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ABSTRACT
Distributing data is a fundamental problem in implementing effi-
cient distributed-memory parallel programs. The problem becomes
more difficult in environments where the participating nodes are not
dedicated to a parallel application. We are investigating the data
distribution problem in non dedicated environments in the context
of explicit message-passing programs.

To address this problem, we have designed and implemented an
extension to MPI called Dynamic MPI (Dyn-MPI). The key com-
ponent of Dyn-MPI is its run-time system, which efficiently and
automatically redistributes data on the fly when there are changes
in the application or the underlying environment. Dyn-MPI sup-
ports efficient memory allocation, precise measurement of system
load and computation time, and node removal. Performance results
show that programs that use Dyn-MPI execute efficiently in non
dedicated environments, including up to almost a three-fold im-
provement compared to programs that do not redistribute data and
a 25% improvement over standard adaptive load balancing tech-
niques.

1. INTRODUCTION
Distributed parallel architectures, such as clusters of worksta-

tions, deliver high performance and scalability. The most common
way to write programs for distributed-memory machines is to use
a message-passing library such as the Message Passing Interface
(MPI) library [1], which is portable across a variety of distributed-
memory machines.

One complication in writing MPI programs is that the nodes may
be non dedicated, meaning that multiple users may be competing
for nodes while a parallel application is executing. These users
can be running sequential or parallel programs. Such computing
environments are often found in national labs or department-wide
clusters.
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A non dedicated target increases the difficulty of the data dis-
tribution problem, which is to determine an assignment of the ele-
ments of each data structure to each node to minimize completion
time. An optimal data distribution minimizes communication and
perfectly balances the load. In general, balancing the load on a non
dedicated machine is difficult because the amount of CPU time (as
well as physical memory) allocated to a parallel program fluctuates.

We have addressed this problem by designing and implementing
what we call the Dynamic Message Passing Interface (Dyn-MPI),
which is an extension to MPI. A programmer need only write a
program using our extended MPI interface; when the application or
the underlying environment changes, the Dyn-MPI run-time system
redistributes data automatically.

In particular, Dyn-MPI contains the following novel components:

• an efficient, uniform memory allocation scheme for both dense
and sparse matrices,

• a mechanism for determining accurately both system load
and execution time, including situations in which the com-
putation itself is unbalanced and a node is busy,

• a scheme that determines effective data distributions, im-
proving upon relative power based methods [2], and

• a facility for removing nodes from the computation when
their participation degrades performance.

Our experiments show that on a non dedicated cluster, Dyn-MPI
determines distributions that result in up to almost a three-fold im-
provement compared to taking no action and a 25% performance
improvement when physically removing nodes.

The remainder of this paper is organized as follows: Section 2
describes our computational and programming model, and Sec-
tion 3 describes related work. Section 4 details our implementa-
tion. Section 5 presents the results of performance tests. Finally,
Section 6 gives some concluding remarks and suggestions for fu-
ture work.

2. MODEL
Dyn-MPI is an extension of MPI. We chose the explicit message

passing model because (1) it is the model that is most often used
by computational scientists and (2) it is high-level enough to be
portable and low-level enough to lead to an efficient program. Our
other options were (1) the user writes a sequential program, and a
parallelizing compiler is used (e.g., SUIF [3]), (2) a data parallel
language like HPF [4], and (3) OpenMP with a software DSM for
communication [5]. While these alternatives make programming as



// regular MPI initialization omitted
for (t = 0; t < num_iters; t++) {
for (i = start_iter; i <= end_iter; i++) {
for (j = 1; j <= N; j++)

A[i][j] = F( B, i, j );
}
if (rank > 0)
MPI_Send(B[start_iter], 1, MPI_DOUBLE, rank-1, ..... );

if (rank < numprocs-1)
MPI_Recv(B[end_iter + 1], 1, MPI_DOUBLE, rank+1, ..... );

}

Figure 1: Example MPI program.

// regular MPI initialization omitted
DMPI_init( num_processors, 1, 2, DMPI_BLOCK);
DMPI_register_dense_array("A", &A, 1, N, sizeof(double), MPI_DOUBLE );
DMPI_register_dense_array("B", &B, 1, N, sizeof(double), MPI_DOUBLE );
....
DMPI_init_phase(1, N, DMPI_NEAREST_NEIGHBOR );
DMPI_add_array_access("A", DMPI_WRITE, 1, 0);
DMPI_add_array_access("B", DMPI_READ, 1, 0);

for (t = 0; t < num_iters; t++) {
start_iter = DMPI_get_start_iter();
end_iter = DMPI_get_end_iter();

if DMPI_participating() {

for (i = start_iter; i <= end_iter; i++) {
for (j = 1; j <= N; j++)

A[i][j] = F( B, i, j );
}

rel_rank = DMPI_get_rel_rank( rank );
if (rel_rank > 0)
DMPI_Send(B[start_iter], 1, MPI_DOUBLE, rel_rank - 1, ..... );

if (rel_rank < DMPI_get_num_active())
DMPI_Recv(B[end_iter + 1], 1, MPI_DOUBLE, rel_rank + 1, ..... );

}
}

Figure 2: Example Dyn-MPI program.

well as analysis easier they all result in less efficient programs. This
is because MPI, as a lower-level model, avoids overheads that may
manifest themselves in the higher-level models. For example, SUIF
and HPF compilers may not be able to find the best parallelization
for a sequential region of code, and software DSM systems have
a request/reply model of communication that is less efficient than
explicit messages.

In this section we first describe our computational model. Then,
we describe how programs are written using Dyn-MPI. For illus-
trative purposes, we provide user code for a small, synthetic MPI
program (Figure 1) and how it would be written in Dyn-MPI (Fig-
ure 2).

2.1 Computational Model
Our model is Single Program Multiple Data (SPMD), in which

each node executes the same code but references a different subset
of distributed data. We assume that applications are iterative and
consist of one or more phases, which are sections of code com-
prised of computation followed by communication. Further, while
we support N -dimensional arrays, we consider distributing only
the first dimension. Our model assumes that applications use either
a variable block distribution, in which a contiguous (but possibly
unequal) set of iterations are assigned to each node, or a cyclic
distribution, in which iterations are assigned to nodes in a modulo
fashion. Figure 2 shows a single phase example in which the i loop
is distributed. Lastly, we assume the existence of an outer loop, the

phase cycle, that encloses all phases; in the example, this is the t
loop.

2.2 Programming Model
Figure 2 shows a Dyn-MPI example. It should be noted that this

is a degenerate example with little computation and therefore re-
sults in a large number of DMPI calls. Still, most likely Dyn-MPI
would in general be the output of the preprocessor that translates
an MPI program (e.g., Figure 1) to a Dyn-MPI program (e.g., Fig-
ure 2). This is discussed further below.

Dyn-MPI extends MPI by providing specialized facilities for mem-
ory allocation, communication, and node participation. All poten-
tially redistributable arrays must be allocated through Dyn-MPI
primitives. This allows Dyn-MPI to effect new data distributions
automatically and efficiently. The two functions DMPI register-
dense array and DMPI register sparse array are used

for this purpose. However, the user code must obtain explicitly the
bounds of the partitioned loop of each phase in case these bounds
change between different phase cycles. In Figure 2, functions DMPI-
get start iter and DMPI get end iter are used for this

purpose.
Unlike their dense counterparts, sparse matrices have many dif-

ferent possible structures. In general, an automatic redistribution
system that explicitly relocates data must know the underlying struc-
ture because sparse matrices have data and metadata. In our case,
for ease of redistribution, Dyn-MPI stores sparse matrices in a vec-



tor of lists format; each element is a (data element/column id) pair.
For user convenience, functions to access and update sparse ma-
trices are provided by Dyn-MPI, though the user can access them
directly if desired. These functions include an iterator to access
each element of a sparse matrix as well as functions to get the next
element, set the next element, advance the row, and move to the first
element. Note also that the transformation between a customized
sparse matrix format and the format used by Dyn-MPI is a straight-
forward one.

We assume that the communication necessary to maintain data
dependencies is performed explicitly by the application code. Dyn-
MPI uses Deferred Regular Section Descriptors (DRSDs) [6, 7] to
describe array accesses; this enables Dyn-MPI to determine data
ownership. DRSDs extend Regular Section Descriptors (RSDs)
[8]; both express an array reference in terms of the start, end,
and step. However, DRSDs defer the computation of the bounds
of these descriptors until run-time. A block distribution has one
DRSD per node and a cyclic distribution has one or more.

Determining DRSDs for each array is the most challenging part
in translating an MPI program to a Dyn-MPI one. While in Dyn-
MPI the user currently specifies DRSDs, this step could be auto-
mated in many cases. For example, the work in [7] as well as our
previous work in [6] modified SUIF [3] to generate DRSDs for each
array reference; the translation here would be similar (see below).

Programs in Dyn-MPI need to use relative ranks rather than
ranks, along with conditional execution using DMPI participa-
ting. This is because Dyn-MPI may remove (and potentially later
add back) non dedicated nodes from the computation. We denote
this as physically dropping a node. Hence, ranks may vary over the
course of a computation; for example, if node i sends a message to
its left neighbor, this may be node i−1 at time t, but then change to
node i− 2 at time t + δ. Relative ranks are shown in Figure 2. The
alternative to this is to always assign a “removed” node a minimum
amount of data, so that ranks, once determined, are static. We de-
note this as logically dropping a node. Our experiments show that
the performance difference between logical and physical dropping
can be significant (see Section 5).

2.3 Translation of MPI to Dyn-MPI
A transformation from an MPI program to an Dyn-MPI can be

divided into two primary parts: the parts that are straightforward
and the parts that require sophisticated analysis. Most of the trans-
formation falls into the former category, which can be mostly im-
plemented through a one-to-one replacement. This includes adding
DMPI init, DMPI register dense array, DMPI regis-
ter sparse array, DMPI init phase, DMPI get start-
iter, DMPI get end iter, and DMPI participating. In-

terface function DMPI init is called once per program, and its pa-
rameters are easily determined from the number of processors and
the desired data distribution. Either function DMPI register-
dense array and DMPI register sparse array is added

for each multidimensional array that is used in a loop nest; which
one is needed can be determined from array access patterns. Func-
tion DMPI init phase is called for each phase, and its parame-
ters are mostly determined by just substituting in the loop bounds of
that phase. Functions DMPI get start iter and DMPI get-
end iter are added before each partitioned loop, and these val-

ues become the new loop bounds. Finally, DMPI participat-
ing encloses all code within the loop.

The sophisticated part of the transformation involves adding func-
tion DMPI add array access. One instance of this function
must be added for each array reference in a parallel loop. As de-
scribed in the previous section, it represents a regular section de-

scriptor. While this requires relatively sophisticated compiler tech-
niques, we have implemented this for DSM-based programs in [6].
The primary difference is that RSDs in DSM programs can more
easily be determined in a global sense, because the program uses
a shared-memory model. Here, the data in the original (source)
MPI program is already distributed, so some work would need to
be done to convert a local view of a distributed array to a global
view. This step is the reverse of the translation used by Fortran D
compilers [9].

3. RELATED WORK
There have been three primary approaches to data distribution:

language annotations, compiler analysis, and run-time adaptation.
We discuss them in turn.

One way to distribute data is to provide language annotations and
allow the programmer to choose the distribution using application-
specific knowledge. This is the approach taken by HPF [4], for ex-
ample. In this approach, the programmer annotates each array with
its distribution. There has also been work in supporting a REDIS-
TRIBUTE annotation. However, this places the burden on the pro-
grammer. In contrast, Dyn-MPI redistributes data automatically.

Compiler techniques to distribute data have also been studied
extensively (e.g., [10, 11]). The basic idea behind compiler-based
systems is to analyze the source code to determine the communica-
tion pattern and then choose a block- or cyclic-based distribu-
tion that balances the load. There has also been research on com-
pilers that can generate dynamic data distributions; these include
[12, 13, 14, 15]. However, static analysis cannot possibly take into
account run-time fluctuations in load between different nodes. Be-
cause Dyn-MPI uses run-time analysis, it can make better decisions
about how to balance load dynamically.

Approaches employing a run-time system, such as AppLeS [16],
SUIF-Adapt [6], CRAUL [2], and the CHAOS group [17] can use
run-time information to find an efficient data distribution. This is
especially effective in cases in which workload and communica-
tion characteristics of a program change at run time. In principle,
these approaches show promise to solve the data distribution prob-
lem on non dedicated machines, in which multiple machine pa-
rameters are changing. In particular, through the Network Weather
Service [18], AppLeS was able to determine when to avoid using
a processor because its limited memory would cause (expensive)
paging. Also, the CHAOS work as well as that in [19] can drop
nodes when required (e.g., users log back on to their workstation),
as well as add them back when conditions change. Other methods
to remap data at run time have been studied [20], but involve user
intervention. Dyn-MPI is distinct from these systems in several
ways. First, Dyn-MPI is integrated with MPI as opposed to imple-
mented within a software distributed shared memory [21]. Second,
Dyn-MPI performs analysis of whether to drop nodes based on
communication/computation ratio, whereas the other approaches
drop and add nodes purely based on whether another user is active.
Third, Dyn-MPI handles applications with unbalanced computa-
tional loads such as particle simulation. Finally, Dyn-MPI supports
automatic redistribution of sparse matrices.

The closest work to ours is Adaptive MPI, or AMPI [22, 23].
However, its approach is completely different than Dyn-MPI. AMPI
creates several virtual MPI processors per physical processor and
then, given different physical processor loads, migrates them as ap-
propriate. In essence, this is a medium-grain approach to the non
dedicated data distribution problem, whereas Dyn-MPI is a coarse-
grain approach. CHARM [24], a medium-grain threads package, is
used to implement AMPI. Another recent project, Tern [25], takes
a similar approach to AMPI. The key difference is that a software



DSM-like for migrating thread stacks is used, and customized mi-
gration policies can be written by the user or compiler.

We argue that the key advantage of Dyn-MPI is that it leads to
more efficient execution than AMPI or Tern. This is because of two
reasons. First, the virtualization approach can incur overhead (as
with fine-grain approaches) for reasons such as process creation,
process management, and poor compiler optimization of fine-grain
code [26]. As the number of redistributions increase, either the
granularity must decrease or further load balancing becomes diffi-
cult. Second, and more importantly, fine-grain programs may have
significantly more messages than their coarse-grain counterparts;
for example, in a nearest neighbor communication pattern, it is nec-
essary to send one message per boundary edge. This means that
a fine-grain approach increases greatly the number of exchanged
messages.

On the other hand, the key advantage of AMPI or Tern over Dyn-
MPI is that the application requires less modification. In particu-
lar, Dyn-MPI requires the programmer to identify data that is to be
considered for redistribution as well as write a program that contin-
ually updates loop bounds (because the bounds might change). It
should be noted, however, that the previous section outlined how a
Dyn-MPI program could be generated automatically.

4. IMPLEMENTATION
This section describes the implementation of Dyn-MPI, which

consists of four primary components. First, Dyn-MPI needs to
carefully allocate memory for efficient and automatic redistribution
of dense and sparse matrices, balancing the tradeoff between mini-
mizing the number of messages required and copying of data (Sec-
tion 4.1). Second, Dyn-MPI must accurately measure both the load
on the system and execution time (Section 4.2), but this is com-
plicated by the fact that unpredictable operating system schedul-
ing can result in unexpected measurements when using wallclock
timers. Third, Dyn-MPI must determine ideal data distributions for
a collection of nodes of varying available processing power (Sec-
tion 4.3); however, the impact of communication makes this prob-
lem difficult. Fourth, redistribution must be effected automatically
for both dense and sparse matrices, and node removal must be con-
sidered (Section 4.4).

4.1 Memory Allocation
Memory allocation in Dyn-MPI balances the need to maximize

data locality and minimize the number of redistribution messages.
The key challenge is that redistribution causes data sizes to change
across nodes, which can cause repeated and costly memory alloca-
tion and deallocation. Dyn-MPI uses a nearly uniform allocation
scheme for both dense and sparse matrices; these are discussed in
turn below.

4.1.1 Dense Matrices
The memory allocation scheme used by Dyn-MPI for dense ma-

trices is to project all arrays onto two dimensions using a vector of
vectors style allocation: the first is the outermost dimension of the
original n dimension array, while the second consists of extended
rows of the remaining elements (the product of the remaining n-
1 dimensions). This allows nodes (1) to communicate entire ex-
tended rows with a single message as well as (2) to reuse memory
where possible by allowing a newly allocated pointer in the first
dimension to point to already existing memory. Figure 3 shows an
example of the contiguous allocation compared to our projection
method. In the former, all data must shift (a complete reallocation)
if a new node is sent new data. In the projection method, a node
performs a copy of only the top level vector (which is the size of

the first dimension) and then allocates space for the new data.
Our memory allocation method performs significantly better than

contiguous allocation. This is because contiguous allocation can
cause excessive disk accesses due to complete reallocation of large
data structures. More details on an experimental comparison of
these methods can be found in [27].

4.1.2 Sparse Matrices
Dyn-MPI must know the format of a sparse matrix so that it can

make sure to redistribute data and metadata when necessary. The
memory allocation scheme used by Dyn-MPI for sparse matrices
is as similar as possible to that of dense matrices. The only dif-
ferences are that (1) the extended row is a linked list instead of a
vector, and (2) both the element and the column id are stored. Dyn-
MPI could even remove (1) above and store a sparse matrix row in
a vector, but this would require reallocation of the row if its size
ever changes.

4.2 Load Determination and Computation Tim-
ing

In order to determine when redistribution is necessary, Dyn-MPI
must monitor all nodes to detect load changes and the execution
time of the phase cycle to determine if the load is balanced. Our
policy is to check system load at every phase cycle and redistribute
if any change is detected, as was done in [17].

Determining system load is a non-trivial problem. Previous re-
search utilized vmstat to determine the number of active pro-
cesses on a node [18], the essential information being the number
of processes on the running, ready or blocked queues. However,
our experience is that this method is unreliable; processes that have
voluntarily relinquished the processor because they are blocked at
a receive are not reported by vmstat. We have created an appli-
cation called dmpi ps that uses ps to determine active processes
and accounts for only those processes that are in either a running
or ready state; furthermore, the monitored application is automat-
ically included. We configure dmpi ps to run on each node as a
daemon process that updates every second.

Once the redistribution process is invoked by a change in load,
Dyn-MPI must carefully determine the load on all nodes and the
true, unloaded execution time of iterations in order to determine
ideal data distributions. Our solution allows for a grace period dur-
ing which the application continues execution for five phase cy-
cle iterations after a change in load is detected. During this time,
processor load and accurate iteration times are determined. Per-
iteration times are needed for applications such as particle simula-
tion, where the iterations themselves are nonuniform. It is impor-
tant to understand that we must obtain unloaded execution times
for each iteration, or the resulting distribution chosen will likely be
inefficient—this is because we will not know if an iteration is slow
due to the application itself or another process on the system.

Dyn-MPI handles this by choosing between two timing mech-
anisms (during the grace period) to determine the true unloaded
execution time for iterations. The first is information from /PROC,
and the second is wallclock timers using gethrtime. The ad-
vantage of using /PROC is that it avoids counting time by other
processes. Due to the limited granularity of /PROC, the latter is
used when iterations have execution times less than 10ms. How-
ever, because gethrtime may include execution of other pro-
cesses, we must measure over several phase cycle iterations and
take the minimum—this removes potential spikes caused by con-
text switches in the middle of an iteration.

4.3 Ideal Data Distributions
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Given system load and iteration times, the traditional way to de-
termine work proportions is based on the relative power [2] of each
node. Our experiments show that this can result in poor distribu-
tions by not accounting for communication. We attribute this be-
havior to the fact that distributing iterations does not take into con-
sideration the computation portion of communication (i.e., com-
munication requires some use of the CPU). We found that the best
distributions often differed from the relative power based (“naive”)
distribution.

As a result, our approach is to determine effective distributions
by executing micro-benchmarks. We executed several synthetic
programs for different computation to communication ratios. To
extend the two-node model to multiple nodes, we use an algo-
rithm called successive balancing. This determines the percentage
of work to assign to nodes between pairs of loaded and unloaded
nodes, thus reducing a multi-node problem to several two-node
problems. Essentially, successive balancing entails one or more
balancing rounds, where the workload assignment is calculated for
the loaded nodes and the remaining computation balanced among
the unloaded nodes. Balancing continues until a round results in
little change to the iteration assignment to the unloaded nodes. Fur-
ther details are available in [27].

4.4 Data Redistribution and Node Removal
To effect the new distribution, each node must (1) determine data

ownership, (2) deallocate memory that is no longer needed, (3) al-
locate the required memory for new data owned, (4) update pointers
for data that does not change ownership, and (5) schedule commu-
nication for data that does. The key to determining how to schedule
communication is the DRSDs, as they indicate precisely what data
needs to be communicated. In particular, rows must be acquired
if they are not local to a node, but the DRSD indicates that these
rows are needed—this is borrowed from the techniques used in the
Fortran D compiler [9].

As discussed above, our choice to represent a sparse matrix as
a vector of lists results in little difference between redistributing

dense and sparse matrices. In particular, the only added complex-
ities when redistributing sparse matrices are that (1) when a row
is sent from node to another, it must be packed into a vector, and
(2) the row must be unpacked on receipt and converted to a list.
It should be noted that the cost of this uniformity between dense
and sparse matrices is in efficiency; a list is more expensive to tra-
verse than a vector. However, we note that one solution is for users
to copy the data to and from the format used by Dyn-MPI to their
own, using the format of Dyn-MPI only when measurements are
needed and redistribution is performed. As redistribution is likely
infrequent, this cost will likely be amortized over the entire com-
putation.

After redistribution, Dyn-MPI continues to monitor the applica-
tion in order to determine if the new distribution is effective or if
loaded nodes need to be removed from the computation. This is
performed during a post-redistribution grace period (currently ten
phase cycle iterations), which allows each node to determine the
average execution time for a single phase cycle iteration. The max-
imum time of these averages among all nodes is then compared to
the predicted unloaded execution time for a configuration consist-
ing only of unloaded nodes (which we can predict with high accu-
racy, because there is no unpredictability due to loaded nodes). If
we predict that the unloaded configuration is best, the loaded nodes
are physically removed from the computation. This is why Dyn-
MPI requires relative ranks to account only for those nodes that
are participating; Dyn-MPI assists by re-assigning relative ranks
whenever nodes are removed.

The complication for physical removal of nodes involves keeping
the nodes current on all global state information. For example, if
the factors necessary to terminate an application are reached by
an appropriate node and a termination message is sent to all other
nodes, removed nodes must receive this message. At the same time,
we do not want the participating nodes to be delayed by removed
nodes or reach an incorrect state due to erroneous data having been
received from removed nodes. We modified global communication
routines so that removed nodes do not participate in the send in
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phase, but do participate in the send out.

5. PERFORMANCE
This section details the performance of Dyn-MPI using four pro-

grams. Jacobi iteration and Red-Black SOR both can be used to
solve partial differential equations. Conjugate Gradient, denoted
CG, is from the NAS suite [28]; it solves an unstructured sparse
linear system. Finally, particle simulation is a scaled down version
of MP3D [29], which is from the Splash suite [30].

Section 5.1 presents overall performance of all of these programs
in a non dedicated environment. Next, we use Jacobi iteration,
SOR, and particle simulation to demonstrate three different fea-
tures of Dyn-MPI, respectively: multiple redistribution points (Sec-
tion 5.2), node removal (Section 5.3), and unbalanced computa-
tions (Section 5.4). We have also performed a number of synthetic
tests to tune our redistribution scheme; these results are available
in a related technical report [27].

Most tests were run on 2, 4, or 8 processor configurations, where
the computing environment consists of 550 MHz Pentium-III Xeon
CPUs and a switched 100Mbs Ethernet network. A few tests (Sec-
tion 5.3) were run on a cluster of Sun Ultra-Sparcs. All user pro-
grams are compiled with the -O2 option. For competing processes,
we use programs that execute an infinite loop.

5.1 Overall Results
This section presents the overall performance of all four appli-

cations. For Jacobi iteration and SOR, we used an input size of
2048 × 2048 and iterated 250 times. CG used a size of 14, 000 ×
14, 000, and particle simulation used 256×256 cells with an initial
distribution of one or two particles per cell, for 200 time steps. For
the particle experiment, one node had twice as many particles than
each of the others.

Figure 4 displays the results for each program on 2, 4, and 8
nodes. As a baseline, we ran a version of the program with no
competing processes; in other words, all nodes are dedicated. All
results are normalized to this version. We also ran two versions in
which we started a competing process on one node on the 10th it-
eration. One of those versions uses Dyn-MPI and therefore adapts,
and the other does not use Dyn-MPI and so never adapts. It should
be noted that both of these versions will in general have inferior per-
formance to the version with all nodes dedicated. However, there
are rare cases where this may not be true (see below).

Figure 4 shows that in general, the results are encouraging. Dyn-
MPI successfully redistributes data to adapt to the competing pro-
cess, improving the execution time by almost a factor of three com-
pared to no adaptation. The improvement averages 72%, and the
slowdown of the Dyn-MPI programs compared to the dedicated
version averages only 29%.

Consider in particular the 4-node CG experiment. The version
with no competing process takes 37.5 seconds. With a competing
process but without adaptation, the time increases to 73.0 seconds,
almost a 100% increase. With the competing process and the Dyn-
MPI version, the time goes up to only 45.1 seconds, which is a 20%
increase. The distribution of data found by Dyn-MPI is to give each
of the three unloaded nodes 2/7 of the work and the loaded node
(with one competing process) 1/7. Hence, the ideal time would be
to incur a percentage increase of 2/7−1/4, which is approximately
12%, or about 4.5 seconds. In practice, Dyn-MPI must also incur
overhead to redistribute the data, which in this case takes about 1
second. This means that the additional Dyn-MPI overhead consists
of about 2 seconds, which can be explained by unpredictability of
the loaded node. Still, the overall Dyn-MPI overhead is quite low.

Finally, our particle simulation experiment has twice as many
particles on the node that also has the competing process. The re-
sults show that the Dyn-MPI version actually outperforms the ver-
sion with no competing process. This is because in the Dyn-MPI
version, adaptation occurs more quickly. (For more time steps, the
Dyn-MPI version would have inferior performance.)

5.2 Multiple Redistribution Points
This section shows the effect of Dyn-MPI on an application with

multiple redistributions. Figure 5 breaks down the overall execu-
tion time of Jacobi iteration on 4 nodes. Each graph of the figure
shows the results of three tests: No Redist, Redist Once, and Redist
Twice. Execution is separated into three periods of a fixed num-
ber of iterations, and for each test, the first period executes without
competing processes. At the end of the first period, we introduce
a single competing process on one node. At this point, no action
is taken for the No Redist test, while redistribution takes place for
the other two. We then execute the second period with the com-
peting process. At the end of the second period, we terminate the
competing process. Here, redistribution only takes place for the
Redist Twice test. We then execute the third and final period. We
show results for a 4-node configuration for arrays of doubles with
dimension 2048x2048. Two experiments were performed: Short
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Figure 5: Comparison of the execution of Jacobi iteration. The results are for a 4-node configuration, and the arrays are doubles of dimension
2048x2048. Also, Period denotes the execution of Jacobi, Grace Period denotes the monitoring period of Dyn-MPI, and Redist denotes redistribution.
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Figure 6: Results of SOR tests when (1) a node has one, two, or three competing processes, and a distribution that includes the loaded node is used
(labeled 1 CP, 2 CP, or 3 CP) and (2) the loaded node is removed (labeled Drop). Configurations of 8, 16, and 32 nodes were used for 1024 × 1024

arrays. For readability, the first two graphs do not start at 0, so the differences in the rightmost graph are more pronounced than the ones in the two
leftmost graphs.

Execution (period = 50 iterations) and Long Execution (period =
500 iterations).

The left-hand side graph clearly shows the speedup that Dyn-
MPI obtains when redistributing after the competing process is ini-
tiated. Overall, Jacobi executes 16.7% faster if we redistribute after
the first period; this includes the results of Redist Once and Redist
Twice. Notice, however, that there is very little performance im-
provement (less than 1%) if we redistribute after the second period
as well. For short executions, the cost of redistribution negates the
speedup obtained (redistribution is 6.4% of the total execution time
for the Short Execution, Redist Twice test). However, this is not
the case for the long execution test (right-hand side graph). In this
case, it is worthwhile to redistribute after the second period; the
improvement is 7.9% over redistributing only once and 25.2% over
no redistribution. In this case, redistribution is less than 1% of the
total execution time.

5.3 Node Removal
In order to demonstrate the applicability of physical node re-

moval, we now show the results from Red/Black SOR. This pro-
gram has a smaller ratio of computation to communication than
Jacobi, making node removal likely when competing processes are
introduced.

We ran tests on a cluster of Sun Ultra-Sparc 5 machines (360
Mhz), with 8, 16 and 32 nodes. Figure 6 shows the results for
two-dimensional arrays of size 1024. Each graph shows the av-
erage phase cycle execution time of SOR after redistribution (us-
ing successive balancing) when one, two, or three competing pro-
cesses (1 CP, 2 CP, or 3 CP) are introduced on a single node. In
addition, each graph shows the results of physically removing the
loaded node (Drop). It is clear that dropping a node becomes more
important with smaller computation/communication ratios, which
occurs as the number of nodes increases. Dropping is always worse
on 8 nodes, moderately better on 16 nodes (2, 7, and 8% on 1, 2,
and 3 CPs), and significantly better on 32 nodes (4, 14, and 25%).
This shows that as the number of nodes increases, the benefit of
removal (when the computation/communication ratio is low) will
also increase.

5.4 Unbalanced Computations
Finally, we show results from an additional particle simulation

experiment in order to establish that Dyn-MPI supports unbalanced
computations by accurately determining unloaded iteration times.
Figure 7 compares the execution time after redistribution when
the grace period (GP) is either 1 or 5 phase cycle iterations. The
small number of particles used means that each iteration is less than
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Figure 7: Results of a particle simulation with an 8-node configuration and a grid dimension of 256x256. Grace periods of 1 and 5 iterations are
shown. The label Part denotes the degree of imbalance as determined by the number of particles in each grid cell in the top half of the rows owned by
P0.

10ms. Hence gethrtime (rather than /PROC) must be used. As
a result, the timings will be affected by context-switching. Hence,
if the grace period is only 1 phase cycle iteration, the timing data
can be inaccurate. Comparing the results for GP = 1 and GP =
5 clearly shows the effectiveness of the latter. Using GP = 5 (the
default in Dyn-MPI) results in 13% and 16% improvements over
using GP = 1 for 10 and 50 particles (labeled Part = 10 and Part =
50), respectively.

6. SUMMARY
This paper has described our approach to supporting efficient,

message-passing programs in environments in which nodes are not
dedicated and/or the computation is not balanced. We have de-
signed and implemented the Dynamic Message Passing Interface
(Dyn-MPI) to meet these goals. The Dyn-MPI run-time system
combines several novel features, including efficient memory alloca-
tion supporting automatic redistribution of dense and sparse matri-
ces, accurate determination of system load and execution times, se-
lection of an effective data distribution, and removal of nodes when
their participation is detrimental to performance. Moreover, this
is done automatically. Performance results showed that our sys-
tem automatically adapts to changes in system load and application
behavior with low overhead, resulting in up to almost a three-fold
improvement compared to taking no action. Also, when physical
node removal is necessary, the resulting performance improvement
is up to 25%.

In the future, we would like to expand Dyn-MPI to support com-
peting parallel applications. This will require changes to our load
determination technique such that the probability that an applica-
tion is computing (as opposed to blocking) is considered. Also, we
need to investigate methods to accurately predict execution time
when nodes are loaded. This will enable us to consider distribu-
tions in which some loaded nodes are removed, instead of consid-
ering only the removal of all of them.
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