of the bug localization steps discussed above in the context
of our prototype bug localization tool, which is described in
Section 5.1. We focus on the bug discussed in Section 3 (bug
report 791245 [27]).

4.8.1 PoC Generation. The first step of the process is to
generate a number of input programs that are variants of the
original PoC, as described in Section 4.2; for our experiments,
we specify a maximum of 20 such variants. Since we want
each such variant to be only minimally different from the
original PoC, we specify that each such variant should be
only one edit different from the original. This ensures that,
although the variant PoC codes are all different from each
other, the computations of the JIT-compiler are nevertheless
close to each other. In practice, the number of variant PoCs
generated may be less than the limit of 20 because it is possi-
ble for a particular variant to be generated more than once,
in which case duplicates are discarded.

4.8.2 GraphGeneration andAnalysis. The next part of
the prototype is to generate phase graphs from the execu-
tion traces for each newly generated input PoC codes, as
described in Section 4.4. These graphs represent the IR that
the JIT compiler generates and optimizes. In our experiment,
we generated a total of 20 graphs, of which 8 correspond to
non-buggy executions of the JIT-compiler and 12 correspond
to buggy executions. We then analyze pairs of phase graphs,
from the buggy and non-buggy executions, to identify the
differences between their optimization phases (Section 4.5).
For the particular bug report under discussion, the smallest
difference sets obtained by this analysis had two candidate
buggy phases while the largest difference sets had five can-
didate buggy phases.

4.8.3 Selecting the Candidates. The smallest difference
set obtained from the previous step contains the follow-
ing two candidate buggy phases: SimplifiedLowering
and GenericLowering. The largest difference set con-
tains the following five candidate phases: Inlining,
LoopPeeling, SimplifiedLowering, GenericLowering,
and EffectControlLinearization. Our algorithm selects
the smallest set as the set of possible buggy phases, namely:
{SimplifiedLowering, GenericLowering}.

The other phases that occur in the largest difference set
but not in the smallest one, e.g., Inlining or LoopPeeling,
arise due to different optimizations applied by the JIT com-
piler due to differences in the execution behaviors of some
of the PoC variants created by our tool. Our goal is to iden-
tify optimization phases that are consistently analyzed as
differences across all the PoC variants. For this reason, we
choose the phases occurring in the smallest difference set.

4.8.4 Ranking the Candidates. The final step is to rank
the candidate buggy phases identified in the previous step.
We use the ranking algorithm discussed in Section 4.7 for this.
We first check each optimization phases in the minimum can-
didate phases to find out whether any of them is missing in
one phase graph but captured in the other. In our result, both
phases are found to occur in both graphs. We next check the
execution order of the phases: a phase that is executed earlier
is ranked higher. In this example, SimplifiedLowering is
found to be executed before GenericLowering. The ranking
on the candidate phases generated by our tool is therefore

1. SimplifiedLowering
2. GenericLowering

We checked the bug report and the Github repository
commit to find out whether this result matches the phases
where the bug was fixed. In this example, it turns out that
the actual buggy phase is SimplifiedLowering, i.e., the
top-ranked candidate output by our tool: the bug reporter
has reported that this bug is an optimization bug that has
to do Simplified-lowererer IrOpcode::kStoreField,
IrOpcode::kStoreElement [27].

159

VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

Table 2. Accuracy of bug localization
Report no. Possible buggy phases identified

by our tool (in descending order
of rank)

Actual buggy phase

5129

1. Inlining
2. SimplifiedLowering
3. GenericLowering
4. EarlyOptimization

EarlyOptimization

8056
1. Inlining
2. TypedLowering
3. LoopPeeling

Inlining

791245 1. SimplifiedLowering
2. GenericLowering SimplifiedLowering

961237

1. SimplifiedLowering
2. GenericLowering
3. EffectControlLinearization
4. LoopPeeling

SimplifiedLowering

1072172 1. Typer
2. SimplifiedLowering Typer

5 Evaluation
5.1 A Prototype Implementation

We evaluated our ideas using a prototype implementation
and ran our experiments on a machine with 32 cores (@
3.30 Ghz) and 1 TB of RAM, running Ubuntu 20.04.1 LTS.
We used a dynamic analysis tool built on top of Intel’s Pin
software (version 3.7) [28] for program instrumentation and
collecting instruction-level execution traces; and XED (ver-
sion 8.20.0) [19] for instruction decoding [19]. Additionally,
we used esprima-python [14] to generate the syntax-tree
for JavaScript code; and escodegen [38] to regenerate the
JavaScript code from the syntax-tree.

Our prototype targets Google’s JavaScript engine V8, fo-
cusing in particular on TurboFan, V8’s JIT compiler. The
objective of our experiments is to determine the accuracy
of our algorithm in automatically localize bugs to phase
level in such a large and complex JIT compiler system. We
used a number of bug reports from the V8 bug report site,
bugs.chromium.org, to check whether the candidate buggy
phases identified by our prototype match the place where
the bug has been fixed as mentioned in the reports.
The bug reports we selected for our evaluation focused

on incorrect optimized code generated by the JIT compiler;
in our experience, such bugs are especially challenging to
localize and can potentially benefit the most from automatic
localization. They were based on the following criteria.

1. The bug resides in the JIT compiler source code. In
other words, the misbehavior (i.e. system crash or in-
correct output) is not caused by the bug in other parts
of the system, such as interpreter or parser, etc.

2. An extension criteria from the first one, we selected
a bug report that produces different output behavior
in the optimized code from the interpreted code. For

example, the interpreted execution returns a boolean
value true while the optimized code returns a value
false. This confirms that the problematic behavior is in
fact due to incorrect optimization by the JIT compiler.

3. If a bug causes a crash during the optimization process,
we exclude the bug report; whereas we select the bug
report that indicated that the crash happens during
the execution of optimized code. This is because if
the system crashes during the optimization process, it
usually gives a stack trace from the crashed function,
which is, not easy, but somewhat straightforward to
localize the bug. However, if the system crashes during
the execution of optimized code, it is not so trivial to
localize the bug in the optimizer as the information
about who optimized the crashed code is not sufficient.

4. Finally, the misbehavior in the optimized code is due to
incorrect optimization on the IR nodes. This is because
we are comparing the differences in the IR nodes. If
the bug resides outside of the IR node generation or
modification, our algorithm is not suitable. Therefore,
we studied the fixes that the V8 team has made, and if
the fix was made on the code that has to do with the
IR node then we select the bug report.

The bugs we considered in our evaluation are described in
Table 1. For each such bug report, we proceeded as follows.

1. We compiled the appropriate version of V8 and con-
firmed that we could manually replicate the buggy
behavior described in the PoC given as part of the bug
report.

2. We used our tool to generate a ranked list of possible
buggy phases.

3. We obtain the ground truth of the actual location of the
bug using the next released version of V8 where the

160

Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

bug has been fixed. We use two different approaches
for this:
a. We compare the fixed source code in the new version

with the buggy code in the old version to identify
code changes, and thereby determine the location
of the buggy phase. This is done with code where it
is straightforward to identify the phase, e.g., if the
fixed code is under simplified-lowering or typer file,
etc.

b. The second approach is to locate the source code
where the bugwas fixed and add amarker that can be
used to identify that code fragment in an instruction-
level execution trace of the progam trace. A marker
is a value that is (𝑎) very unlikely to naturally gener-
ated during the program execution (e.g., unsigned
long long xyz = 0x3f4f5f6f where xyz is a
new variable); and (𝑏) that does not change the pro-
gram’s execution behavior. We then collect an execu-
tion trace, use the marker to find the code fragment
that was marked, and use the current_phase function
shown in Algorithm 1 to determine its phase. This
approach is used to confirm that first phase identi-
fication was correct and for cases where the same
functions are used multiple times across different
phases.

4. We compare the possible bug locations obtained from
our tool with the ground-truth location of the fixed
bug.

5.2 Accuracy of Bug Localization

Table 2 compares the ranked list of candidate buggy phases
obtained from our tool against the actual buggy phases iden-
tified from examining the code of the fixed versions. The
first column is the report number identifying the bug. The
second column of the table shows the output from our tool
giving the possible buggy phases in descending order of rank.
The third table gives the ground truth location of the bug at
the phase level. In this table, the number of candidate bug
locations (column 2) is different for different bugs considered.
This is because (𝑎) different inputs result in the invocation
of different optimizations, e.g., loop-peeling is not triggered
for code without loops; (𝑏) the number of differences found
between the graphs for buggy and non-buggy executions of
the JIT compiler are different for different inputs; and (𝑐) we
only select the smallest difference set.
It can be seen from Table 2 that for each of the five bugs

considered, the actual buggy phase is in fact identified as
one of the possible locations by our tool. For four out of
the five bugs, the phase containing the actual bug is in fact
ranked at the top of the list of possible bug locations obtained
using our tool. For the fifth bug (report no. 5129 [4]), the
actual buggy phase is ranked fourth in the ranked list of
candidates given by our tool. The reason for this is that

our ranking algorithm prioritizes candidate buggy phases
in terms of their relative execution order. For this bug, the
EarlyOptimization phase was executed after other phases,
resulting in its lower ranking. An additional possible source
of imprecision in our tool in this example is that the buggy
function, MachineOperatorReducer::Reduce(), was also
invoked by the other higher-ranked phases to modify the
input program’s IR. We are currently working on improving
and refining our ranking algorithm.
There are roughly 30 optimization phases in TurboFan

(the exact number differs between different V8 versions). Out
of these 30 or so phases, our tool is able to isolate just a small
number as being the potentially buggy ones; and in four out
of the five bug reports we considered, our tool accurately
lists the actual buggy phase at the top of its list of candidates.

As noted earlier, TurboFan is a large, complex, and mature
software system. To provide some context for the accuracy
numbers from the previous section, it is useful to consider
the size of the code under consideration. The complexity of
the code base makes it nontrivial to give static line counts for
the source code. Instead, Table 3 gives dynamic instruction
counts from the execution traces we collected. The columns
in this table are as follows:
• Sum: the total number of instructions executed over all
optimization phases.

• Max: the maximum number of instructions executed by
any single phase across all optimization phases.

• Med: the median number of instructions executed by any
single phase

• Min: the minimum number of instructions executed by
any single phase.

• Phases: the total number of optimization phases executed
during the JIT compilation.

It can be seen that while the minimum instruction counts
are small, the median instruction count for the optimization
phases ranges from 35K to 57K instructions. Overall, the
optimization phases in the JIT compiler incur between 3.2M
and 8.6M instructions. Additionally, although not all opti-
mization phases apply optimizations to the IR nodes, all the
phases get executed to evaluate the node to decide whether
the evaluated node requires optimization or not. And, these
executed, but did not perform optimization, phases still take
large portions of the instructions. Moreover, it is not clear
which optimization phases were executed to actually opti-
mize the IR nodes until we analyze the IR, which our imple-
mentation identifies all the executed phases (approx. 30-ish)
and identifies only those that actually performed optimiza-
tions to the IR nodes (approx. 9 to 12-ish) and narrow down
to the potentially buggy phases (approx. 1 to 5-ish).

6 Discussion
As the evaluation results from the previous section indicate,
our algorithm is effective in localizing JIT compiler bugs

161

VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

Table 3. Size of Phases per V8 Bug Report PoC(dynamic instruction count)
Dynamic instruction counts

Report# Sum Max Med Min Phases
5129 5,628,850 269,335 35,393 950 29
8056 5,456,457 326,382 30,944 516 30

791245 3,237,583 406,720 57,374 696 33
961237 5,591,942 271,468 35,687 401 33
1072172 8,650,393 383,706 53,329 1380 34

down to the level of individual optimization phases. It would
be desirable, however, to be able to further narrow the possi-
ble bug location, e.g., down to the function level. This is a
limitation of our algorithm that we are currently working
on improving.

6.1 Ambiguity in Function Calls

There are two main reasons our algorithm is currently un-
able to localize bugs to the level of individual functions. The
first is that, while we are able to identify clearly the entry
and exit points for optimization phases, call-return relation-
ships between functions can sometimes be tricky to resolve.
For example, GCC’s sibling call optimization (which is en-
abled by default at optimization levels -O2 and higher) can
replace some function calls with jumps, where control does
not come back to the originating function. Additionally, as-
signing function-level blame for IR node modifications can
be tricky. For example, suppose we have the following func-
tion call chain that results in the buggy modification of an
IR node within the function ℎ():

𝑓 () → 𝑔() → ℎ()
In this case, the bug may be that 𝑔() incorrectly calls ℎ(), but
it is also possible that the problem really is in the function
𝑓 ().
Moreover, further narrowing down the buggy location

can also be done by learning more about the node properties.
So far, we are only identifying the properties of a node by
the function names. V8 has some specific functions that
access node to add/remove/modify the properties. We seek
these functions and identify which node that it’s accessing
to add/remove/modify the node properties. However, some
node properties can be modified directly without calling
the modifier functions, which we are facing difficulties to
capture the pattern in the trace instructions. Thus, we are
continuing our research to come up with a solution that can
capture the node properties in general to solve this problem.

6.2 Scope of the Current Approach

Additionally, our approach has a scope where the bug re-
sides in the optimization phase functions that optimize the IR
nodes. As mentioned in the evaluation section, where it dis-
cusses how the bug reports were selected, our approach has
limitations in localizing the bug in the JIT compiler where

it does not generate or modify the IR node. More explicitly,
for example, if the bug is in the JIT compiler code where it
generates some faulty object that is not related to the IR node,
but will be used in the optimized code, then our tool won’t
be able to recognize such bug. Therefore, we are currently
investigating improving our approach to recognizing all de-
clared objects not only the IR nodes, which are in fact just
special kind of objects, and analyze them. This can, possibly,
be done by recognizing the patterns of memory allocation
and manipulations for objects in the low-level instructions.

6.3 Assumption in the Correct Execution

Finally, our approach currently assumes that at least one
modified PoC will execute correctly. While this was true
for the experiments described, it cannot be guaranteed in
general. Possible solutions to this include allowing more
than one edit operation to the AST of the original PoC (our
tool currently limits itself to a single edit). This is a problem
we are currently investigating.

7 Related Work
There is a considerable body of work on automated bug lo-
calization, which we summarize below. To the best of our
knowledge, none of this work considers code that is dynam-
ically generated, as in the case of JIT compilers, and so is
inapplicable to the problem we address in this paper. The
issue with JIT compiler bugs is that they result in the gen-
eration of incorrect code that causes the application being
optimized to crash or compute incorrect results. It seems to
us that, in order to effectively localize bugs in such systems,
the bug localization system needs to model the causal depen-
dencies between the data manipulated by the JIT compiler
(e.g., the program IR being optimized) and the execution
behavior of the resulting dynamically generated application
code. Existing approaches to automated bug localization do
not do this.
Automated bug localization approaches can be broadly

classified as either static or dynamic. Static bug localization
approaches typically use information retrieval techniques
[29, 35, 43]. We are not aware of applications of static bug
localization to software systems such as JIT compilers that
generate code during execution. Dynamic bug localization
techniques, by contrast, use the dynamic analysis to monitor

162

Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

the execution behavior of the program on buggy and non-
buggy inputs [8, 15, 20, 21, 23–26]. The work described in
this paper falls in the latter category. More recently, there
has been a great deal of interest in the application of machine
learning techniques to automatic bug localization [22, 32, 33,
41, 42]. As noted above, these works do not consider systems
that generate code during program execution.
Research on debugging optimized code has been carried

out by a number of researchers [2, 3, 17], but to the best of
our knowledge all of this works are to debug an optimized
code at source-level. The approaches include mapping the
binary to source-level, modifying the compiler to produce
more information about the optimizer, or deoptimizing the
optimized code to retrieve the source-level code, etc. How-
ever, these approaches are not very suitable when they have
to debug optimized code that was generated by JIT com-
pilers, which compiles byte-code, as they won’t be able to
retrieve the source-level code from the optimized code. In-
stead, they will have to figure out the mappings between
the optimized code to byte-code, then again mapping the
byte-code to source-level, which such an approach is not
implemented in any of the papers.

Tice and Graham proposed another method of debugging
the optimized codes. Instead of directly mapping the opti-
mized code, which is in binary, to the original source code,
it generates a new source code that represents optimized
code[39]. Nonetheless, this approach, again, shows the limi-
tation as (1) JIT compilers does not generate code from the
source code, but from byte-codes, so it won’t be able to re-
generate the source code that represents the optimized code
and (2) the complexity of optimization has increased hugely
since the paper was written.

8 Conclusion
Many widely-deployed modern programming systems use
just-in-time compilers to improve performance. However,
we are not aware of any existing automated systems to au-
tomatically locate JIT compiler bugs in a large and complex
JIT-based system. This paper discusses how this problem
can be addressed by automatically capturing the patterns of
the JIT compiler’s optimization phases and the intermediate
representations that it generates and optimizes as well as an-
alyzing them by comparing the captured IRs and rank them
in the order of most likely location to least likely locations
for the bug.

Although there are plenty of spaces for improving our al-
gorithm and the implementation to more precisely localizing
the bug, our experiments with a prototype implementation
on a number of real-world examples show that re-generating
JIT compiler’s IRs and analyzing them to rank the optimiza-
tion phases led to localizing the bug to a smaller part of the
system.

Acknowledgments
This research was supported in part by the National Science
Foundation under grant no. 1908313.

References
[1] Mohammed Aboullaite. 2017. Understanding JIT compiler (just-in-time

compiler). https://aboullaite.me/understanding-jit-compiler-just-in-
time-compiler/

[2] Ali-Reza Adl-Tabatabai and Thomas Gross. 1996. Source-Level Debug-
ging of Scalar Optimized Code. In SIGPLAN Notices. 33–43.

[3] Gary Brooks, Glibert J. Hansen, and Steve Simmons. 1992. A new
approach to debugging optimized code. PLDI ’92: Proceedings of the
ACM SIGPLAN 1992 conference on Programming language design and
implementation (1992), 1–11.

[4] bugs.chromium.org. 2016. Issue 5129: Turbofan changes 𝑥 − 𝑦 < 0
to 𝑥 < 𝑦 which is not equivalent when (𝑥 − 𝑦) overflows. https:
//bugs.chromium.org/p/v8/issues/detail?id=5129

[5] bugs.chromium.org. 2018. Issue 8056: [turbofan] Optimized Ar-
ray#indexOf and Array#includes ignore a prototype that is not initial.
https://bugs.chromium.org/p/v8/issues/detail?id=8056

[6] bugs.chromium.org. 2019. Issue 961237: Security: jit difference on
comparison in d8. https://bugs.chromium.org/p/chromium/issues/
detail?id=961237

[7] bugs.chromium.org. 2020. Issue 1072171: Security: missing the -0 case
when intersecting and computing the Type::Range in NumberMax.
https://bugs.chromium.org/p/chromium/issues/detail?id=1072171

[8] Trishul M Chilimbi, Ben Liblit, Krishna Mehra, Aditya V Nori, and
Kapil Vaswani. 2009. HOLMES: Effective statistical debugging via
efficient path profiling. In 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 34–44.

[9] Adam C. Conrad. 2018. How JavaScript Engines Work. https:
//adamconrad.dev/blog/how-javascript-engines-work

[10] Max Copperman. 1992. Debugging Optimized Code Without Being
Misled.

[11] Apple developers. [n.d.]. JavaScriptCore. https://developer.apple.com/
documentation/javascriptcore

[12] Google V8 developers. [n.d.]. V8. https://v8.dev/
[13] Microsoft Chakra developers. [n.d.]. ChakraCore. https://github.com/

chakra-core/ChakraCore
[14] JS Foundation. [n.d.]. esprima-python. https://github.com/Kronuz/

esprima-python
[15] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. 2005.

Locating faulty code using failure-inducing chops. In Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering. 263–272.

[16] Franziska Hinkelmann. 2017. Understanding V8’s Bytecode. https:
//medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775

[17] Urs Holzle. 1992. Debugging optimized code with dynamic deopti-
mization. ACM Sigplan Notices 27 (1992). Issue 7.

[18] Fedor Indutny. 2015. Sea of Nodes. https://darksi.de/d.sea-of-nodes/
[19] Intel Corp. [n.d.]. Intel XED. https://intelxed.github.io.
[20] Lingxiao Jiang and Zhendong Su. 2007. Context-aware statistical

debugging: from bug predictors to faulty control flow paths. In Pro-
ceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering. 184–193.

[21] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. 2010. Instru-
mentation and sampling strategies for cooperative concurrency bug
isolation. In Proceedings of the ACM international conference on Object
oriented programming systems languages and applications. 241–255.

[22] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N
Nguyen. 2017. Bug localization with combination of deep learning and
information retrieval. In 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC). IEEE, 218–229.

163

https://aboullaite.me/understanding-jit-compiler-just-in-time-compiler/
https://aboullaite.me/understanding-jit-compiler-just-in-time-compiler/
https://bugs.chromium.org/p/v8/issues/detail?id=5129
https://bugs.chromium.org/p/v8/issues/detail?id=5129
https://bugs.chromium.org/p/v8/issues/detail?id=8056
https://bugs.chromium.org/p/chromium/issues/detail?id=961237
https://bugs.chromium.org/p/chromium/issues/detail?id=961237
https://bugs.chromium.org/p/chromium/issues/detail?id=1072171
https://adamconrad.dev/blog/how-javascript-engines-work
https://adamconrad.dev/blog/how-javascript-engines-work
https://developer.apple.com/documentation/javascriptcore
https://developer.apple.com/documentation/javascriptcore
https://v8.dev/
https://github.com/chakra-core/ChakraCore
https://github.com/chakra-core/ChakraCore
https://github.com/Kronuz/esprima-python
https://github.com/Kronuz/esprima-python
https://medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775
https://medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775
https://darksi.de/d.sea-of-nodes/

VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

[23] Benjamin Liblit. 2004. Cooperative Bug Isolation. Ph.D. Dissertation.
University of California, Berkeley.

[24] Ben Liblit, Alex Aiken, Alice X Zheng, and Michael I Jordan. 2003. Bug
isolation via remote program sampling. ACM Sigplan Notices 38, 5
(2003), 141–154.

[25] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I
Jordan. 2005. Scalable statistical bug isolation. Acm Sigplan Notices 40,
6 (2005), 15–26.

[26] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P Midkiff.
2005. SOBER: statistical model-based bug localization. ACM SIGSOFT
Software Engineering Notes 30, 5 (2005), 286–295.

[27] lokihardt. 2017. Issue 791245: Security: V8: JIT: Simplified-lowererer
IrOpcode::kStoreField, IrOpcode::kStoreElement optimization bug. https:
//bugs.chromium.org/p/chromium/issues/detail?id=791245

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. 2005. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In Proc. ACM Confer-
ence on Programming Language Design and Implementation (PLDI).
Chicago, IL, 190–200.

[29] Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. 2010. Bug
localization using latent Dirichlet allocation. Information and Software
Technology 52, 9 (2010), 972 – 990.

[30] Benedikt Meurer. 2017. An Introduction to Speculative Optimization
in V8. https://ponyfoo.com/articles/an-introduction-to-speculative-
optimization-in-v8

[31] Mozilla. [n.d.]. SpiderMonkey: The Mozilla JavaScript runtime. https:
//developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

[32] Zhendong Peng, Xi Xiao, Guangwu Hu, Arun Kumar Sangaiah, Mo-
hammed Atiquzzaman, and Shutao Xia. 2020. ABFL: An autoencoder
based practical approach for software fault localization. Information
Sciences 510 (2020), 108–121.

[33] Sravya Polisetty, Andriy Miranskyy, and Ayşe Başar. 2019. On Use-
fulness of the Deep-Learning-Based Bug Localization Models to Prac-
titioners. In Proceedings of the Fifteenth International Conference on

Predictive Models and Data Analytics in Software Engineering. 16–25.
[34] Jordan Rabet. 2017. Browser security beyond sand-

boxing. Microsoft Windows Defender Research.
https://cloudblogs.microsoft.com/microsoftsecure/2017/
10/18/browser-security-beyond-sandboxing.

[35] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E
Perry. 2013. Improving bug localization using structured information
retrieval. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 345–355.

[36] Jaroslav Sevcik. 2016. Deoptimization in V8. https://docs.google.
com/presentation/d/1Z6oCocRASCfTqGq1GCo1jbULDGS-w-
nzxkbVF7Up0u0/htmlpresent

[37] Jim Smith and Ravi Nair. 2005. Virtual machines: versatile platforms
for systems and processes. Elsevier.

[38] Yusuke Suzuki. [n.d.]. Edcodegen. https://github.com/estools/
escodegen

[39] Caroline Tice and Susan L. Graham. 1998. OPTVIEW: ANewApproach
for Examining Optimized Code. In Proceedings of ACM SIGPLANWork-
shop on Program Analysis for Software Tools and Engineering. ACM.

[40] Ben L. Titzer. 2015. Digging into the TurboFan JIT.
https://v8.dev/blog/turbofan-jit.

[41] Geunseok Yang, Kyeongsic Min, and Byungjeong Lee. 2020. Applying
deep learning algorithm to automatic bug localization and repair. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing
(SAC ’20). 1634–1641.

[42] Sai Zhang and Congle Zhang. 2014. Software Bug Localization with
Markov Logic. In Companion Proceedings of the 36th International Con-
ference on Software Engineering. Association for ComputingMachinery,
424–427. https://doi.org/10.1145/2591062.2591099

[43] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs
be fixed? more accurate information retrieval-based bug localization
based on bug reports. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 14–24.

164

https://bugs.chromium.org/p/chromium/issues/detail?id=791245
https://bugs.chromium.org/p/chromium/issues/detail?id=791245
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://docs.google.com/presentation/d/1Z6oCocRASCfTqGq1GCo1jbULDGS-w-nzxkbVF7Up0u0/htmlpresent
https://docs.google.com/presentation/d/1Z6oCocRASCfTqGq1GCo1jbULDGS-w-nzxkbVF7Up0u0/htmlpresent
https://docs.google.com/presentation/d/1Z6oCocRASCfTqGq1GCo1jbULDGS-w-nzxkbVF7Up0u0/htmlpresent
https://github.com/estools/escodegen
https://github.com/estools/escodegen
https://doi.org/10.1145/2591062.2591099

	Abstract
	1 Introduction
	2 Background
	2.1 Interpreters and JIT Compilers
	2.2 JavaScript Engine Pipeline

	3 A Running Example
	4 Research
	4.1 Overview
	4.2 Modified PoC Generation
	4.3 Correct and Incorrect Execution of PoCs
	4.4 Representing Optimization IR in Graphs
	4.5 Phase Graph Analysis
	4.6 Candidate Selection
	4.7 Ranking the Candidates
	4.8 A Concrete Example

	5 Evaluation
	5.1 A Prototype Implementation
	5.2 Accuracy of Bug Localization

	6 Discussion
	6.1 Ambiguity in Function Calls
	6.2 Scope of the Current Approach
	6.3 Assumption in the Correct Execution

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

