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Abstract—Dynamic Voltage Frequency Scaling (DVFS) has
been the tool of choice for balancing power and performance
in high-performance computing (HPC). With the introduction
of Intel’s Sandy Bridge family of processors, researchers now
have a far more attractive option: user-specified, dynamic,
hardware-enforced processor power bounds. In this paper we
provide a first look at this technology in the HPC environment
and detail both the opportunities and potential pitfalls of using
this technique to control processor power.

As part of this evaluation we measure power and perfor-
mance for single-processor instances of several of the NAS
Parallel Benchmarks. Additionally, we focus on the behavior
of a single benchmark, MG, under several different power
bounds. We quantify the well-known manufacturing variation
in processor power efficiency and show that, in the absence of a
power bound, this variation has no correlation to performance.
We then show that execution under a power bound translates
this variation in efficiency into variation in performance.

I. INTRODUCTION

Power has now become the primary performance problem
in high-performance computing (HPC). Up to this point,
Dynamic Voltage/Frequency Scaling (DVFS) has been the
method of choice for investigating the tradeoff between
power and performance in HPC applications. Running the
processor at a lower clock frequency requires less voltage,
but the impact on performance and the amount of power and
energy saved is highly application dependent. While research
has made great strides in modeling these effects, to our
knowledge no machine in the Top 500 list of supercomputers
makes use of DVFS to save power or energy.
Power clamping provides a potentially compelling alterna-

tive to DVFS. Instead of managing the processor’s frequency
directly, the user simply specifies a time window and a power
bound and the hardware guarantees that the average power
will not exceed the specified bound over each window. Both
the window size and bound may be modified at runtime.
This mechanism enables system designers and operators
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to control the exact amount of power that each processor
consumes across the entire system.
However, we account for several subtleties in order for

power clamping to gain widespread acceptance in the HPC
community. In this paper, we explore the variations in power
efficiency across processors and how this variation is trans-
lated into variations in performance while under a power
bound. Small variations in processor power consumption
inevitably introduced in the manufacturing process are well-
known [7] and do not affect processor speed. Placing a
power bound on a processor moves the variation from power
(the processor now operates at a specified number of watts)
to performance (less-efficient processors run more slowly at
the specified power bound).
This perfromance impact is of particular interest in the

HPC domain. Up to this point, machines have been specified
with the assumption that variation in power can be tolerated
while variation in performance cannot: a few inefficient
processors do not exceed the power provisioning of a
machine room, but a single slow processor can constrain
the performance of an entire application. Under a power
bound, those few inefficient processors are transformed into
slow processors. This paper quantifies that effect on real
hardware for several of the NAS Parallel Benchmarks [15].

II. OVERVIEW

Until now, most research in power-aware supercomputing
has focused on trading a loss of performance for energy
savings. While an interesting problem in its own right, it did
not match well with the goal of supercomputer stakeholders,
which is to make an existing machine run as fast as possible.
In effect, these stakeholders were asked to consider doing
less work per unit time in order to save some amount of
someone else’s money. These approaches have not gained
any traction in the wider community.
However, for the largest supercomputers, the amount of

electricity that can be brought into the machine room is
becoming the limiting factor on their capability and, thus, the
amount of work that they can perform in a fixed time period.
As a result, we can no longer simply purchase additional
homogeneous nodes to increase performance because no
power is available to bring them online.
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The processor architecture community has already
reached this point and we propose to adopt their strategy.
The most recent processors from both AMD and Intel are
overprovisioned with respect to power: not all cores can
run simultaneously at the highest possible frequency, and
the user effectively buys capacity that will always remain
unused. What the user buys instead is flexibility, either to
run all cores at a slower frequency or a handful of cores at
a faster frequency.
We foresee future clusters designed the same way. For

problems that benefit from the largest number of processors,
nodes will run at either a low CPU frequency or at a low
power bound. For problems that perform best given a smaller
number of faster nodes, the user or operator will schedule
a smaller number of nodes with a higher power draw and
turn off the remaining nodes. Utilization will no longer be
measured as a percentage of node-hours but rather as a
percentage of maximum kilowatts.
Making this approach a reality requires solving problems

far more difficult than the relatively straightforward problem
of saving energy. The user is presented with what is ef-
fectively a dynamically reconfigurable, homogeneous cluster
and must determine not only the optimal number of nodes
but also how much power should be assigned to each node,
and for how long. In short, we have moved from an energy
savings problem to a power scheduling problem.
As we detail in the discussion section, both DVFS and

power clamping have their strengths when brought to bear
on the scheduling problem: power clamping provides a hard,
tight bound on power but performance modeling under the
power bound becomes much more difficult. DVFS provides
a loose, soft bound, but performance under user-controlled
DVFS is now well-understood. The experimental results that
follow are the first necessary steps to understand perfor-
mance under a power bound.

III. INTEL’S RUNNING AVERAGE POWER LIMIT (RAPL)

With the Sandy Bridge family of processors, Intel intro-
duced both onboard power meters and power clamping. In
this section we provide a technical overview that is informed
by our practical experience with these tools. To the best of
our knowledge, the only documentation for these features is
in chapter 14.7 of Intel’s Software Developer’s Manual[11].
We stress that we are experimenting with new processors in
a pre-production environment and issues raised here may be
resolved in the near future.

A. Interface

Users measure and control processor power using sev-
eral model-specific registers, or MSRs. Intel provides two
privileged instructions, readmsr and writemsr, as the
interface to these registers. Instead of writing a specialized
kernel driver, users and developers on Linux can use the
msr kernel module. This module exports a file interface at

/dev/cpu/N/msr that, given suitable file permission, can
be used to read and write any MSR on the node. This
approach has significant security implications and should
only be used for development in a trusted environment.

B. Architectures

Intel separates the Sandy Bridge family into two
classes: client (family=0x06, model=0x2A); and server (fam-
ily=0x06, model=0x2D). The server-class processor receives
the Xeon designation. The two architectures share a subset of
RAPL features. We only use Xeon processors in this work.

C. Domains

The Sandy Bridge architecture supports three power
domains on each architecture. Both architectures support
package (PKG) and Power Plane 0 (PP0) domains, while the
server adds a separate DRAM domain and the client adds a
second power plane (PP1). The documentation provides little
information to differentiate the circuitry that each domain
covers. For example, “PP1 may reflect to uncore” [the
unified core abstraction of last-level cache] and “Generally,
PP0 refers to the processor cores” exhaust the descriptive
documentation of these two domains.
Our testbed does not support measurement or control of

the DRAM domain. Across the NAS Parallel Benchmark
suite, the power ratio between the PKG and PP0 domain
remained nearly constant. In this work we limit our experi-
ments to measurement and control of the PKG domain.

D. Units

We have not found any documentation that describes
the accuracy of the time, power and energy measurements.
Precision is architecture-specific and is provided by reading
the MSR_RAPL_POWER_UNIT register. Our architecture re-
ports power clamping will be performed in units of 0.125W
over time windows with units of 0.977 milliseconds. Energy
measurements are reported in units of 0.0152 milliJoules.

E. The PKG Domain

The POWER_LIMIT set of MSRs reports the architecture-
specific power envelopes and maximum clamping time win-
dow for each domain. Our PKG domain supports power
bounds as low as 51W. Our thermal spec power is rated
at 115W and our maximum power is 180W. The maximum
time window for power clamping is 0.0459 seconds.

F. Power Clamping

The Sandy Bridge processor does not provide a power
bound in the strictest sense. Instead, the user specifies a time
window and a maximum average power for that window and
the processor guarantees that it will not exceed this average.
Intuitively, longer windows may allow better performance
for applications that utilize the CPU in bursts; if the burst
exceeds the window size, the processor will have to be
throttled. Our future research will determine how the size
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of this window affects machine room power provisioning,
particularly for parallel scientific applications, which tend
to have highly synchronized load spikes.
The PKG domain provides for two separate clamping

windows. A user can provide a higher bound for a smaller
window and a lower bound for a larger window, which
may provide finer control over application performance. A
lower bound for the smaller window would make the larger
window superfluous. We use a single window of the smallest
possible size (0.000977 seconds) for all experiments in this
paper. Smaller windows best avoid potential power spikes
in the absence of application-specific knowledge.
The processor provides two modes for power clamping:

enabled and clamping. Setting the former causes the pro-
cessor to respect the minimum performance level request by
the operating system. Setting both allows the processor to
override the OS if necessary to meet the power bound. In our
experience, setting only the enabled bit did not change the
power profile of any benchmark. All experiments reported
in this paper set both bits high.

G. Other Interfaces

Each domain has a separate, read-only, 32-bit energy
meter. As the unit of joules is so small, this meter rolls
over every few hours. The PP0 and PP1 domains expose a
policy interface that may only be useful on client architec-
tures. The PKG and DRAM domains expose a counter that
records the number of seconds spent below the performance
level requested by the operating system. This measurement
could be useful when the power bound is only expected
to be reached sporadically. In our work we expect that the
clamping will operate more or less continuously, and so we
have not investigated these counters further.

IV. EXPERIMENTAL RESULTS

We performed these experiments on a dedicated 32-node
partition of the Zinfandel TLCC2 cluster and the general-
use 137-node partition on the Merlot TLCC2 cluster, both
at Lawrence Livermore National Laboratory. Each node
contains two Sandy Bridge 8-core processors. Benchmarks
were compiled using GCC 4.4.6 and MVAPICH2 1.7 and
executed under a Red Hat Linux derivative using the 2.6.32
Linux kernel. We configured the NAS Parallel Benchmarks
to use the class C problem size and 8 MPI ranks. We
explored several representatives of the suite initially and then
focus on the MG benchmark. We choose this benchmark
because it consumes the most amount of power of the NAS
Benchmarks, and because it executes for a reasonable length
of time while keeping all eight cores busy. We configured
experiments that use a hardware power bound to use a 1
millisecond window on the PKG domain with clamping
enabled.
Figure 1 shows power variation across the 64 processors

in our testbed partition. We measure average power on each

processor for selected NAS Parallel Benchmarks. We order
the processors by maximum power draw. Three processors
are annotated: the two least-efficient processors are on nodes
49 and 50, and the most-efficient processor is found on node
48. The MG benchmark consumes the greatest amount of
power, with roughly ten watts separating the least- and most-
efficient processors.
Figure 2 shows the results for the MG benchmark. We

compile the MPI version of the benchmark to use eight MPI
ranks, one for each core in the machine. We use an MPI pro-
filing library to set up the necessary MSRs immediately after
the program returns from MPI_Init and measure and reset
the MSRs immediately before calling MPI_Finalize. We
read total joules from the PKG domain and divide this over
elapsed time to calculate average watts.
We run the benchmark 34 times on each processor, once

without any power bound and once at each of the 33 power
bounds ranging from 51W to 83W. Each point on the graph
represents a single run and its associated power (given
in average watts) and performance (given in seconds of
execution time). We highlight the following special cases:

Unbounded power:: The bottom right corner of the
graph has a cluster of black crosses, a red empty circle and
a blue empty triangle. These points represent each of the 64
processors in normal operation, i.e., with no user-specified
power bound. These points are distributed horizontally: each
processor takes roughly the same amount of time to execute
the benchmark. However, these data points are spread out
over the power dimension, ranging from 77.74W for the
most-efficient processor (the blue empty triangle) to 85.36W
for the least-efficient processor (the empty red circle).
We emphasize the lack of correlation between efficiency

(as measured by power consumption) and performance (as
measured by wall clock time). All 64 processors operate at
the same clock frequency and have the same execution rate.
However, some processors use more power than others.

Bounded power:: Starting from the top left of the graph
we show average power and execution time while running
under a user-specified power bound. We track the processors
identified as most and least efficient based on non-bounded
execution. The same processors are usually the most and
least efficient at nearly all measured bounds. However, we
now express efficiency in terms of time. Execution times
range from 16.26 seconds for the most-efficient processor
to 17.23 seconds for the least efficient. We again empha-
size the lack of correlation between efficiency and power
consumption. Regardless of how efficient a processor may
be, if it is operating under a user-specified power bound, its
power consumption matches the bound precisely.
The previous experimental results measure power and

execution time over the entire execution of the benchmark.
In Figure 3 we zoom in to measure the effects of bounding
power at a much finer scale. We run the class-E version
of MG over 256 cores (16 nodes) and five power bounds
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Figure 1. 64 processors ordered by average power consumption over selected NAS Parallel Benchmarks.

ranging from the lowest supported by the PKG domain
(51W) to a bound that is high enough not to affect execution
time (91W). Our instrumentation records timestamps and
accumulates energy at the beginning and end of each MPI
library call, thus distinguishing between time and energy
spent during computation and communication tasks. From
the over 25,000 measurements that result, we show only
those computation tasks that take more than 100 millisec-
onds at the 91W bound.
For this particular instance of this particular benchmark,

power varies over a narrow range at the 91W bound. At the
71W bound nearly every task is slowed with the greatest
variability in slowdown occuring at the 51W bound. This
test reflects the behavior of a single processor (node zero);
observed variation in these experiments is mostly likely due
to variation in execution rather than variation in hardware.

V. DISCUSSION

In this paper we have laid out a vision for a new approach
to power-aware supercomputing and demonstrated a new
tool that may help to achieve that vision. In this section,
we sketch out some less obvious implications of computing
under a power bound.

A. Processor-level modeling

The combination of high-resolution timers and onboard
power meters makes processor-level performance modeling
far more tractable. For a given static computational load, we
can easily plot performance under an arbitrary power bound.
If we are only going to use a subset of the processors in a
system than an obvious optimization is to select first from
the most-efficient processors.

Performance modeling becomes far more interesting when
we no longer assume that loads are static. For example,
running a load-imbalanced application under a power bound
could produce dramatic swings in execution rate: a state in
which all cores are busy and slowed to meet the power bound
can suddenly become a state in which a subset of cores are
idling and their power has been effectively contributed to the
remaining cores, which causes them to execute much faster.
This execution profile would be a challenging problem for
single-processor applications; modeling HPC applications
would also have to account for how these local effects
influence the behavior of remote processors.
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Figure 2. Measured power and performance of the single-processor mg.C.8 benchmark over 64 processors and several power bounds.

B. Node-level modeling

Most HPC systems use nodes with multiple sockets. As-
suming that the available processors will fall within a range
of efficiencies, is it more advantageous to install processors
of similar efficiencies on a node or to arrange them so that
one processor will be significantly more efficient than the
others? The answer will depend on the cluster configuration
as well as the characteristics of the applications that are
executed on the cluster. For example, application that should
maximize memory first and processor counts second would
benefit from having unused, less-efficient processors dis-
tributed throughout the nodes. Applications that benefit from
smaller numbers of faster processors would likely benefit
from having the most-efficient processors concentrated in
the smallest number of nodes.

C. System modeling

If the system has heterogeneous nodes (with regard to
processor efficiency), how are those nodes best distributed
throughout the system? Segregating nodes by efficiency may
provide superior network performance for small-node-count,
high-node-power jobs but inferior performance for large-
node-count, low-node-power jobs. Rack capacity could also

be an issue: a rack designed to match the expected median
power draw may not performance as well if it is populated
entirely with low-efficiency processors.

D. Runtime modeling

Once a system design has been implemented, the user
must decide the best way in which to use the system. To
do so, the user must not only choose the best number of
nodes, but also select which nodes to use, which processors
on the nodes, and finally how to go about balancing power
consumption throughout the duration of the program. These
decisions must be informed by the interplay of power and
performance at the system, node and processor levels.

VI. RELATED WORK

Power clamping (or “capping”) is by now a well-
established if little-used processor feature. In addition to
the Intel processor families, power capping is available in
both the IBM Power6 and Power7 architectures [3], [4].
The AMD Bulldozer architecture implements power capping
by allowing the user to specify a thermal design power
limit for the processor as well independent DRAM power
capping [1].
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Figure 3. Selected power traces for node 0 over multiple power bounds. (mg.E.256)

Characterizing and mitigating processor power variation
has sparked recent interest. Power variation usually changes
as processors age, thus requiring continuing characterization
during their lifetimes [2]. Rangan et al. [16] observe that
variation across cores can be evidenced by variation in
the highest frequency that each core can support. Rather
than using the minimum frequency across all cores, they
recommend classifying the processor using the average core
frequency, thus effectively masking core heterogeneity.

Our proposed strategies for saving power by turning off
individual processor components is very much in the spirit
of existing work. In particular, Ahmed Youssef has designed
a Dynamic Sleep Signal Generator that uses runtime traces
to predict when functional units can safely be placed in
a sleep state [20]. While hardware-enforced power bounds
cannot yet be applied to individual cores, Satori and Kumar’s
work shows demonstrated that control at this level of gran-
ularity allowed a larger number of cores to be placed on a
processor [17]. Follow-on work explored hierarchical, table-
drivent and gradient-ascent techniques for power scheduling
that mitigated power bound violations [18], [12].

Several teams have taken advantage of processor variation
to create more efficient schedulers. Several teams have

examined the combination of processor power variation and
DVFS at processor granularity [14] (for the Pentium M
architecture) and at the granularity of individual cores [19],
[10] (on the AMD Opteron architecture), as well as on more
exotic architectures [8], [6]. Herbert et al. [9] took the next
step by combining DVFS with work shifting to prioritize
use of the most-efficient cores.

Several alternative approaches exist for processor power
control. Per-core power gating (effectively shutting off in-
dividual cores) has been explored for data center work-
loads [13]. Cebrain et al. [5] combine DVFS with several
additional architectural-level techniques, such as instruc-
tion criticality analysis, pipeline throttling, and power-token
throttling. Davis et al. [7] have examined the effects of
variability in power models used to characterize large-scale
clusters.

Two key differences distinguish this work from the fore-
going. First, to the best of our knowledge we are the first to
specifically target this technology to the high-performance
computing domain. Second, for the first time, we show the
effects of of power clamping across a significant number of
processors. Our future work will apply the lessons learned
from both the functional-unit scheduling and multicore
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scheduling detailed above in order to make the most efficient
use of HPC assets.

VII. CONCLUSION

In this paper we have made the following contributions:
1) Quantification of the power envelope and variation of

the most recent Intel server-class processor, the Xeon
Sandy Bridge.

2) Explanation of how the Runtime Average Power Limit
(RAPL) technology can measure and limit power.

3) Demonstration that a power bound converts variation
in processor power to variation in performance.

4) Exploration of the potential of RAPL as a DVFS
replacement.

5) Discussion of how RAPL could enable moving beyond
power savings and into power scheduling in the high-
performance computing domain.

We have only scratched the surface of these features. In
particular, we look forward to being able to clamp and to
measure power in the DRAM domain as well as to determine
how best to use the two clamping windows in the PKG
domain. We see RAPL as an enabling technology that will
allow us to treat power as a schedulable resource. The greater
efficiency realized will in turn allow more resources to be
brought to bear for the same amount of power.
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