
Practical Resource Management in Power-Constrained,
High Performance Computing

Tapasya Patki, David K. Lowenthal Anjana Sasidharan∗

University of Arizona Amazon, Inc.
{tpatki,dkl}@email.arizona.edu anjans@amazon.com

Matthias Maiterth Barry L. Rountree, Martin Schulz, Bronis R. de Supinski
Ludwig Maximilian University Lawrence Livermore National Laboratory
maiterth@cip.ifi.lmu.de {rountree4,schulz6,bronis}@llnl.gov

ABSTRACT

Power management is one of the key research challenges on
the path to exascale. Supercomputers today are designed to
be worst-case power provisioned, leading to two main prob-
lems — limited application performance and under-utilization
of procured power.

In this paper, we propose RMAP, a practical, low-overhead
resource manager targeted at future power-constrained clus-
ters. The goals for RMAP are to improve application per-
formance as well as system power utilization, and thus min-
imize the average turnaround time for all jobs. Within
RMAP, we design and analyze an adaptive policy, which
derives job-level power bounds in a fair-share manner and
supports overprovisioning and power-aware backfilling. Our
results show that our new policy increases system power uti-
lization while adhering to strict job-level power bounds and
leads to 31% (19% on average) and 54% (36% on average)
faster average turnaround time when compared to worst-
case provisioning and naive overprovisioning respectively.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems

Keywords
Power-constrained HPC, Resource Management

1. INTRODUCTION
The Department of Energy (DoE) has set an ambitious

target of achieving an exaflop under 20 MW. While procur-
ing this amount of power poses a problem, utilizing it effi-
ciently is an even bigger challenge. Supercomputers today

∗This work was carried out when Ms. Sasidharan was a student at the University of
Arizona and is not endorsed by Amazon, Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC’15, June 15–20, 2015, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3550-8/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2749246.2749262.

are typically targeted toward High Performance Linpack-
like applications [34] and designed to be worst-case provi-
sioned—all nodes in the system can run at peak power si-
multaneously, and thus applications are allocated all avail-
able power on a node. However, most real HPC applications
do not use their allocated power, leading to inefficient use
of both nodes and power.

An example of this can be found in data that we collected
on Vulcan (see Figure 1), which is a high-end BlueGene/Q
system located at Lawrence Livermore National Laboratory
(LLNL). Vulcan is the ninth-fastest supercomputer in the
world, and has procured power of 2.4 MW. However, our
study shows that over a 16-month period, applications used
only 1.47 MW on average with the only exception being the
burn-in phase. This under-utilization of power has many
negative ramifications, such as the use of lower water tem-
perature than needed for cooling—which leads to additional
power wasted on water chillers.

Ideally, supercomputing centers should utilize the pro-
cured power fully to accomplish more useful science. Hard-
ware overprovisioning (or overprovisioning, for short) has
recently been proposed as an alternative approach for de-
signing power-limited supercomputers and improving perfor-
mance [32,39]. The basic idea is to buy more compute capac-
ity (nodes) than can be fully powered under the power con-
straint, and then reconfigure the system dynamically based
on application characteristics such as scalability and mem-
ory intensity. Prior work has shown that on a dedicated
cluster system, overprovisioning can improve individual ap-
plication performance by up to 62% (32% on average) [32].

Initial research in the area explored managing resources
on overprovisioned systems by deploying Integer Linear Pro-
gramming (ILP) techniques to maximize throughput of data
centers under a strict power budget [38]. While an interest-
ing research approach, the proposed algorithm is not fair-
share and is not sufficiently practical for deployment on a
real HPC cluster. This is because each per-job scheduling
decision involves solving an NP-hard ILP formulation, in-
curring a high scheduling overhead and limiting scalability.
Additionally, ILP-based algorithms may lead to low resource
utilization as well as resource fragmentation, which are ma-
jor concerns for high-end supercomputing centers [13,17,18,
21]. While allowing jobs to be malleable (change node counts
to grow/shrink at runtime) might help address some of these
problems, less than 1% of scientific HPC applications are

1



expected to support malleability due to the data migration,
domain decomposition and scalability issues involved.

We present the design and implementation of RMAP (Re-
source MAnager for Power), a practical resource manager
with minimal scheduling overhead (O(1)) that targets fu-
ture power-constrained, overprovisioned systems. This pa-
per focuses on the design, implementation, and comparison
of three policies within RMAP : a baseline policy for safe
execution under a power bound; a naive policy that uses
overprovisioning; and an adaptive policy that is designed to
improve application performance by using overprovisioning
in a power-aware manner. The goal of the latter strategy is
to provide faster job turnaround times as well as to increase
overall system resource utilization. We accomplish this by
introducing power-aware backfilling, a simple, greedy algo-
rithm that allows us to trade some performance benefits of
overprovisioning to utilize power better and to reduce job
queuing times.

We make the following contributions in this paper:

• We design two novel policies with overprovisioning for
which RMAP derives the job-level power bound based
on a “fair share” strategy. The first is the Naive policy,
which tries to find the best performing configuration
under the derived job-level power bound. The second
is an adaptive policy, which uses power-aware backfill-
ing to optimize for average turnaround time as well as
to improve power utilization. We refer to this policy
as the Adaptive policy for the rest of this paper.

• We develop and validate a model to predict execution
time and total power consumption for a given applica-
tion configuration, in order to support overprovision-
ing within RMAP . Our model uses less than 10% of
the data for training, and the average errors for both
performance and power prediction are under 10%.

• We demonstrate that the Adaptive policy leads to bet-
ter overall turnaround times, adjusts to different job
trace types and varying global power bounds, and im-
proves system power utilization. We also show that
users can improve job turnaround times further by al-
truistically allowing some degradation in their execu-
tion time.

Our simple baseline policy, the Traditional policy, guar-
antees safe, correct execution under a power-constraint for
systems that are not overprovisioned. The Adaptive policy
provides 19% and 36% better average per-job turnaround
time than the Traditional and Naive policies respectively.
Since the Naive policy performs worse than the Traditional
policy, power-constrained environments require policies such
as the Adaptive policy.

The rest of the paper is organized as follows. Section 2
motivates our work. Sections 3 to 5 present the design and
implementation of RMAP and our model. We discuss our
results in Sections 6 and 7. We describe related work in
Section 8 and summarize in Section 9.

2. MOTIVATION
This section motivates the need for overprovisioning-based

scheduling. We discuss power profiles of HPC applications
and show that applications do not use the allocated power
efficiently. We then discuss hardware overprovisioning.

P
ow

er
 (

M
W

)

Fe
b 

'13

Apr
 '1

3

Ju
ne

 '1
3

Aug
 '1

3

Oct 
'13

Dec
 '1

3

Fe
b 

'14

Apr
 '1

4

Ju
n 

'14

0
0.

5
1

1.
5

2
2.

4

Procured Peak Power: 2.4 MW
Average Power Consumption: 1.47 MW

Total Power Consumption of the BG/Q Vulcan Supercomputer 
 Feb 2013 to Jun 2014

2.3 MW, Burn−in

Figure 1: Power Consumption on Vulcan

2.1 HPC Application Power Profiles
In order to study HPC application power profiles, we se-

lected eight strongly-scaled, load-balanced, hybrid MPI +
OpenMP applications (described below) and gathered power
and performance data for these at 64 nodes on the Cab clus-
ter at LLNL. Cab is a 1,200-node, Intel Sandy Bridge cluster,
with 2 sockets per node and 8 cores per socket. We measured
per-socket power with Intel’s Running Average Power Limit
(RAPL) technology [23,36]. The maximum power available
on each socket was 115 W. We only measured socket power,
as support to measure memory power was not available due
to BIOS restrictions.

We used four real HPC applications for our study. These
include SPhot [27] from the ASC Purple suite [26], and BT-
MZ, SP-MZ and LU-MZ from the NAS suite [1]. SPhot
is a 2D photon transport code that solves the Boltzmann
transport equation. The NAS Multi-zone benchmarks are
derived from Computational Fluid Dynamics (CFD) appli-
cations. BT-MZ is a the Block Tri-diagonal solver, SP-MZ is
the Scalar Penta-diagonal solver, and LU-MZ is the Lower-
Upper Gauss Seidel Solver. We used Class D inputs for NAS,
and for SPhot, the NRuns parameter was set to 16,384.

We also used four synthetic benchmarks in our dataset
to cover the extreme cases in the application space. These
are (1) Scalable and CPU-bound (SC), (2) Not Scalable and
CPU-bound (NSC), (3) Scalable and Memory-bound (SM),
and (4) Not Scalable and Memory-bound (NSM). The CPU-
bound benchmarks run a simple spin loop, and the memory-
bound benchmarks perform a vector copy in reverse order.
Scalability is controlled by adding MPI_Alltoall communi-
cation. We used MVAPICH2 version 1.7 and compiled all
codes with the Intel compiler version 12.1.5. We used the
scatter policy for OpenMP threads.

Figure 2 shows data for application power consumption
for the eight applications running at 64 nodes, 16 cores per
node, and maximum power per node. Each bar represents
the average power consumption per socket (averaged over
128 sockets on 64 nodes) for an application. The minimum
and maximum power consumed per socket by the applica-
tion are denoted by error bars. While all applications were
allocated 115 W per socket, they only used between 66 W
(NSC) to 93 W (SPMZ). On average, they only used 81 W
or 71% of the allocated socket power.

2



NSM
NSC

SM
SC

LU−MZ
SP−MZ
BT−MZ

SPhot

Average PKG Power Per Socket (W)

NSM
NSC

SM
SC

LU−MZ
SP−MZ
BT−MZ

SPhot

Average PKG Power Per Socket (W)
0 20 40 60 80 100 115

A
llo

ca
te

d 
=

 1
15

 W

B
en

ch
m

ar
ks

Application Power Consumption 
 (64 nodes, 16 cores per node)

Figure 2: Application Power Consumption

2.2 Hardware Overprovisioning
A cluster is hardware overprovisioned with respect to power

if it has more nodes than it can fully power simultaneously.
Such a cluster can essentially be “reconfigured” based on an
application’s memory-boundedness and scalability.

The hardware cost for an overprovisioned system depends
on the cost of the underlying processor architecture. For ex-
ample, if more high-end processors are purchased, the hard-
ware cost will increase; however, the system may be more ef-
ficient overall because more jobs will complete in its lifetime.
The cost might not increase, though: power-inefficient pro-
cessors typically have a lower unit price than power-efficient
processors. Thus, a hardware cost budget provides a choice
between more power-inefficient processors leading to better
job throughput and performance under a power constraint,
or fewer, power-efficient nodes on a non- overprovisioned
cluster (which may lead to wasted power).

The benefits of overprovisioning rely on determining a
configuration, (n × c, p) that leads to the best performance
under a power bound, where n is the number of nodes, c is
the number of cores per node, and p is the power per socket.
This benefit requires that applications are somewhat flexible
in terms of the number of nodes and/or the number of cores
per node on which they can run (moldable).

We emulated overprovisioning by enforcing socket-level
power caps with Intel’s RAPL technology. The minimum
RAPL socket power cap that we could enforce (within the
processor’s specification) was 51 W, and the maximum power
cap was 115 W. We ran our applications with five package
power values—51 W, 65 W, 80 W, 95 W, and 115 W. We
gathered data for each configuration from 8 to 64 nodes (in-
crements of 4) and 8 to 16 cores per node (increments of 2).
We disabled Turbo Boost when we enforced power caps, ex-
cept for the 115 W power bound, for which we enabled Turbo
Boost. The highest non-Turbo frequency was 2.6 GHz, and
the highest Turbo frequency was 3.3 GHz.

The maximum global power bound for our cluster was 64×
2×115 W , which is 14,720 W. In order to analyze various de-
grees of overprovisioning, we chose five global power bounds
for our study—6,500 W, 8,000 W, 10,000 W, 12,000 W and
14,720 W. These were determined by the product of (1) the
number of nodes and (2) the minimum and maximum pack-
age power caps possible per socket (51 W and 115 W). With
nmax being the maximum number of nodes that one can
run at peak power without exceeding the power bound, the
worst-case provisioned configuration is (nmax × 16, 115).

We measured execution time and total power consumed
for each of the benchmarks in the configuration space dis-
cussed earlier. Figure 3 shows results of overprovisioning

0
10

20
30

40

               0.44            0.54             0.68             0.82            1                
        1   2   3   4         1   2   3   4      1   2   3   4        1   2   3   4        1   2   3   4        

P
er

ce
nt

ag
e 

Im
pr

ov
em

en
t

Normalized Global Power Bound

Percentage Improvement 
due to Overprovisioning

1    SPhot
2    BT−MZ
3    SP−MZ
4    LU−MZ

Figure 3: Performance with Overprovisioning

when compared to worst-case provisioning for four HPC
benchmarks at the five global power bounds discussed above.
The x-axis is normalized to the worst-case provisioned power
(14,720 W). For our dataset, we saw a maximum improve-
ment of 34% (11% on average) in performance compared
to worst-case provisioning. Note that choosing the correct
application-specific configuration is important even when
there is no global power bound, as shown by LU-MZ at
14,720 W and is increasingly critical under a power con-
straint. Previous results have indicated that overprovision-
ing can improve performance by up to 62% [32,39].

3. POWER-AWARE SCHEDULING
This section discusses HPC scheduling basics and backfill-

ing. We then discuss the design challenges for RMAP and
present the details of our three scheduling policies.

3.1 Basics
Users at HPC sites typically submit jobs by specifying a

node count and an estimated runtime. The job executes
when the resource manager acquires the specified number
of nodes; the estimated runtime is used to set a deadline
(tdeadline) for the job. The job is killed if it exceeds this
deadline. Depending on the job-size, most HPC users are
required to use specific partitions. For example, most high-
end clusters have a small debug partition that specifically
targets small-sized jobs, and a general-purpose batch parti-
tion for medium and large-sized jobs.

Resource requests are maintained in a job queue, and users
are allocated dedicated nodes based on a scheduling policy.
One such policy is First-Come First-Serve (FCFS), which
services jobs strictly in the order they arrive. FCFS tends to
cause a convoy effect when a job requesting more resources
(large node count) ends up blocking several other smaller
jobs. Policies that do not dedicate nodes to jobs, such as
gang scheduling [4,15,40], are not feasible on supercomputers
because memory demands for HPC applications are typically
quite high—which leads to large paging costs1.

3.2 Backfilling
Backfilling [24,29,30,42] addresses the convoy effect caused

by FCFS by executing smaller jobs out of order on idle nodes
and by improving utilization—in turn reducing the overall
average turnaround time. Backfilling has two variants: easy
and conservative. Easy backfilling allows short jobs to exe-
cute out of order as long as they do not delay the first queued
job. Conservative backfilling, on the other hand, only lets

1Many HPC sites use operating systems that do not page.

3



short jobs move ahead if they do not delay any queued job.
Easy backfilling performs better for most workloads [30].

Backfilling frequently uses a greedy algorithm that picks
the first-fit from the job queue. The first-fit might not al-
ways be the best-fit, and a job further down the queue may
fit the hole being backfilled better. Finding the best-fit in-
volves scanning the entire job queue, which increases job
scheduling overhead significantly [41].

3.3 Design Challenges
Power-aware schedulers must enforce job-level power bounds

as they manage and allocate nodes. They need to optimize
for overall system throughput as well as individual job per-
formance under the job-level power bounds, which means
they must minimize the amount of unused (leftover) power.

For simplicity, we assume that all jobs have equal prior-
ity, use MPI+OpenMP, and are moldable (not restrictive in
terms of the number of nodes on which they can be exe-
cuted). We also assume that the global power bound on the
cluster is Pcluster, and that the cluster has Ncluster nodes.
We derive a power bound for each job fairly by allocating it
a fraction of Pcluster based on the fraction of Ncluster that
it requested (nreq being the number of requested nodes).
Thus, Pjob =

nreq

Ncluster
× Pcluster.

This allocation for Pjob can be extended easily to a priority-
based system by using weights (wprio) for the power alloca-
tion. Thus, Pjob = wprio × nreq

Ncluster
×Pcluster. For example,

higher priority jobs could be allocated more power by using
wprio > 1, and lower priority jobs could be allocated using
wprio < 1. This paper does not explore priorities further.

At any given point in time (say t), the available power
in the cluster, Pavailt , can be calculated by subtracting the
total power consumption of running jobs from the cluster
level power bound. Pavailt is used to make power-aware
scheduling decisions. Thus for r running jobs at time t,

Pavailt = Pcluster −
r∑

j=1

Pjob j

The performance of an individual job can be optimized by
using overprovisioning with respect to the job-level power
bound, Pjob. To optimize system throughput and to min-
imize unused power, a scheduler could (1) dynamically re-
distribute the unused power to jobs that are currently exe-
cuting, or (2) suboptimally schedule the next job with the
unused (available) power and nodes.

Dynamically redistributing power to executing jobs to im-
prove performance can be challenging, mostly because allo-
cating more power per node may result in limited benefits
(see Figure 2). In order to improve performance and to
utilize power better, the system may have to change the
number of nodes (or cores per node) at runtime. However,
varying the node count at runtime (malleability) is not pos-
sible with the current MPI standard. In addition, dynami-
cally changing the node and core counts of a job would incur
data decomposition and migration overhead [25].

We explore extensions of traditional backfilling for a power-
aware scenario. Traditional backfilling attempts to utilize
as many nodes as possible in the cluster by breaking the
FCFS order. Similarly, our new greedy approach, power-
aware backfilling, attempts to use as much global power as
possible by scheduling a job with currently available power.
Most cases involve sacrificing some performance benefits at-
tained from overprovisioning. The key idea is to schedule

 

Po
w

er
 

Time  now 

W 

1 

 

 

Unutilized resources 

FCFS Policy for Power  

 B 

 A 

Po
w

er
 

Time  

W 

1 

 

 

 A 

Power-Aware Backfilling 

now 

 B 

Figure 4: Advantage of Power-Aware Backfilling

a job with less power than was requested (derived using
fair share) and schedule it with a suboptimal configuration,
and to do so with execution time guarantees. Power-aware
backfilling can adapt to extremely power-constrained sce-
narios and to scenarios with too much leftover power. Our
approach builds on standard backfilling.

Figure 4 shows an example in which we assume that jobs
A and B are currently waiting in the queue. Job A requested
more power than is currently available in the system. Tra-
ditionally, Job A waits in the queue until enough power is
available, which wastes resources. Our approach schedules
Job A immediately with the available power. While we in-
crease the execution time of Job A, our approach improves
the overall turnaround time of Job A as well as the other
jobs in the queue, and utilizes power better.

The key idea is to use power-aware backfilling while adher-
ing to the user-specified time deadline for the job. Overpro-
visioning under a job-level power bound will often exceed the
user’s performance expectations. However, allowing users to
specify a maximum slowdown for their job and thus trade
their job’s execution time for a faster turnaround time is
an added incentive. We focus primarily on trading some
of the benefits obtained from overprovisioning to utilize all
available power to run jobs faster and to schedule more jobs.

Keeping cluster resources utilized (both nodes and power)
via backfilling leads to better average turnaround times for
the jobs, which in turn increases throughput. We thus focus
on minimizing the average per-job turnaround time in this
paper. The policy that we develop is called the Adaptive
policy, and we discuss it in the next section.

3.4 Scheduling Policies
We now discuss the power-aware scheduling policies that

we implemented in RMAP . Each of these policies needs to
obtain job configuration information given a power bound.
The details of how these configurations are determined are
presented in Sections 4 and 5, which discuss the low level
implementation details and the model.

Users specify nodes and time as input, along with an op-
tional threshold value for the Adaptive policy. We derive,
Pjob, which is the job-level power bound based on the user
input, as discussed in the previous subsection. This job-level
power bound is an input to our scheduling policies (see Ta-
ble 1). All three policies use basic node-level backfilling.

4



Policy Input Description
to Policy

Traditional (nreq , treq) Pick the packed configuration
(c = 16, p = max = 115W )

Naive (Pjob, treq) Pick the optimal configuration
under the derived job power limit

Adaptive (Pjob, treq , Use power-aware backfilling
thresh) to select a configuration

Table 1: Job Scheduling Policies

3.4.1 The Traditional Policy

In this policy, the user is allocated a configuration with
their requested node count that uses all available cores on a
node at maximum possible power. A job that requests large
node counts may exceed the system’s global power bound.
In this case, the Traditional policy allocates as many nodes
(with all cores on the node and maximum power per node)
as it can to the job without exceeding the system-wide bud-
get (an unfair job-level power allocation). Alternatively, we
could reject the job due to power constraints.

More formally, let cmax be the maximum number of cores
per socket, pmax the maximum package power per socket,
P(n×c,p) the total power consumed by the job in the (n× c, p)
configuration, and Pcluster the global power bound on the
cluster. Then, for a job requesting nreq nodes for time treq,
the Traditional policy allocates the (nreq × cmax, pmax) con-
figuration if P(nreq×cmax,pmax) ≤ Pcluster.

Otherwise, it allocates the (nmax × cmax, pmax) configu-
ration to the job, where nmax is the maximum n such that
P(n×cmax,pmax) ≤ Pcluster.

Note that the job will have to wait in the queue if enough
resources (nodes and power) are not available when the
scheduling decision is being made (if Pavailt < Pjob).

3.4.2 The Naive policy

In this policy, we overprovision with respect to the job-
level power bound. Given the derived job-level power bound,
Pjob ≤ Pcluster, and an estimated runtime, treq, the Naive
policy allocates the (n × c, p) configuration that leads to
the best time tact under that power bound. Thus, tact =
min(T ), where T =

{
t(n×c,p) : P(n×c,p) ≤ Pjob

}
.

If tact > treq, the system sets the deadline tdeadline for
the job to tact instead of treq during job launch, so that
the job does not get killed prematurely. This scenario oc-
curs if the user’s performance estimates are inaccurate and
cannot be met with the derived power bound, and the best
performance level that the Naive policy can provide under
the specified power bound Pjob is worse than treq. In the
scenario that tact < treq, tdeadline is not updated until job
termination. RMAP will kill the job after tdeadline. The
main purpose for treq is to have a valid deadline in case the
job fails or crashes. User studies suggest that treq is often
over-estimated (by up to 20%) [44].

Again, note that the job may have to wait in the queue
until enough power is available to schedule it.

3.4.3 The Adaptive policy

This policy’s goal is to allow (1) users to receive better
turnaround time for their jobs, and (2) the system to mini-
mize the amount of unused power to achieve better average
turnaround time for all jobs. Similar to the Naive policy,

ID Configuration Total Power Time
(n× c, p) (W) (s)

C1 (6 × 16,max = 115) 796.4 447.9
C2 (8 × 12, 65) 783.8 415.3
C3 (8 × 10, 80) 738.2 439.2

Table 2: List of Configurations for SP-MZ

the inputs are a (derived) job-level power bound and dura-
tion. However, the Adaptive policy considers these values as
suggested and uses power-aware backfilling. It also trades
the raw execution time of the application as specified by the
user for potentially shorter turnaround times. The user can
specify an optional threshold (th), which denotes the per-
centage slowdown that the job can tolerate. When th is not
specified, we assume that it is zero (no slowdown).

The Adaptive policy uses the suggested job-level power
bound to check if the requested amount of power is currently
available. If so, it obtains the best configuration under this
power bound (similar to the Naive policy). If not, it deter-
mines a suboptimal configuration based on currently avail-
able power and the threshold value. The advantage for the
user is that the job wait time may be significantly reduced.
The administrative advantage is better resource utilization
(in terms of nodes and overall power) and throughput.

More specifically, if Pavailt > Pjob, the Adaptive policy
uses the same mechanism as the Naive policy. However,
when Pavailt < Pjob, it determines tact = min(T ), where
T =

{
t(n×c,p) : P(n×c,p) ≤ Pavailt

}
, and schedules the job

immediately with the (n× c, p) configuration with time tact
as long as tact <= (1 + th)× treq. Thus, the job’s wait time
is reduced while meeting the performance requirement.

3.5 Example
As an example, consider SP-MZ from the NAS Multizone

benchmark suite [1]. Some configurations for SP-MZ (Class
C) are listed in Table 2. We now discuss three scenarios
in which 750 W of power and 10 nodes are available in the
cluster, and job A that is currently executing terminates in
1000s. Also, a user has requested 6 nodes for 450s, and, the
derived job-level power bound is 800 W .

3.5.1 Scenario 1, Traditional Policy

Here, RMAP allocates configuration C1 to the job but it
waits until job A terminates and enough power is available.

3.5.2 Scenario 2, Naive Policy

RMAP allocates configuration C2 to the job but also waits
until job A terminates and enough power is available.

3.5.3 Scenario 3, Adaptive Policy (threshold=0%)

A threshold value of 0% means that the user cannot com-
promise on performance. Under the Adaptive policy, RMAP
checks if enough power (800 W ) is available in the system.
It then determines that C3 does not violate the performance
constraint (450s), and job A can be launched immediately
with the currently available power (750 W ). We distinguish
this case from Scenario 2, which will always pick C2.

Picking C3 reduces the wait time of the job significantly
(by 1000s). Also, in scenarios 1 and 2, 750 W of power is
wasted for 1000s. In this scenario, power is utilized more
efficiently and turnaround time for the job is reduced.

5



Field Description
id Unique Index (Primary)
job_id Application ID
nodes Number of nodes
cores Number of cores per node
pkg_cap PKG Power Cap
exec_time Execution Time
tot_pkg Total PKG Power

Table 3: Schema for Job Details Table

4. RMAP IMPLEMENTATION
We implemented RMAP within the widely-used, open

source resource manager for HPC clusters, SLURM [45].
SLURM is used on several Top500 [2] supercomputers. It
provides a standard framework for launching, managing and
monitoring jobs on parallel architectures. The slurmctld

daemon runs on the head node of a cluster and manages
resource allocation. Each compute node runs the slurmd

daemon for launching tasks. Slurmdbd, which also runs on
the head node, collects accounting information with the help
of a MySQL interface to the slurm_acct_db database.

As described earlier, RMAP supports overprovisioning
and implements three power-aware scheduling policies that
adhere to a global, system-wide power budget. We refer to
our extension of SLURM as P-SLURM. RMAP can similarly
be implemented within other resource managers.

Our scheduling policies require the ability to produce ex-
ecution times for a given configuration under a job-level
power bound. Table 3 shows the information that P-SLURM
requires. We refer to this as the job_details_table, and
we added this table to the existing slurm_acct_db. Values
for exec_time and tot_pkg can be measured or predicted.

We developed a model to predict the performance and
total power consumed for application configurations in or-
der to populate this table. Section 5 presents the details of
this model. Furthermore, to understand and to analyze the
benefits of having exact application knowledge, we also in-
cluded another table within the SLURM database (with the
same schema) that contains an exhaustive set of empirically
measured values (as per the details discussed in Section 2).
For simplicity, we populated both tables in advance and the
scheduler queried the database for information when making
decisions, making the decision complexity O(1). The model
can also be used to generate values dynamically without
needing a database. However, this may incur scheduling
overhead and call for advanced space-search algorithm im-
plementations within the scheduler (such as hill climbing).
We do not address this issue in this paper.

5. PREDICTING PERFORMANCE AND
POWER

In this section, we discuss the models that RMAP deploys
in its policies. The models predict execution time and total
power consumed for a given configuration (number of nodes,
number of cores per node, and power cap per socket). As
discussed in Section 2, we first collected exhaustive power
and performance information. We ranged the node counts
from 8 to 64, core counts from 8 to 16, and power from
51 W to 115 W. The dataset that we built contained 2840

NSM
NSC

SM
SC

LUMZ
SPMZ
BTMZ
SPhot

0 5 10 15 20 25

Absolute Error Quartiles
 (seconds)

Error (seconds)

NSM
NSC

SM
SC

LUMZ
SPMZ
BTMZ
SPhot

0 5 10 20

Relative Error Quartiles
 (%)

Error (%)

Figure 5: Error Quartiles of Regression Model

data points, with 5 different power caps, 15 different node
counts, 5 different core counts per node and 8 applications.

We used 10% of this data for training and obtained
application-specific linear regression parameters that allow
us to predict application execution time and total package
power consumption at a given configuration. We used a loga-
rithmic polynomial regression of degree two. We limited our
power predictions to package power only as memory power
measurements were unavailable on our cluster.

We validated our models with our previously measured
data. When using only 10% of the data for model train-
ing, the average error for execution time is below 10%, and
the maximum error is below 33%. Figure 5 shows the abso-
lute (seconds) and relative (percentage) error quartiles for
all benchmarks when predicting execution time at arbitrary
configurations. For all benchmarks, the third quartile is un-
der 13%, and the median is below 8%.

If we over-predict the power consumed by a job, we may
block the next job in the queue due to lack of enough power.
On the other hand, under-predicting the power may lead
us to exceed the cluster-level power bound (worst-case sce-
nario). In our model, for 96% of our data, the under-prediction
was no more than 10%, and the worst case was under 15%.
This issue can be addressed by giving RMAP a conservative
cluster-level power bound (15% less than the actual bound),
or by relying on the common practice of designing super-
computing facilities to tolerate such surges [3].

6. EXPERIMENTAL DETAILS
In order to set up our simulation experiments for RMAP ,

we populate the job_details_table with application con-
figuration information, as discussed in Section 4. In all our
experiments, we consider the same architecture as Cab. We
consider a homogeneous cluster with 64 nodes and global
power bounds ranging from 6,500 W to 14,000 W, based on
the product of the number of nodes and the minimum and
maximum package power caps that can be applied to each
socket (51 W and 115 W). Each node has two 8-core sockets.

We generate job traces from a random selection of our
recorded configuration data as inputs for P-SLURM. Each
trace has 30 jobs to ensure a reasonable simulation time.
The total simulation time with all traces, power bounds,
node counts and policies was about 3 days (approximately
30 minutes for each trace).

6



0.44 0.54 0.68 0.82 0.95

0.
87

1.
5

2
2.

5

Random Trace 1, Traditional

Normalized Cluster Power Limit

 N
or

m
al

iz
ed

 A
vg

 
 T

ur
na

ro
un

d 
T

im
e

0.44 0.54 0.68 0.82 0.95

0.
87

1.
5

2
2.

5

Random Trace 1, Naive

Normalized Cluster Power Limit

 N
or

m
al

iz
ed

 A
vg

 
 T

ur
na

ro
un

d 
T

im
e

0.44 0.54 0.68 0.82 0.95

0.
87

1.
5

2
2.

5

Random Trace 1, Adaptive 0%

Normalized Cluster Power Limit

 N
or

m
al

iz
ed

 A
vg

 
 T

ur
na

ro
un

d 
T

im
e

0.44 0.54 0.68 0.82 0.95

0.
87

1.
5

2
2.

5

Random Trace 1, Adaptive 10%

Normalized Cluster Power Limit

 N
or

m
al

iz
ed

 A
vg

 
 T

ur
na

ro
un

d 
T

im
e

Exact Model−Based

Figure 6: Model Results on the Random Trace

We use a Poisson process to simulate job arrival [14, 15].
Job arrival rate is sparse on purpose (to make queue times
short in general), so we can be conservative in the improve-
ments that we report with the Adaptive policy. We select
the following types of job traces to evaluate our scheduling
policies.

• Traces with small-sized2 and large-sized jobs: To iden-
tify scenarios which may favor one power-aware schedul-
ing policy over another, we create trace files with small-
sized and large-sized jobs. Users could request up to
24 nodes in the former, and have to request at least 40
nodes for the latter.

• Random traces: For completeness, we also generate
two random job traces. Users could request up to 64
nodes for these traces. We refer to these traces as Ran-
dom Trace 1 and Random Trace 2. The two traces
differ in the job arrival pattern as well as job resource
(node count) requests, thus exhibiting different charac-
teristics. While both traces have the same number of
jobs and used the same arrival rate parameter in the
Poisson process, Random Trace 1 has many jobs ar-
rive early in the trace, whereas arrival times are more
uniform in Random Trace 2.

7. RMAP RESULTS
In this section, we discuss our results and evaluate our

scheduling policies on a Sandy Bridge cluster (which was
described in Section 2) that we simulated with P-SLURM.
In our experiments, we assume that all jobs have equal prior-
ity. For fairness and ease of comparison, in each experiment
we assume that all users can tolerate the same slowdown

2Due to space limitations, we do not present the results
on the small-sized trace in this paper. Our results indicate
that the Traditional policy always does better for traces with
several small jobs, as there is limited wait time [33].

(threshold value for the Adaptive policy). For readability,
we do not center our graphs at the origin.

All figures in this section compare the Traditional and
the Naive policies to the Adaptive policy when the global,
cluster-level power bound is varied across the cluster. The x-
axis is the global power limit enforced on the cluster (6,500 W–
14,000 W), normalized to the worst-case provisioned power
(in this case, that equals 64 × 115 W × 2, which is 14,720 W).
The y-axis represents the average turnaround time for the
queue, normalized to the average turnaround time of the
Traditional policy at 14,720 W (lower is better). The Tradi-
tional policy mimics worst-case provisioning, which unfairly
allocates per-job power and always uses Turbo Boost, unlike
the other two policies, which are fair-share and use power
capping. Also, all three policies have O(1) decision complex-
ity, so we do not compare their scheduling overheads.

We start by evaluating the model discussed in Section 5
when applied to RMAP and its policies. We then compare
and analyze the three policies by applying them to different
traces at several global power bounds. Finally, we analyze
two traces in detail to explore how altruistic behavior on the
part of the user can improve turnaround time, and how the
Adaptive policy can improve system power utilization.

7.1 Model Evaluation Results within RMAP
This section explores the impact of using our model for

predicting application configuration performance and power.
Figure 6 compares average turnaround time for Random
Trace 1 at 5 different global power caps. Configuration per-
formance and total power consumed are predicted for each
job in the trace. The former is used for determining ex-
ecution time, and the latter is used to determine available
power. For the Traditional and Adaptive policies, our model
is accurate (error is always under 10%; and is 4% on average
across the two policies). We observe similar results with the
other traces.

While performance prediction introduces error and affects
overall turnaround times, the errors introduced by overpre-

7



diction of the total power consumed by a configuration prop-
agates and impacts the turnaround time more. Scheduling
and backfilling decisions can be significantly affected when
they depend on available power. For example, at a lower
cluster power bound, if we overpredict the power consumed
by a small amount (even 3%), we might not be able to sched-
ule the next job or backfill a job further down in the queue,
resulting in added wait times for all queued jobs, particularly
for the Naive policy at lower global power bounds.

In the subsections that follow, we conservatively establish
the minimum improvements that the Adaptive policy can
provide. For this purpose, we use oracular information for
the Traditional and Naive policies, which are our baselines,
and the model for the Adaptive policy.

7.2 Analyzing Scheduling Policies
In this subsection, we compare and analyze the power-

aware scheduling policies on different job traces.

7.2.1 Trace with Large-sized Jobs
Each job in this trace file requests at least 40 nodes. For

all enforced global power bounds, the Adaptive policy leads
to faster turnaround times than the Traditional and Naive
policies, primarily because it fairly shares power and uses
power-aware backfilling to decrease job wait times. Figure 7
shows that the Adaptive policy with a threshold of 0% im-
proves the turnaround time by 22% when compared to the
Naive policy and by 14% when compared to the Traditional
policy on average (up to 47% and 25%, respectively). The
Adaptive policy with a threshold of 10% further improves the
overall turnaround time by 16% on average when compared
to the Traditional policy.

At lower global power bounds, the Traditional policy se-
rializes the jobs, leading to longer wait times and larger
turnaround times. The Naive policy always allocates the
optimal configuration under the user-specified power bound,
which can lead to longer wait times when the best configu-
ration uses a large number of nodes.

7.2.2 Random Traces
Figure 6 (from the previous subsection) compares the three

policies for Random Trace 1. The Adaptive policy with a
threshold of 0% does 19% better than the Traditional pol-
icy and 36% better than the Naive policy on average (up to
31% and 54%, respectively), for both the random traces.

Policies may lead to larger turnaround times at higher
global power bounds in some cases, such as the Naive policy
at 10,000 W (a normalized value of 0.68 in Figure 6). This
policy strives to optimize individual job performance, so it
sometimes chooses configurations with large node counts un-
der the power bound for minor gains in performance (less
than 1% improvement in execution time). Thus, other jobs
in the queue incur longer wait times.

Figure 8 depicts the impact of varying threshold values
on the Adaptive policy for the large-sized and the random
traces (Random Trace 1 ). We compare it to the baseline
Naive policy, which does not exploit slowdown thresholds.
We show threshold values that tolerate a slowdown of 0% to
30%. For large jobs, thresholding helps the user improve the
turnaround time for their job by greatly decreasing queue
time. However, when queue wait times are short, as with
small-sized jobs, we expect that adding a threshold will lead
to larger turnaround times. The random traces have a mix

0.44 0.54 0.68 0.82 0.95

0.
75

1.
5

2

Large−sized Trace

Normalized Cluster Power Limit

 N
or

m
al

iz
ed

 A
vg

 
 T

ur
na

ro
un

d 
T

im
e Traditional

Naive
Adaptive, 0%
Adaptive, 10%

Figure 7: Large-sized Jobs

Policy Average Turnaround Time (s)
Traditional 684
Naive 990
Adaptive, 0% 636
Adaptive, 10% 613
Adaptive, 20% 536
Adaptive, 30% 536

Table 4: Average Turnaround Times

of small-sized and large-sized jobs. For our traces, the Adap-
tive policy with thresholding up to 30% either improves av-
erage turnaround time (by up to 4%) or maintains the same
turnaround time when compared to the Adaptive policy with
a threshold of 0%. The unbounded Adaptive policy, which
assumes that the job can be slowed down indefinitely, which
we show for comparison, leads to worse turnaround times.

For the large trace, the Adaptive policy with a thresh-
old of 0% does 34% better on average than the unbounded
Adaptive policy. Slowing down by 10% to 30% improves the
average turnaround time by 2% on average (up to 4%) when
compared to the Adaptive policy with 0% thresholding. For
the other three traces, the improvement obtained by slow-
ing down the jobs is under 3% on average when compared
to Adaptive policy with a threshold of 0%. This improve-
ment depends on the power bound as well as the job mix.
The numbers reported in this section are averaged across
all global power bounds for the traces. We analyze per-job
performance for a single trace at a fixed global power bound
in the next subsection.

7.3 Analyzing Altruistic User Behaviour
We now present detailed results on the large-sized job

trace in a power-constrained scenario, where only 6,500 W
of cluster-level power is available (50% of worst-case pro-
visioning). We pick this scenario because most important
jobs in a high-end cluster typically have medium-to-large
node requirements. Each job requests at least 40 nodes, so
all jobs are allocated the entire 6,500 W (Pcluster) with the
Traditional policy (as the scheduler runs out of power), lead-
ing to unfair power allocation, sequential schedules and no
opportunity for backfilling. The trace contains 30 jobs.

Figure 9 shows individual job turnaround time for the
Traditional policy, and for the Adaptive policy with 0% and
20% thresholding. Table 4 shows the absolute values of av-
erage turnaround times for the job trace for all policies. We
limit the graph to our main policies.

8



●
● ●

●
●

0.44 0.54 0.68 0.82 0.95

0.
75

1.
5

2.
5

3.
5

Large−sized Trace

Normalized Cluster Power Limit

 N
or

m
al

iz
ed

 A
vg

 
 T

ur
na

ro
un

d 
T

im
e

●

Naive
Adaptive, Unbounded
Adaptive, 10%
Adaptive, 20%
Adaptive, 30%
Adaptive, 0%

●
●

●
● ●

0.44 0.54 0.68 0.82 0.95

0.
87

1.
86

3

 Random Trace 1

Normalized Cluster Power Limit

 N
or

m
al

iz
ed

 A
vg

 
 T

ur
na

ro
un

d 
T

im
e

●

Naive
Adaptive, Unbounded
Adaptive, 10%
Adaptive, 20%
Adaptive, 30%
Adaptive, 0%

Figure 8: The Adaptive Policy with Varying Thresholds, Large and Random Traces

Large Trace at 6500 W, (30 jobs) 
 Per−job turnaround time

Job ID

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Tu
rn

ar
ou

nd
 

 T
im

e 
(s

)

Traditional Adaptive, 0% Adaptive, 20%

Figure 9: Benefits for Altruistic User Behavior

Allocating power fairly with the Adaptive policy with a
threshold of 0% leads to better turnaround times for most
users (17 out of 30), even though they are not altruistic.
The average turnaround time improved by 7% for the job
queue when compared to the Traditional policy in this case.
For the Adaptive policy with 10% and 20% thresholding, 18
and 22 jobs resulted in better turnaround times, improv-
ing the average turnaround time of the job queue by 11%
and 21% when compared to the Traditional policy, which
demonstrates the benefits of altruistic behavior.

Altruistic users also get better turnaround times when
compared to the Adaptive policy with a threshold of 0%.
For example, when the threshold was set to 20%, 13 users
got better turnaround times (up to 58% better, for job 30;
and 13% on average) than they did with a threshold of 0%.
14 users had the same turnaround time, and for 3 users, the
turnaround times increased slightly (by less than 2%). The
average turnaround time for the queue improved by 21%, as
discussed previously. These benefits come from power-aware
backfilling as well as hardware overprovisioning.

In some cases, such as for the first 5 jobs in the queue, the
turnaround times with the Adaptive policy increased when
compared to the Traditional policy. Several reasons explain
this increase. First, all jobs were allocated significantly more
power with the Traditional policy (because no fair-share de-
rived power bound was used, resulting in allocating the en-
tire power budget to most jobs) and executed with Turbo
Boost enabled (as no power capping was enforced), result-
ing in faster execution compared to the other policies. Also,
depending on when a job arrived, it may have had zero wait
time with the Traditional policy. In such a case, with the
Adaptive policy, when the job’s execution time increases, its
turnaround time increases as well, because there is no queue
wait time to trade for. Despite these issues, the Adaptive

policy with 0% thresholding improved the turnaround times
for 17 out of 30 jobs, which shows the benefits of altruism.
For this example, the utilization of system power by both
the Traditional and Adaptive policies was high, leaving little
unused power, mostly because the global power bound was
tight (50% of peak) and the jobs were large-sized.

7.4 Power Utilization
We now analyze a random job trace (Random Trace 2 )

in detail in a scenario at 14,000 W, when the global power
bound is 95% of peak power. We show that the Adaptive
policy, even with a 0% threshold, improves system power
utilization. Again, our results are conservative due to the
sparse job arrival rate in our dynamic job queue (short queue
times in general) so we can test the limits of our Adaptive
policy. With a sparse arrival rate, we expect significant un-
used power.

Figure 10 shows the per-job allocated power and turnaround
time for the Traditional policy, and for the Adaptive pol-
icy with 0% and 20% thresholding. The derived fair-share,
job-level power bounds have been shown as well, which ap-
ply only to the Adaptive policy. The Traditional policy has
job-level power bounds of 5% more power than that of the
Adaptive policy in this scenario, as we are looking at 95% of
peak power as the cluster power bound (14,000 W).

For this trace, 14 of the 30 jobs did not wait in the queue
at all (even with the Traditional policy). Even with no wait
time, the Adaptive policy improved the turnaround time for
28 of these 30 jobs (except Jobs 6 and 10). It tried to utilize
all power without exceeding the job-level power bound to
improve application performance. The average improvement
in turnaround time was 13%, and by more than 2x for 8
jobs in the trace. The Traditional policy fails to utilize the
power well, and leads to larger turnaround times. Also, at

9



Random Trace 2 at 14000 W (30 jobs) 
 Per−job allocated power

Job ID

0

5000

10000

15000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
llo

ca
te

d 
 P

ow
er

 (
W

)

Traditional Adaptive, 0% Adaptive, 20% Derived Job Power Bound

Random Trace 2 at 14000 W, (30 jobs) 
 Per−job turnaround time

Job ID

0

2000

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Tu
rn

ar
ou

nd
 

 T
im

e 
(s

)

Traditional Adaptive, 0% Adaptive, 20%

Figure 10: Power Utilization

higher global power bounds, as in this example, benefits of
the Adaptive policy with thresholding (see Adaptive, 20%
for example) are limited, which is expected as the system is
not significantly power constrained.

7.5 Summary
Our results have yielded three important lessons for power-

aware scheduling. First, our encouraging results with the
Adaptive policy show that jobs can significantly shorten their
turnaround time with power-aware backfilling and hardware
overprovisioning. In addition, by being altruistic, most users
will benefit further in terms of turnaround time.

Second, naive overprovisioning, as implemented by the
Naive policy, can lead to significantly worse turnaround
times than the non-fair-share policy (Traditional) for some
job traces, as with the random job trace and the results that
Figure 6 shows. Power-aware scheduling requires advanced
policies or average turnaround time may actually increase.

Third, the node count requests made by jobs determine
the best policy. The Adaptive policy targets the most im-
portant jobs in a high-end cluster, which are those jobs that
request more resources. If most jobs are small, a simpler
scheme such as the Traditional policy is often superior.

8. RELATED WORK
Job scheduling for parallel systems with a focus on back-

filling algorithms has been studied widely [6, 16, 19, 20, 24,
29, 30, 41–44]. These studies have examined the advantages
and limitations of various backfilling algorithms (conserva-
tive versus easy backfilling, lookahead-based backfilling, and
selective reservation strategies). Early research in the do-
main of power-aware and energy-efficient resource managers
for clusters involved identifying periods of low activity and
powering down nodes when the workload could be served by
fewer nodes from the cluster [28, 35]. The disadvantage of
such schemes was that bringing nodes back up had a signif-
icant overhead.

DVFS-based algorithms can avoid this cost [7–12,31]. Fan
et al. [12] looked at power provisioning strategies in data
centers and proposed a DVFS-based algorithm to reduce
energy consumption for server systems.

While most of this work identified opportunities for using
power efficiently and reducing energy consumption, Etinski
et al. [8–11] were the first to look at bounded slowdown of
individual jobs and job scheduling under a power budget in
the HPC domain. They proposed three DVFS-based poli-
cies; however, they did not consider application configura-
tions or power capping and did not analyze overprovisioned
systems. Zhou et al. [47] explored knapsack-based schedul-
ing algorithms with a focus on saving energy on BG/Q ar-
chitectures. Zhang et al. [46] further improved this work by
using power capping and using leftover power to bring up
more nodes when possible.

Recently, SLURM developers have looked at adding sup-
port for energy and power accounting [22]. However, this
work does not discuss any new scheduling policies. Bo-
das et al. [5] explored a policy with dynamic power monitor-
ing to schedule more jobs with stranded power. This work,
however, has several limitations — the job queue is static
and comprises three jobs, application performance is not
clearly quantified, and overall job turnaround times are not
discussed. Sarood et al. [37,38] developed an ILP-based pol-
icy for resource management under a power bound for over-
provisioned systems for strongly-scaled applications. This
work assumes a specific programming interface with mal-
leability and focuses on maximizing power aware speedup
for applications. As discussed earlier, this scheme has a high
scheduling overhead, and less than 1% of real HPC codes
are expected to support malleability. Our work, specifi-
cally the Adaptive policy, applies to general HPC applica-
tions, and improves system power utilization and overall job
turnaround times. In addition, RMAP has significantly less
scheduling overhead and derives job-level power bounds in
a fair manner.

10



9. CONCLUSION AND FUTURE WORK
In this paper we discussed RMAP , a power-aware re-

source manager for hardware overprovisioned systems. We
designed and implemented three batch scheduling algorithms
within RMAP using the SLURM scheduler, the best of which
is the Adaptive policy. The Adaptive policy leads to 19%
faster average turnaround time when compared to the tra-
ditional algorithm that uses worst-case power provisioning.
It also increases system power utilization.

We are currently working on extending RMAP . One di-
rection is to look deeper into existing job queues and analyze
them dynamically to determine which scheduling policy will
best apply to upcoming jobs. We will also work towards han-
dling different user priorities, which is essential for a produc-
tion batch scheduler. Finally, we will look to integrate our
work into realistic next-generation resource managers being
developed at multiple sites that support real HPC users.

10. ACKNOWLEDGMENTS
We thank Livermore Computing and their support staff

for providing us with the appropriate permissions required
to access the MSRs. We also thank Dr. Ghaleb Abdulla for
helping us gather data from Vulcan. This material is based
upon work supported by the National Science Foundation
under Grant No. 1216829. In addition, part of this work
was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-669277).

11. REFERENCES
[1] NASA Advanced Supercomputing Division, NAS

Parallel Benchmark Suite v3.3. 2006. http:
//www.nas.nasa.gov/Resources/Software/npb.html.

[2] Top500 Supercomputer Sites. November 2014.
http://www.top500.org/lists/2014/11.

[3] NPFA 70. National Electric Code 2014.
http://www.nfpa.org/codes-and-standards/

document-information-pages?mode=code&code=70.

[4] Anat Batat and Dror Feitelson. Gang Scheduling with
Memory Considerations. In International Symposium
on Parallel and Distributed Processing Symposium,
pages 109–114, 2000.

[5] Deva Bodas, Justin Song, Murali Rajappa, and Andy
Hoffman. Simple Power-aware Scheduler to Limit
Power Consumption by HPC System Within a
Budget. In Proceedings of the 2nd International
Workshop on Energy Efficient Supercomputing, pages
21–30. IEEE Press, 2014.

[6] Robert Davis and Alan Burns. A Survey of Hard
Real-Time Scheduling Algorithms and Schedulability
Analysis Techniques for Multiprocessor Systems. In
Technical Report YCS-2009-443, Department of
Computer Science, University of York, 2009.

[7] Elmootazbellah Elnozahy, Michael Kistler, and
Ramakrishnan Rajamony. Energy-Efficient Server
Clusters. In Power-Aware Computer Systems, volume
2325 of Lecture Notes in Computer Science, pages
179–197. Springer Berlin Heidelberg, 2003.

[8] Maja Etinski, Julita Corbalan, Jesus Labarta, and
Mateo Valero. Optimizing Job Performance Under a
Given Power Constraint in HPC Centers. In Green
Computing Conference, pages 257–267, 2010.

[9] Maja Etinski, Julita Corbalan, Jesus Labarta, and
Mateo Valero. Utilization Driven Power-aware Parallel
Job Scheduling. Computer Science - R&D,
25(3-4):207–216, 2010.

[10] Maja Etinski, Julita Corbalan, Jesus Labarta, and
Mateo Valero. Linear Programming Based Parallel
Job Scheduling for Power Constrained Systems. In
International Conference on High Performance
Computing and Simulation, pages 72–80, 2011.

[11] Maja Etinski, Julita Corbalan, Jesus Labarta, and
Mateo Valero. Parallel Job Scheduling for Power
Constrained HPC Systems. Parallel Computing,
38(12):615–630, December 2012.

[12] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz AndrÃl’
Barroso. Power Provisioning for a Warehouse-sized
Computer. In The 34th ACM International
Symposium on Computer Architecture, 2007.

[13] Dror Feitelson. Job Scheduling in Multiprogrammed
Parallel Systems, 1997.

[14] Dror Feitelson. Workload Modeling for Performance
Evaluation. In Performance Evaluation of Complex
Systems: Techniques and Tools, Performance 2002,
Tutorial Lectures, pages 114–141, London, UK, UK,
2002. Springer-Verlag.

[15] Dror Feitelson and Morris Jette. Improved Utilization
and Responsiveness with Gang Scheduling. In Job
Scheduling Strategies for Parallel Processing, pages
238–261. Springer-Verlag LNCS, 1997.

[16] Dror Feitelson and Larry Rudolph. Parallel Job
Scheduling: Issues and Approaches. Job Scheduling
Strategies for Parallel Processing, pages 1–18, 1995.

[17] Dror Feitelson and Larry Rudolph. Towards
Convergence in Job Schedulers for Parallel
Supercomputers. In Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, IPPS
’96, pages 1–26, London, UK, UK, 1996.
Springer-Verlag.

[18] Dror Feitelson, Larry Rudolph, and Uwe
Schwiegelshohn. Parallel Job Scheduling: A Status
Report. In Job Scheduling Strategies for Parallel
Processing, volume 3277 of Lecture Notes in Computer
Science, pages 1–16. Springer Berlin Heidelberg, 2005.

[19] Dror Feitelson, Larry Rudolph, Uwe Schwiegelshohn,
Kenneth Sevcik, and Parkson Wong. Theory and
Practice in Parallel Job Scheduling. Job Scheduling
Strategies for Parallel Processing, pages 1–34, 1997.

[20] Dror Feitelson, Uwe Schwiegelshohn, and Larry
Rudolph. Parallel Job Scheduling - A Status Report.
In In Lecture Notes in Computer Science, pages 1–16.
Springer-Verlag, 2004.

[21] Eitan Frachtenberg and Dror Feitelson. Pitfalls in
Parallel Job Scheduling Evaluation. In Proceedings of
the 11th International Conference on Job Scheduling
Strategies for Parallel Processing, JSSPP’05, pages
257–282, Berlin, Heidelberg, 2005. Springer-Verlag.

[22] Yiannis Georgiou, Thomas Cadeau, David Glesser,
Danny Auble, Morris Jette, and Matthieu Hautreux.
Energy Accounting and Control with SLURM
Resource and Job Management System. In Distributed
Computing and Networking, volume 8314 of Lecture
Notes in Computer Science, pages 96–118. Springer
Berlin Heidelberg, 2014.

11



[23] Intel. Intel-64 and IA-32 Architectures Software
Developer’s Manual, Volumes 3A and 3B: System
Programming Guide. 2011.

[24] David Jackson, Quinn Snell, and Mark Clement. Core
Algorithms of the Maui Scheduler. In Job Scheduling
Strategies for Parallel Processing, volume 2221 of
Lecture Notes in Computer Science, pages 87–102.
Springer Berlin Heidelberg, 2001.

[25] Ignacio Laguna, David F. Richards, Todd Gamblin,
Martin Schulz, and Bronis R. de Supinski. Evaluating
User-Level Fault Tolerance for MPI Applications. In
Proceedings of the 21st European MPI Users’ Group
Meeting, EuroMPI/ASIA ’14, pages 57:57–57:62, New
York, NY, USA, 2014. ACM.

[26] Lawrence Livermore National Laboratory. The ASCI
Purple benchmark codes. http://www.llnl.gov/
asci/purple/benchmarks/limited/code_list.html.

[27] Lawrence Livermore National Laboratory.
SPhot–Monte Carlo Transport Code.
https://asc.llnl.gov/computing_resources/

purple/archive/benchmarks/sphot/.

[28] Barry Lawson and Evgenia Smirni. Power-aware
Resource Allocation in High-end Systems via Online
Simulation. In International onference on
Supercomputing, pages 229–238, June 2005.

[29] David Lifka. The ANL/IBM SP Scheduling System. In
Job Scheduling Strategies for Parallel Processing,
volume 949 of Lecture Notes in Computer Science,
pages 295–303. Springer Berlin Heidelberg, 1995.

[30] Ahuva W. Mu’alem and Dror Feitelson. Utilization,
Predictability, Workloads, and User Runtime
Estimates in Scheduling the IBM SP2 with
Backfilling. Parallel and Distributed Systems, IEEE
Transactions on, 12(6):529–543, 2001.

[31] Trevor Mudge. Power: A First-class Architectural
Design Constraint. IEEE Computer, 34(4):52–58,
2001.

[32] Tapasya Patki, David K. Lowenthal, Barry Rountree,
Martin Schulz, and Bronis R. de Supinski. Exploring
Hardware Overprovisioning in Power-constrained,
High Performance Computing. In International
Conference on Supercomputing, pages 173–182, 2013.

[33] Tapasya Patki, Anjana Sasidharan, Matthias
Maiterth, David Lowenthal, Barry Rountree, Martin
Schulz, and Bronis de Supinski. Practical Resource
Management in Power-Constrained, High Performance
Computing. TR 01-15, University of Arizona, January
2015. http:
//www.cs.arizona.edu/people/tpatki/tr01-15.pdf.

[34] Antoine Petitet, Clint Whaley, Jack Dongarra, and
Andy Cleary. High Performance Linpack.
http://www.netlib.org/benchmark/hpl/.

[35] Eduardo Pinheiro, Ricardo Bianchini, Enrique V.
Carrera, and Taliver Heath. Load Balancing and
Unbalancing for Power and Performance in
Cluster-Based Systems. In Workshop on Compilers
and Operating Systems for Low Power, 2001.

[36] Barry Rountree, Dong H. Ahn, Bronis R. de Supinski,
David K. Lowenthal, and Martin Schulz. Beyond

DVFS: A First Look at Performance under a
Hardware-Enforced Power Bound. In IPDPS
Workshops (HPPAC), pages 947–953. IEEE Computer
Society, 2012.

[37] Osman Sarood. Optimizing Performance Under
Thermal and Power Constraints for HPC Data
Centers. PhD thesis, University of Illinois,
Urbana-Champaign, December 2013.

[38] Osman Sarood, Akhil Langer, Abhishek Gupta, and
Laxmikant V. Kale. Maximizing Throughput of
Overprovisioned HPC Data Centers Under a Strict
Power Budget. In Supercomputing, November 2014.

[39] Osman Sarood, Akhil Langer, Laxmikant V. Kale,
Barry Rountree, and Bronis R. de Supinski.
Optimizing Power Allocation to CPU and Memory
Subsystems in Overprovisioned HPC Systems. In
IEEE International Conference on Cluster Computing,
pages 1–8, Sept 2013.

[40] Sanjeev Setia, Mark S. Squillante, and Vijay K. Naik.
The Impact of Job Memory Requirements on
Gang-scheduling Performance. SIGMETRICS
Perform. Eval. Rev., 26(4):30–39, March 1999.

[41] Edi Shmueli and Dror Feitelson. Backfilling with
Lookahead to Optimize the Performance of Parallel
Job Scheduling. In Job Scheduling Strategies for
Parallel Processing, volume 2862 of Lecture Notes in
Computer Science, pages 228–251. Springer Berlin
Heidelberg, 2003.

[42] Joseph Skovira, Waiman Chan, Honbo Zhou, and
David Lifka. The EASY LoadLeveler API Project. In
Job Scheduling Strategies for Parallel Processing,
volume 1162 of Lecture Notes in Computer Science,
pages 41–47. Springer Berlin Heidelberg, 1996.

[43] Srividya Srinivasan, Rajkumar Kettimuthu, Vijay
Subramani, and P. Sadayappan. Selective Reservation
Strategies for Backfill Job Scheduling. In Scheduling
Strategies for Parallel Processing, LNCS 2357, pages
55–71. Springer-Verlag, 2002.

[44] Dan Tsafrir, Yoav Etsion, and Dror Feitelson.
Backfilling using System-generated Predictions Rather
than User Runtime Estimates. Parallel and Distributed
Systems, IEEE Transactions on, 18(6):789–803, 2007.

[45] Andy Yoo, Morris Jette, and Mark Grondona.
SLURM: Simple Linux Utility for Resource
Management. In Job Scheduling Strategies for Parallel
Processing, volume 2862 of Lecture Notes in Computer
Science, pages 44–60. 2003.

[46] Ziming Zhang, Michael Lang, Scott Pakin, and Song
Fu. Trapped Capacity: Scheduling under a Power Cap
to Maximize Machine-room Throughput. In
Proceedings of the 2nd International Workshop on
Energy Efficient Supercomputing, pages 41–50. IEEE
Press, 2014.

[47] Zhou Zhou, Zhiling Lan, Wei Tang, and Narayan
Desai. Reducing Energy Costs for IBM Blue Gene/P
via Power-Aware Job Scheduling. In Job Scheduling
Strategies for Parallel Processing, Lecture Notes in
Computer Science, pages 96–115. Springer Berlin
Heidelberg, 2014.

12


