
An Adaptive Approach to Data Placement

David K. Lowenthal
Gregory R. Andrews

Department of Computer Science
The University of Arizona

Tucson, AZ 85721
fdkl,gregg@cs.arizona.edu

Abstract

Programming distributed-memory machines requires
careful placement of data to balance the computationalload
among the nodes and minimize excess data movement be-
tween the nodes. Most current approaches to data place-
ment require the programmer or compiler to place data
initially and then possibly to move it explicitly during a
computation. This paper describes a new, adaptive ap-
proach. It is implemented in the Adapt system, which takes
an initial data placement, efficiently monitors how well it
performs, and changes the placement whenever the moni-
toring indicates that a different placement would perform
better. Adapt frees the programmer from having to spec-
ify data placements, and it can use run-time information to
find better placements than compilers. Moreover, Adapt au-
tomatically supports a “variable block” placement, which
is especially useful for applications with nearest-neighbor
communication but an imbalanced workload. For applica-
tions in which the best data placement varies dynamically,
using Adapt can lead to better performance than using any
statically determined data placement.

1. Introduction

Distributed-memory machines—including parallel com-
puters and workstation clusters—are used to achieve scal-
able high performance computing. Programming these ma-
chines requires specifying both what can execute concur-
rently and when and how processes communicate. These
two problems are largely independent. We assume that pro-
cesses have already been specified—either by the program-
mer or by a compiler—and we consider the problems of how
data is placed initially in the memories of the processors and
how data moves during a computation.

The goal of this work is to determine data placements dy-
namically rather than requiring programmers or compilers

to make such decisions. Most current approaches determine
data placements statically. They can generally be divided
into two categories: using language primitives, such as the
ones in HPF [9], or compiler analysis, such as the work re-
ported in [1], [5], and [12]. Language primitives involve the
programmer in the choice of data placement; unfortunately,
the best placement may be difficult or impossible for the
programmer to determine. Compiler analysis also may not
be able to infer the best data placement.

This paper describes a completely dynamic approach to
data placement. Our approach has been implemented in
a prototype system called Adapt, which has the following
attributes:

� Given some initial data placement, Adapt monitors
the effect of the placement (with low overhead) and
changes it to a better one if needed.

� Neither the programmer nor the compiler need be
involved in the selection of the initial or new data
placements.

� Adapt supports new data placements, those with vari-
able sized blocks, that to our knowledge are not sup-
ported by current languages or compilers.

� Programs written using Adapt will run efficiently on
machines and networks with varying ratios of proces-
sor speed to network speed.

Adapt is given (or chooses) some initial data placement
and then monitors computation time and communication
overhead and computes delays on each node to determine
if a different placement would lead to a shorter completion
time for the overall computation. When it finds a better
placement, it changes to this new placement. Adapt con-
tinues to monitor the program, and if the characteristics of
the application change, it changes the placement again. The
ability to change placements during execution is especially



important for problems—such as particle-in-cell codes [6]—
for which the best data placement can vary over the course
of the application [17].

Adapt is currently implemented on a cluster of Sparc-1s
and supports iterative scientific applications, which com-
prise a large subset of computational science applications.
Performance on a network of workstations is such that Adapt
can outperform programs that use any statically determined
data placement on applications in which the benefit of dy-
namically redistributing the data outweighs the overhead of
redistribution. The Adapt version of a particle simulation
ran over 10% faster than the program with the best statically
determined placement when the particles tended to cluster.
Even when good placements can be statically determined,
Adapt is competitive; e.g., Adapt versions of Jacobi iteration
and LU decomposition are only slightly slower than the best
static counterparts, ranging from a best case of 1% slower
to a worst case of 13% slower.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the data placement problem and the range of
possible placements. Section 3 gives an overview of Adapt
and its implementation, and Section 4 presents performance
results. Finally, Section 5 describes related work and makes
a few concluding remarks.

2. Framework for Data Placement

A data placement is a mapping of the data elements in
a program to the memories of the nodes. There is some
initial placement when a program begins execution; it can
be changed, orremapped, in the middle of execution. The
ideal data placement minimizes the overall completion time
of an application. Because all nodes cooperate in order to
complete an application, the completion time of the slowest
node determines the completion time of the application.

Three factors affect the completion time of a node: com-
putation time, communication overhead, and delay. Com-
putation time is the time spent executing application code,
communication overhead is time spent executing low-level
code that copies messages to and from the network, and
delay is time spent waiting for other nodes to complete
their computation or respond to a message. The key for a
good data placement is balancing the computation between
the nodes—to minimize synchronization delay—while also
minimizing the number of messages—to minimize commu-
nication overhead and message delay.

We assume that any node can reference any data ele-
ment. We also assume theowner-computes rule [8]. This
means each data element has an “owner”, which is the only
node that updates the element; however, other nodes may
reference the element.

The elements of a data structure can be placed on the
nodes in numerous ways. However, the challenges of si-

multaneously balancing computational load and minimiz-
ing communication often conflict, as there is an interaction
between the two. For example, one placement extreme is
to put all data elements on one node; this will minimize
communication (there is none), but it also maximizes load
imbalance (all other nodes are idle), which leads to large
delays at synchronization points. The other extreme is to
assign elements randomly to nodes; this will (probabilisti-
cally) balance the load, but the lack of spatial locality will
most likely lead to a large amount of communication.

Between these extremes are several feasible data place-
ments. Adapt considers two—variable block and striped.
A variable block placement allocates a contiguous set of
approximately the same number of data elements on each
node. In applications such as Jacobi iteration, the block
sizes are equal, because each matrix cell contains a data
element, the workload is balanced, and the communication
is regular (this placement is calledBLOCK in HPF). On the
other hand, particle-in-cell codes [6] often require unequal
block sizes, because matrix cells can contain any number of
data elements (HPF has no equivalent placement).

A striped placement method allocates data elements
cyclically to the nodes (calledCYCLIC in HPF). Striped
placements can handle problems with changing workloads
well, because if the amount of work per element decreases
within the computation, a striped placement balances the
load without a need for remapping. However, striped place-
ments have fairly poor spatial locality, so they are typically
useful only when the amount of communication in an appli-
cation is (relatively) independent of the data placement. LU
decomposition is an example of an application with a chang-
ing workload and a placement-independent communication
pattern.

3. Adapt and its Implementation

The current Adapt prototype is implemented in concert
with the Distributed Filaments (DF) software kernel [4],
which uses a DSM for communication. The Adapt system
dynamically selects one of the data placements described in
Section 2. It is given some initial data placement by the
programmer or compiler (the current default isBLOCK) and
then employs three steps to determine whether this place-
ment is a good one or whether it should be changed. First,
Adapt gathers information about the communication pattern
and computation time for each loop body in the applica-
tion. Next, it uses this information to determine which
data placement is likely to minimize both communication
overhead and delay. Finally, it effects the new placement (if
necessary) and continues to monitor the computation in case
the amount of computation or communication later changes.
Below we discuss how Adapt monitors the computation, de-
termines a placement, and changes the placement.



3.1. Adapt Monitoring

Adapt gathers information about the communication and
computation in each loop body. Adapt monitors communi-
cation using DSM page faults and the DSM page table. In
particular, the system counts the number of messages that
each node sends and receives during one iteration of the
application program. From these counts—and architecture-
specific measures of the times it takes to send pages between
nodes and to service page requests—Adapt estimates the
time due to communication overhead and message delay on
each node.

Adapt determines the communication pattern by inspect-
ing the pattern of page faults on arrays in the page table.
Currently, Adapt recognizes two patterns:nearest-neighbor
andbroadcast. In the nearest-neighbor pattern, nodei needs
to communicate values with nodesi � � and i � �. This
pattern occurs on an array when (1) each node has a distinct
subset of exclusive-access pages of the array and (2) neigh-
boring nodes have read access to consecutive sets of pages
of the array, with each node owning one set.

A broadcast pattern means that one node writes a value,
there is a barrier synchronization point, and then all nodes
read the value. Adapt detects a broadcast pattern on an
array if there are a pair of loops that exhibit the following
characteristics: (1) in the first loop one node writes to a
subset of pages of the array, (2) in the second loop each
node has a distinct subset of exclusive-access pages of the
array, and (3) in the second loop all nodes read the subset of
pages that were written in the first loop.

Adapt gathers information about computation time by
instrumenting the application code to obtain the time each
node spends accessing the data elements it owns. These
times are combined at the next barrier synchronization point
to obtain the total computation time.

3.2. Adapt Algorithm

After gathering communication and computation infor-
mation for one iteration of an application, Adapt uses it
to choose a good data placement. In particular, given the
total computation timeT and the number of nodesP , the
ratioT�P represents the amount of computation each node
should perform for a perfectly balanced load. Adapt exam-
ines different ways that rows could be mapped to nodes to
achieve this ideal load. This is done using a simple bin-
packing procedure, which in turn depends on the communi-
cation pattern detected during the monitoring phase. When
the communication pattern is nearest-neighbor, Adapt packs
the bins so that each bin containsconsecutive rows and the
estimated total time on the node is as close as possible to
T�P . Adapt also investigates multiple-bin packings if the
load is not sufficiently balanced. When the communication

pattern is broadcast, the type of packing depends on the
workload. If the history of loop execution times shows a
constant workload, the same procedure as the one above is
used. On the other hand, if the execution times are chang-
ing, Adapt usesn�P bins on each node to effect aCYCLIC
style placement.

3.3. Changing the Data Placement

Once a new data placement has been chosen, Adapt
changes the data placement by reparameterizing the code
so that each node accesses different data. When a node
accesses data it does not own, page faults result; the under-
lying DSM then implicitly moves the data. The Filaments
package provides a simple and efficient mechanism for gen-
erating a new code parameterization (see [4] for details);
however, any generation method will do.

After a placement has been changed, Adapt continues
to monitor the application to detect when a different place-
ment might be better. (This can happen when characteristics
change during execution, as described in Section 4). A large
variance in the computation times suggests an imbalanced
load, which might require a placement that better balances
the load. An increase in the communication times suggests
excess communication, which might require a placement
with more locality. If either is detected, Adapt notifies the
nodes before the start of the next iteration. All nodes then
re-enable the monitoring phase and repeat the algorithm de-
scribed above to determine the new (if any) best placement.

4. Performance

This section reports the performance of Adapt on three
programs: Jacobi iteration, LU decomposition, and parti-
cle simulation. Jacobi iteration and LU decomposition are
examples of applications in for which it is possible to deter-
mine a good data placement statically. Particle simulation,
on the other hand, requires run-time support both to deter-
mine a good placement and possibly to change the placement
during the computation.

For each application we developed a program using
Adapt. For an accurate comparison, we also developed
a Distributed Filaments (DF) [4] program without the Adapt
subsystem. (Sequential programs were virtually identical to
the one-node DF programs.) Below, we briefly describe the
three applications and present the results of runs on 1, 2, 4,
and 8 Sparc-1 nodes connected by an Ethernet.

4.1. Jacobi Iteration

Jacobi iteration is an example of an application that has
a nearest-neighbor communication pattern and a load that
is perfectly balanced. In particular, each node needs to



Number of Nodes 1 2 4 8

Adapt Time (sec) 189 104 55.2 32.0
DF Time,BLOCK (sec) 188 104 54.6 30.4

Figure 1. Jacobi iteration, ���� ���, � � ����

Number of Nodes 1 2 4 8

Adapt Time (BLOCK) (sec) 547 322 210 185
Adapt Time (CYCLIC) (sec) 547 305 190 165

DF Time,CYCLIC (sec) 544 303 189 164

Figure 2. LU decomposition, ���� ���.

communicate only with its neighbors to exchange edges,
and the same amount of computation is performed on each
point of the matrix on each iteration. Hence, the best data
placement for this application isBLOCK, as all placements
with less locality incur more communication with no load-
balancing benefit.

The execution times for the two versions of Jacobi itera-
tion are shown in Figure 1. The Adapt program initiallyuses
BLOCK by default; after recognizing nearest-neighbor com-
munication, Adapt runs the bin-packing algorithm, which
approximately reproduces theBLOCK placement. The dif-
ference between this program and the DF program that uses
BLOCK is small because the placement Adapt chooses is
virtually identical to the initial placement, so remapping
consumes very little (if any) time.

4.2. LU Decomposition

LU decomposition is an example of an application in
which the load is not balanced. After a row is pivoted, it is
never accessed again; on iterationi, only an (n� i � �) by
(n� i� �) submatrix is accessed. The workload decreases
by one row on each iteration. On each iteration, every node
must read the pivot row (rowi), which is written by the
owner of rowi. Communication is constant over all data
placements. For these reasons, the best data placement for
this application isCYCLIC.

The execution times for LU decomposition are shown in
Figure 2. The first program, AdaptBLOCK, initially uses a
block placement. Near the beginning of the computation,
the work is evenly balanced, as most rows are still active.
Thus, after recognizing a broadcast communication pattern,
Adapt uses a variable block placement. However, the sys-
tem quickly detects an imbalanced load, re-enabling the
monitoring phase. At this point Adapt detects a decreasing
workload and changes to a striped placement. The second
program, AdaptCYCLIC, initially uses a cyclic placement.
The difference between AdaptBLOCK and the DFCYCLIC

Number of Nodes 1 2 4 8

Adapt Time (sec) 69.4 40.1 29.8 23.5
DF Time,BLOCK (sec) 69.1 47.5 38.4 32.4

DF Time,BC(n��P) (sec) 69.1 47.0 39.1 25.3
DF Time,BC(n��P) (sec) 69.1 48.5 34.2 26.2
DF Time,BC(n��P) (sec) 69.1 46.5 39.3 42.6

Figure 3. Particle simulation, grid 	�� 	�, 150
particles. (BC is short for the Fortran D style
BLOCKCYCLIC.)

program is the cost of the extra page faults necessary to
change the data placement at run time and the overhead of
initially using a variable block placement. In the Adapt
CYCLIC program, these overheads are not present and the
performance is very close to the DF program.

4.3. Particle Simulation

Our particle simulation program models the behavior of
MP3D [15]. We use a two-dimensional grid of space cells
and parameterize the movement of particles to facilitate ex-
perimentation. Although our implementation simplifies the
physics involved, the computational structure is the same as
MP3D.

This application is representative of programs where a
good data placement depends on information that is avail-
able only at run time and different placements might be better
at different time steps of the computation. The amount of
computation at each grid cell depends on how many particles
are in that cell, and the initial distribution of the particles is
read in at run time. Thus, static analysis cannot in general
determine a good data placement. Furthermore, if particles
cluster in certain regions of the grid, the data placement may
need to change to re-balance the load.

In our experiement, the application tended to move the
particles to the upper region of the grid�. Figure 3 shows the
execution times for this program. The Adapt version per-
forms the best in this case, because when more particles clus-
ter near the top, Adapt remaps the space array to balance the
number of particles (for this particular program Adapt per-
formed three remappings). We tested several DF programs
with different data placements; using larger block sizes ex-
acerbates the load imbalance, and using smaller block sizes
causes excess communication.

5. Related Work and Conclusion

Data placement can be supported by language-level prim-
itives, compilers, or (less commonly) run-time systems.

�This clustering is not contrived; it can occur in practice [6].



With language primitives, the programmer annotates each
array with a placement (e.g. [9, 7, 18, 21, 3]). The advan-
tage of using language primitives is that the programmer
has full control over the program. However, the program-
mer might not know the best placement; even so, the best
placement might change when executing the program on a
new architecture.

With a compiler-based approach, the compiler infers a
placement for each array in the source code by inspecting
loops and array accesses (e.g. [1, 12, 5, 2, 10, 14, 13, 19]).
Hence, the programmer need not be involved in placing
data. However, a compiler may not be able to infer the best
placement, especially for a dynamic computation.

With a run-time system approach, such as Adapt, ALEXI
[20], and CHAOS [11], data-placement decisions are made
during execution. This approach can produce good place-
ments for a larger class of applications because of the in-
creased information available at run time, but it incurs addi-
tional overhead to do so. Other methods to remap data at run
time have been studied [16], but involve user intervention.

We have presented an approach to data placement that
allows the placement to adapt to the needs of the application.
Adapt supports a larger class of problems than compiler
approaches and it requires no help from the programmer in
determining a data placement. The performance of Adapt is
very reasonable on applications for which a good placement
can be statically determined by the programmer or compiler.
More importantly, the performance of Adapt can be superior
to any static scheme for problems that are impossible to
analyze at compile time or require run-time support.

6. Acknowledgements

Vince Freeh provided assistance on several technical and
written aspects of this work. This research was supported
by NSF grants CCR-9415303 and CDA-8822652.

References

[1] J. Anderson and M. Lam. Global optimizations for paral-
lelism and locality on scalable parallel machines. InProceed-
ings of the SIGPLAN ’93 Conference on Program Language
Design and Implementation, pages 112–125, June 1993.

[2] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An
static performance estimator to guide data partitioning deci-
sions. InProceedings of the Third ACM SIGPLAN Sympo-
sium on Principles and Practices of Parallel Programming,
pages 213–223, Apr. 1991.

[3] B. Chapman, P. Mehrotra, and H. Zima. Programming in
Vienna Fortran.Scientific Programming, 1(1):31–50, 1992.

[4] V. W. Freeh, D. K. Lowenthal, and G. R. Andrews. Dis-
tributed Filaments: Efficient fine-grain parallelism on a
cluster of workstations. InFirst Symposium on Operating

Systems Design and Implementation, pages 201–212, Nov.
1994.

[5] M. Gupta and P. Banerjee. PARADIGM: A compiler for au-
tomated data distribution on multicomputers. InProceedings
of the 1993 ACM International Conferenceon Supercomput-
ing, pages 357–367, July 1993.

[6] F. H. Harlow. The particle-in-cell computing method for fluid
dynamics. In B. Alder, editor,Methods in Computational
Physics, pages 319–343. Academic Press, Inc., June 1964.

[7] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and
C.-W. Tseng. An overview of the Fortran-D programming
system. Report TR91121, CRPC, Mar. 1991.

[8] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling For-
tran D for MIMD distributed-memory machines.Communi-
cations of the ACM, 35(8):66–80, Aug. 1992.

[9] High Performance Fortran language specification. Oct. 1993.
[10] D. E. Hudak and S. G. Abraham. Compiler techniques for

data partitioning of sequentially iterated parallel loops. In
Proceedings 1990 International Conference on Supercom-
puting, ACM SIGARCH Computer Architecture News, pages
187–200, Sept. 1990.

[11] Y. Hwang, B. Moon, S. D. Sharma, R. Ponnusamy, R. Das,
and J. H. Saltz. Runtime and language support for compil-
ing adaptive irregular programs on distributed-memory ma-
chines.Software—Practice and Experience, 25(6):597–621,
June 1995.

[12] K. Kennedy and U. Kremer. Automatic data layout for High
Performance Fortran. Technical Report CRPC-TR94498-S,
Rice University, Dec. 1994.

[13] K. Knobe, J. Lukas, and G. Steele Jr. Data optimization:
Allocation of arrays to reduce communication on SIMD
machines.Journal of Parallel and Distributed Computing,
8(2):102–118, Feb. 1990.

[14] J. Li and M. Chen. The data alignment phase in compil-
ing programs for distributed-memory machines.Journal of
Parallel and Distributed Computing, 13(4):213–221, Aug.
1991.

[15] J. D. McDonald. A direct particle simulation method for
hypersonic rarified flow. Technical Report 411, Stanford
University, Mar. 1988.

[16] B. Moon and J. Szltz. Adaptive runtime support for di-
rect simulation monte carlo methods on distributed memory
architectures. InProceedings of the Scalable High Perfor-
mance Computing Conference, pages 176–183, May 1994.

[17] D. S. Pande, D. P. Agrawal, and J. Mauney. Compiling
functional parallelism on distributed-memory systems.IEEE
Parallel and Distributed Technology, 1(1):64–76, Apr. 1994.

[18] M. Rosing, R. Schnabel, and R. Weaver. The Dino parallel
programming language.Journal of Parallel and Distributed
Computing, 13(1):30–42, Sept. 1991.

[19] D. G. Socha. Supporting fine-grain computation on dis-
tributed memory parallel computers. PhD thesis, University
of Washington, Seattle, WA 98195, July 1991.

[20] S. Wholey. Automatic Data Mapping for Distributed-
Memory Parallel Computers. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA 15213, May 1991.

[21] H. Zima, H. Bast, and M. Gerndt. SUPERB: A tool for semi-
automatic MIMD/SIMD parallelization.Parallel Comput-
ing, 6(6):1–18, Jan. 1988.


