
Adaptive Configuration Selection for
Power-Constrained Heterogeneous Systems

Peter E. Bailey, David K. Lowenthal
Department of Computer Science

The University of Arizona
{pbailey, dkl}@cs.arizona.edu

Vignesh Ravi
Advanced Micro Devices, Inc.

Vignesh.Ravi@amd.com

Barry Rountree, Martin Schulz,
Bronis R. de Supinski

Lawrence Livermore National Laboratory
{rountree4, schulzm, bronis}@llnl.gov

Abstract—As power becomes an increasingly important design
factor in high-end supercomputers, future systems will likely
operate with power limitations significantly below their peak
power specifications. These limitations will be enforced through a
combination of software and hardware power policies, which will
filter down from the system level to individual nodes. Hardware
is already moving in this direction by providing power-capping
interfaces to the user. The power/performance trade-off at the
node level is critical in maximizing the performance of power-
constrained cluster systems, but is also complex because of the
many interacting architectural features and accelerators that
comprise the hardware configuration of a node.

The key to solving this challenge is an accurate
power/performance model that will aid in selecting the right
configuration from a large set of available configurations. In
this paper, we present a novel approach to generate such a
model offline using kernel clustering and multivariate linear
regression. Our model requires only two iterations to select
a configuration, which provides a significant advantage over
exhaustive search-based strategies. We apply our model to predict
power and performance for different applications using arbitrary
configurations, and show that our model, when used with hard-
ware frequency-limiting, selects configurations with significantly
higher performance at a given power limit than those chosen by
frequency-limiting alone.

When applied to a set of 36 computational kernels from a
range of applications, our model accurately predicts power and
performance; it maintains 91% of optimal performance while
meeting power constraints 88% of the time. When the model
violates a power constraint, it exceeds the constraint by only 6%
in the average case, while simultaneously achieving 54% more
performance than an oracle.

I. INTRODUCTION

Traditionally, supercomputers have been designed to max-
imize performance irrespective of power. This trend cannot
continue; the US Department of Energy has a goal of 20 MW
for an exascale supercomputer, similar to the power of today’s
petascale machines. Tianhe-2, the fastest supercomputer as of
2013, achieves a peak performance of 33.8 petaFLOP/s under
load at 17.8 MW of power. Therefore, the goal of exascale
performance at 20 MW implies at least a 26-fold improvement
in power efficiency at scale.

To achieve this ambitious goal, exascale system designs
are likely to include two things that are becoming common-
place. The first is accelerators (e.g., GPUs, Xeon Phi). Newer
integrated CPU-GPU architectures, such as AMD’s Kaveri,
reduce GPU overhead and further improve power efficiency.

The second trend we expect is for systems to include more
hardware than can be powered fully simultaneously. In such
a system, power constraints will be enforced by system-wide
power policies and local power and thermal design points.
Additionally, the system will selectively enable or disable
hardware resources to direct power to performance-critical
components.

Such power constraints will be passed down through the
machine hierarchy to each rack, node, and core. Already,
we see node-level architectures imposing power constraints
and controlling power distribution; for example, some Intel
processors support the running average power limit (RAPL)
[1] interface, which allows the user or system software to set
a power constraint, while AMD APUs provide BAPM [2] to
balance power between the CPU and GPU on the chip.

Given a power constraint, maximizing performance is
complex and requires finding appropriate node-level power-
performance trade-offs. For example, how do different
hardware-level configurations—where a configuration consists
of a device selection (CPU or GPU), number of cores, voltage
and frequency for both the CPU and GPU, and process/core
mapping—affect performance over a wide range of parallel
applications? This question can most effectively be answered
using a model that predicts both power and performance across
the entire configuration space for a range of applications.
In this paper, we demonstrate the creation and application
of such a model to choose node-level configurations that
maximize performance under prescribed power constraints in
a heterogeneous machine.

In this paper, we make the following contributions:
• We characterize the power and performance of a set of

benchmarks on a single-chip heterogeneous processor,
and demonstrate a method to build a prediction model
from this characterization.

• We create a predictive model for estimating relative
power and performance across available devices and
configurations, using data from only two sample config-
urations (one per device) as input.

• We perform adaptive configuration selection using the
model to maximize performance under imposed power
constraints, and we compare our method to state-of-the-
practice power allocation schemes.

Our model is a key ingredient to maximizing performance



on a multi-node cluster. Before that problem can be attempted,
an accurate node-level model must be developed. This work
makes clear that device selection is important for performance
and power. Our model predicts relative performance between
devices and between configurations within a device, allowing a
wide range of power limits. In addition, our model needs only
two iterations of a kernel to find an effective configuration.

In the rest of this paper, Section II explores related work,
Section III provides step-by-step analysis of our modeling
process, and Section IV identifies our experimental setup and
details data collection and model derivation. Next, Section V
presents analysis and interpretation of model results. Finally,
Section VI outlines future work.

This material is based upon work supported by the U.S.
Department of Energy’s Lawrence Livermore National Lab-
oratory, Office of Science, under Award number DE-AC52-
07NA27344 and supported by Office of Science, Office
of Advanced Scientific Computing Research (LLNL-CONF-
656877).

II. RELATED WORK

A. Performance Modeling

Many researchers have studied performance prediction mod-
els for parallel applications on homogeneous platforms. The
work of Curtis-Maury et al. [3]–[6] is closely related to ours.
They implemented various online and offline configuration
selection runtimes for OpenMP applications, employing dy-
namic concurrency throttling (DCT), dynamic voltage and
frequency scaling (DVFS), and simultaneous multithreading
(SMT) to maximize performance. These systems indepen-
dently employed offline regression models and artificial neural
networks (ANNs).

Cochran et al. and Reda et al., respectively [7], [8],
demonstrated runtime systems for power-constrained plat-
forms, employing DVFS and thread packing. However, they
did not consider heterogeneous platforms, and, in [7], required
physical instrumentation with a power meter to make power
measurements. Additionally, their runtime overhead was com-
paratively large. In contrast, our system uses on-chip power
estimates, and requires less than one millisecond to make each
configuration selection.

Lee et al. created models based on regression and ANNs to
predict performance for parallel applications on homogeneous
cluster systems [9]. Their models were application-specific,
and required substantial training of each application before
predictions could be made. In contrast, our system may be
used with any application.

Wang et al. used machine learning to select configurations
for OpenMP applications on two significantly distinct multi-
core processors [10]. They compared their implementation to
both regression-based and analytical performance prediction
models, showing that their implementation required less train-
ing and made predictions with higher accuracy. However, they
did not predict power, and only considered a single device at
a time. Also, their implementation requires instrumentation by
a compiler, and therefore access to source code.

Karami et al. [11] and Kerr et al. [12] created respective
performance models for NVIDIA GPUs that used performance
counter statistics and multiple regression, factors in common
with our system. However, their models only apply to GPUs,
and do not account for power or energy. In addition, the
system of Kerr et al. requires not only execution of a kernel to
make predictions, but also static analysis and data collection
via simulation. Our system only requires modification of the
runtime, and does not require source code or a simulator.

Luk et al. [13] built Qilin, a runtime system and program-
ming framework for heterogeneous systems. Qilin features
adaptive workload partitioning between devices. While the
authors show that Qilin achieves energy savings over CPU-
only and GPU-only configurations, Qilin is not power-aware.

In contrast to the above body of work, our work models
both performance and power on heterogeneous systems with
multiple devices and multiple implementations, and thus re-
quires not only accurate CPU power and performance models,
but also accurate GPU models. Our work has additional
advantages over the above. First, modern machines have
many more available configurations. In particular, the addition
of accelerators provides opportunities for performance and
power efficiency improvement, but such improvements are
not automatic, and accelerators do not benefit all parallel
code. Our model navigates this space of configurations and
devices after only two iterations, efficiently determining which
device/configuration to use for each kernel. Second, our model
predicts power and performance for configurations on which it
has not been trained. This significantly reduces the amount of
training data required, and prepares our model for future many-
core architectures for which training on all configurations will
be infeasible. Finally, our combined model benefits from the
close relationship between power and performance. Specif-
ically, we use power measurements to predict performance
and vice versa; power consumed at our sample configurations
is a good predictor of performance in other configurations,
while performance is a good predictor of power consumption.
Also, running under a power constraint demands simultaneous
accuracy of the power and performance models; if power or
performance are mispredicted, the resulting configuration will
use too much power, achieve suboptimal performance, or both.

B. Power-Performance Modeling

There are many other research thrusts involving power-
performance prediction models. Li et al. implemented a hybrid
MPI/OpenMP power-aware runtime system employing DCT
and DVFS [14]. This system used online application samples
with an offline model to optimize energy while maintaining
performance. Springer et al. [15] demonstrated a system for
MPI applications that, given an energy budget, selected an
appropriate number of nodes and a per-phase DVFS setting to
minimize application completion time. Wu et al. investigated
online ways to control frequency/voltage in multiprocessors
with multiple clock domains [16]. Hong et al. [17] created a
combined power and performance model for GPUs. In prac-
tice, the model could be used to optimize performance under a



power constraint. However, the model only addressed the GPU
portion of a heterogeneous system. Our work differs from the
above by respecting a power constraint in a heterogeneous
system, as opposed to minimizing energy or predicting power
in a homogeneous system.

Performance prediction is not only important to application
execution; it is also important in architectural design. Li et
al. used heuristics and hill-climbing to search a processor
design space for power-efficient processor configurations for
parallel applications [18]. In addition, Lee et al. used regres-
sion modeling to search a processor design space for power-
efficient architectures [19]. Hsu and Feng [20] developed a
model called Beta for predicting the effect of DVFS. Finally,
several groups have developed an architectural performance
model that takes into account the effect of multiple outstanding
loads, for predicting performance under DVFS [21]–[23].

Isci et al. optimized simulated processor performance under
a chip-level power budget for a workload of simultaneously
executing serial SPEC benchmarks [24]. This work made a
case for the use of per-core DVFS, a feature rarely available
in multicore CPUs. However, the workloads of multiple,
simultaneously executing serial applications are a limiting
factor; modern processors routinely execute multiple parallel
applications. Our system focuses on optimizing performance
for one parallel application at a time; this is important because
accurate single-application models are a necessary ingredient
in multi-application optimization systems.

In between hardware and software, firmware plays an im-
portant role in power budgeting. Paul et al. implemented a
firmware-based power control system for heterogeneous pro-
cessors [25]. The system balanced power between a multicore
CPU and an on-chip GPU, maximizing performance under
a chip-wide power constraint by changing CPU and GPU
DVFS states in response to measured application frequency
sensitivity. This approach is application-independent and OS-
independent, but is limited in power scalability. For example,
it is unable to relocate a kernel from the CPU to the GPU or
change the number of CPU cores in operation.

C. Power Modeling, Heuristics

Much attention has been paid to modeling only power,
especially in server systems. Shen et al. [26] developed a
scheme that attributes power consumption to individual tasks
and allows for model error correction. Another example is the
work of Bertran et. al. [27], who developed a performance
counter-based model that can identify power phases.

Work that is somewhat related to ours includes run-time
systems to manage power/energy automatically [20], [28],
[29]. These systems are heuristic-based and generally do not
use formal models.

III. OUR MODEL

Our general approach is to classify kernels into a small
number of clusters based on how each kernel’s performance
scales with changes in available power, then use those clusters
to predict power and performance for arbitrary applications

��������	�
���������

��
���
�������
����
�		���

������������
�������	

���
������


�������

����	�������

�������
�	

 �
!�
������

���� ���
�"���

#�
��
��
�	��
	�

#�
��
��
�		���


$���#�
��


 �
!�
������

���� ���


 
��������	

��
������

�����

%���
�

�����

 ���


���

&'��� �������(���

 �
!�
����������

 ���
�����
	

�
�	��
���� �
����!
�����
	

�
�	��
�����
�

�		����#�
��
�����
�	��


%
�)�����


�����


 �
!�
������

���� ���
�"���

Fig. 1: Flow chart showing offline and online portions of our
system.

and their kernels. Our process is divided into two stages:
offline and online. In the offline stage, we characterize the
system with a small number of kernels (the training set),
group kernels into clusters, and create regression models for
each cluster. In the online stage, we use models from the
offline stage to predict power and performance for previously
unknown kernels and applications (the validation set). We note
that the offline stage is conducted only once to characterize a
new system, whereas the online stage is applied for each new
application. The rest of this section details both the offline and
online stages, which Figure 1 depicts in flowchart form.

A. Assumptions

Ideally, a single programming framework would achieve
competitive performance on a range of device types, without
requiring manual specialization of source code to specific
devices. We are unaware of such a framework, so we choose a
distinct implementation for each device: OpenMP on the CPU,
and OpenCL on the GPU. OpenMP is simpler to use than
OpenCL, and we found its performance superior to OpenCL
on the CPU for all but two of the 36 kernels we tested.
Additionally, there are multiple ongoing efforts to support
OpenMP (or similar frameworks) on heterogeneous systems
[30]–[32]. Use of such a system would remove the need for
multiple implementations of an application.

Even though our applications support both OpenMP and
OpenCL, we do not examine hybrid codes. This is because
the lack of compiler/runtime support for hybrid codes requires



the programmer to split kernel inputs and combine outputs.
In many cases, hybrid execution actually decreases overall
performance due to load imbalance or increased parallel
overhead [13], [31]. Also, even if hybrid execution increases
performance, it will strictly lower power-efficiency compared
to the best single device, which is of primary concern in
power-constrained environments. In the best possible case,
hybrid execution will increase performance by a factor of
two over the best single device, but will increase power con-
sumption at least as much. Consequently, the benefit of hybrid
execution in a power-constrained environment is often much
lower than the best case. Similarly, we assume that kernels
execute sequentially. All of our benchmark applications fit this
condition.

B. Offline Stage: Clustering and Training

Our regression models are based on power and performance
profiling data collected on a per-kernel basis from a set
of training benchmarks (the training set). In this paper, we
use a cross-validation scheme to select training kernels (see
Section V-C); however, the training set could be composed of
microbenchmarks or a standard benchmark suite. We obtain
the profiling data through a combination of performance
counters and an on-chip system management microcontroller.
We use PAPI [33] to measure CPU counters and use the
northbridge performance monitoring unit (PMU) directly for
northbridge counters, which track memory-related events. The
system management microcontroller provides real-time power
estimates for two domains: the CPU cores and the northbridge
and GPU together. We integrate the power estimates over time
to obtain an average power estimate for each kernel. In addi-
tion to the two power domains, we track the following counts
for each kernel execution: L2 data cache misses, L1 data cache
misses, TLB misses, conditional branch instructions, vector
instructions, stalled core cycles, total core cycles, reference
cycles, idle FPU cycles, interrupts, and DRAM accesses. All
such counts are normalized to one or more of core cycles,
reference cycles, and instructions.

Power-performance Pareto frontiers play a key role in our
modeling process. We derive Pareto frontiers from power and
performance data for each kernel, comparing configurations
within and between processors. An example frontier is de-
picted in Figure 2, showing that using the GPU results in
better performance for higher power limits, while the CPU is
able to reach lower power limits. Performance is normalized
to that of the highest-performing configuration, and is kernel-
specific. The distinct levels of GPU performance correspond
to distinct GPU P-states. The differences in power are due
almost entirely to CPU P-state selection. The line indicates the
dependence of attainable performance on available power. It is
important to note that with perfect knowledge of the machine
and kernel in question, the majority of configurations would
never be selected because the configurations along the frontier
use less power for the same or greater performance than all
other configurations. The configurations on the frontier are
listed in Table I. Note that the first GPU configuration is at

●

●

● ●

●

● ●
● ●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

0 10 20 30 40

0
.2

0
.4

0
.6

0
.8

1
.0

Performance−Power Frontier,

CalcFBHourglassForceForElems

Power (watts)

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

●

Perf−Power Pareto

GPU OpenCL

CPU OpenMP

Fig. 2: A power-performance Pareto frontier from LULESH.
Table I lists the configurations on the frontier.

Device GPU f. Threads CPU f. Power Perf.∗

CPU 0.3 GHz 1 1.4 GHz 12.5 w 0.15
CPU 0.3 GHz 2 1.4 GHz 13.7 w 0.24
CPU 0.3 GHz 3 1.4 GHz 13.8 w 0.34
CPU 0.3 GHz 4 1.4 GHz 14.8 w 0.43
CPU 0.3 GHz 3 1.9 GHz 17.0 w 0.45
CPU 0.3 GHz 4 1.9 GHz 18.7 w 0.56
CPU 0.3 GHz 4 2.4 GHz 24.2 w 0.66
GPU 0.3 GHz 1 1.4 GHz 24.2 w 0.84
GPU 0.6 GHz 1 1.4 GHz 25.2 w 0.97
GPU 0.6 GHz 1 1.9 GHz 27.9 w 0.98
GPU 0.6 GHz 1 2.4 GHz 28.7 w 0.98
GPU 0.6 GHz 1 3.3 GHz 29.6 w 0.99
GPU 0.6 GHz 1 3.7 GHz 29.8 w 1.00

TABLE I: Configurations on the power-performance Pareto
frontier of the CalcFBHourGlass kernel from LULESH.
All configurations for this kernel are shown in Figure 2.
∗Normalized performance

the GPU’s lowest frequency (0.3 GHz), and that this kernel
does not benefit from running the GPU at its highest frequency
(0.8 GHz). Also, the GPU configurations have varying CPU
frequencies; this reflects kernel launch overhead spent in the
driver and OpenCL runtime, which run on the CPU.

We use the frontiers to group kernels into clusters, with
the key insight being that kernels with similar power and
performance scaling behavior will generally have the same
configurations on their respective frontiers, arranged in the
same order. We first create a kernel dissimilarity matrix by
performing pair-wise comparisons of all kernels’ frontiers. For



Device CPU frequency CPU threads GPU frequency
CPU 3.7 GHz 4 311 MHz
GPU 3.7 GHz 1 819 MHz

TABLE II: Sample configurations. When an unknown kernel
is encountered, we run it with these configurations prior to
making power and performance predictions.

each frontier comparison, we first select only the configura-
tions that are present in both frontiers. Then, we compute the
Kendall rank correlation coefficient [34] between the orders
of the shared configurations within each frontier. The Kendall
rank correlation coefficient indicates similarity or dissimilarity
between the orders of two lists; if the lists are identical, the
coefficient is 1, and if one list is the reverse of the other, the
coefficient is −1.

From the resulting dissimilarity matrix, we perform rela-
tional clustering via the R Fossil package [35]. This groups
the kernels into clusters according to similarities between the
order of configurations along the kernels’ respective power-
performance frontiers. Each cluster contains kernels from at
least three of the five benchmark/input combinations. For the
benchmarks and kernels we tested, we found empirically that
five clusters optimized the predictive ability of our system;
using fewer clusters resulted in over-generalized models, and
using more clusters resulted in over-specialized models.

It is unreasonable to expect a single regression model to
make accurate predictions for all kernels, especially when
using only the machine configuration space as input. For
example, the kernels we tested show large variance in power
consumption; even after selecting the best-performing configu-
ration for each kernel, one kernel uses 19 watts, while another
uses 55. Similarly, kernels vary in how performance scales
with power consumption. One kernel’s best performance is
367 times that of its worst, while another kernel spans a range
of only 1.62 in performance. For this reason, we group kernels
into clusters, and create power and performance models for
each cluster.

In the regression models, we use sample configurations
as a frame of reference for mapping performance on one
configuration to performance on all other configurations. The
sample configurations are listed in Table II. We chose these
configurations to match common execution configurations in
environments without power constraints. We note that the
sample configuration iterations are part of normal application
execution. It is important to limit the number of sample
configurations; requiring more sample configurations leads to
more time spent in configurations that are suboptimal from
power or performance perspectives.

The performance models predict how performance scales
from a sample configuration on the relevant device. That is,
Pperf = (a1 ·x1+a2 ·x2+ ...+an ·xn) ·Sperf , where Pperf is
the predicted performance, Sperf is the sample configuration
performance on the same device, the ai are the model coeffi-
cients, and the xi are the configuration variables (frequency,

yes no

yes no

yes no

yes no

L2D misses/cycle

< k1?

L1D accesses/cycle

> k2?

stalled CPU clocks/instruction

on GPU sample con�g

< k3?

L1D accesses/instruction

< k4?

cluster 5

cluster 4

cluster 3

cluster 2 cluster 1

Fig. 3: An example cluster classification tree.

number of cores, etc.) and their first-order interactions (i.e.
frequency · cores ). The power models directly predict power,
however: Ppower = b0 + b1 · x1 + b2 · x2 + ...+ bn · xn, where
Ppower is predicted power, and the bi are model coefficients,
with b0 as the intercept. Performance is generally a nonlinear
function of our configuration variables. Our goal in using
linear performance and power prediction models is to rank
configurations in performance and power in a computationally
efficient manner. We find that linear models satisfy this goal.
This model formulation has an important consequence; once
a new kernel is associated with a cluster, the only new infor-
mation required to make power and performance predictions
is the kernel’s performance on the sample configurations.

While the models and clusters are trained offline from
known kernels, the purpose of our system is to make pre-
dictions for new kernels. However, there is asymmetry in
information available regarding new kernels and those from
the training set; those from the training set have run on all
available configurations, while new kernels have only run once
on each device. This asymmetry motivates the creation of a
system to assign new kernels to existing clusters. For this
purpose, we train a classification tree [36] on performance
counter and power data from training kernels on the sample
configurations. Figure 3 shows an example tree. In this tree,
new kernels are classified into four existing clusters based on
four normalized performance counter metrics. The constants
k1 to k4 are determined empirically from the training kernels.

C. Online Stage: Predictions and Scheduling

Before power and performance predictions for a kernel can
be made, the kernel must be assigned to one of the trained
clusters via the classification tree. The inputs to the tree depend
on having run the kernel on the sample configurations, so we
use the first two iterations of the kernel to run on the sample
configurations, with one iteration on each device (CPU and



GPU). Once the classification tree selects a cluster, we apply
the selected cluster’s models to predict power and performance
for the new kernel at all machine configurations across all
available devices.

From the predicted power and performance for all configu-
rations for a new kernel, we derive a predicted Pareto frontier.
The resulting frontier allows a scheduler to select specific
devices and configurations depending on the scheduling goal
at hand. In this paper, we focus on maximizing attainable
performance under an imposed power constraint, but the pre-
dicted values could be used to select configurations for energy
efficiency, energy-delay product, or any other scheduling goal.
The use of a predicted Pareto frontier makes our system
adaptable to dynamic power constraints, and avoids the need
to examine predictions for all configurations when scheduling
conditions change.

D. Profiling Library

In order to associate power and performance measurements
with specific sections of application execution, we create an
integrated profiling library. This also allows us to take into
account the overheads of data transfer and kernel launch in
the case of OpenCL and thread creation and synchronization
in the case of OpenMP.

Our library is designed to provide a foundation for dynamic
scheduling. A history of performance and power measure-
ments is made accessible to the application or runtime, which
facilitates online selections of device and configuration for a
given kernel.

As our benchmarks are implemented in both OpenMP and
OpenCL, we currently instrument source code by hand with
profiling pragmas, which a source preprocessor then converts
into profiling library calls. At run time, the application invokes
the library to record samples of performance counters and
power measurements to resident data structures, which are
written to disk after the application completes. Such instru-
mentation could also be performed automatically by a com-
piler [37], or effected through dynamic library interposition,
wrapping OpenCL API calls.

IV. EXPERIMENTAL SETUP

A. Test System

The Trinity heterogeneous processor (APU) forms the basis
of our test machine for this paper. It contains two out-of-
order dual-core CPU compute units (also known as PileDriver
modules or CUs) and a GPU. The cores within a dual-core
module share the front-end and floating point units along with
a 2M L2 cache. The CPU cores share a power plane, while
the GPU is on a separate power plane. The GPU consists
of 384 RadeonTM cores, each capable of one single-precision
fused multiply-add computation (FMAC) operation per cycle.
The GPU is organized as six SIMD units, each containing 16
four-way VLIW processing units. The memory controller is
shared between the CPU and the GPU. More details on the
Trinity processor are available [2].

The Trinity A10-5800k processor supports six software-
visible DVFS states, or P-states, ranging from 1.4 to 3.7
GHz. P-states can be assigned per CU. However, since all
compute units on the chip share a voltage plane, the voltage
across all compute units is set by the CU with maximum
frequency. Software-visible P-states are managed either by the
OS through the Advanced Configuration and Power Interface
(ACPI) specification [38] or by the hardware. The processor
also supports higher frequencies, but we do not consider them,
as we require direct control over CPU P-states.

The GPU has a power plane separate from that of the CPU
in which voltage and frequency are controlled independently.
For the rest of this paper, we consider three effective GPU
P-states, at 311 MHz, 649 MHz, and 819 MHz, respectively.

B. Benchmarks and Tools

We evaluate our model on a suite of exascale proxy applica-
tion benchmarks. LULESH, CoMD, and SMC were originally
developed by the U.S. Department of Energy and subsequently
ported to OpenCL/OpenMP by AMD and the Department of
Energy. These benchmarks are representative of the class of
workloads expected in an exascale supercomputer. LU is from
the Rodinia benchmark suite [39], chosen for its relevance
to the LINPACK benchmark [40] commonly used to rank
supercomputer performance.

With the exception of LU, all of the benchmarks in our
study are composed of multiple kernels. Our OpenCL version
of LULESH [41], a shock hydrodynamics benchmark, contains
20 significant kernels. CoMD [42], a molecular dynamics
benchmark, contains 7 significant kernels, while SMC, a
combustion benchmark, contains 8. In total, our benchmarks
contain 36 kernels. Running benchmarks with various inputs
increases the variance in kernel behavior, and increases our
benchmark/input combination count to 65.

We use the following tools in data acquisition, compilation,
and benchmark execution: R 3.0.1, GCC 4.7, AMD OpenCL
APP SDK 2.8.1, PAPI 5.2.0, and Ubuntu 12.04.3 with Linux
3.11.

C. Overheads

Our system is designed to maximize performance, so we are
careful to reduce its offline and online overheads. In pursuit
of this goal, our training kernels require less than two hours
to run, and our offline data reduction and model construction
process requires about ten minutes.

Data acquisition involves recording performance counter
and power measurements at the start and finish of each
kernel execution, which we find to add less than 50 microsec-
onds. Our power measurement method involves sampling and
accumulating an on-chip power estimate at 1 kHz, which
incurs overhead of less than 10% in all cases. However, this
method of power measurement is not necessary on archi-
tectures equipped with hardware- or firmware-based energy
accumulators.

In the online case, the overheads of our system include tree
classification and model application for a new kernel. Both



of these rely on having run the kernel on the two sample
configurations. Application of the tree classifier requires time
on the order of the depth of the tree, and model application
requires a simple matrix-vector product of the configuration
space with the model coefficients. The online overheads are
negligible because they are encountered only once per kernel;
after the second iteration of a kernel, its configuration is fixed.

V. EXPERIMENTAL EVALUATION AND RESULTS

A. Methods for Limiting Power

We compare our model against various state-of-the-practice
methods for power limiting based on Intel’s RAPL [1]. RAPL
dynamically adjusts CPU core frequency to meet an im-
posed power constraint. Our test system is not equipped with
RAPL, so we simulate its behavior. In addition to simulating
frequency-limiting on the CPU, we also simulate it on the
GPU.

We evaluate two basic frequency-limiting methods in detail,
with one focused on the CPU (referred to as CPU+FL) and
one focused on the GPU (GPU+FL). For the CPU, we enable
all available cores, set the GPU to minimum frequency, and let
the frequency limiter set CPU P-states in response to power
constraints. For the GPU, we initially set CPU frequency to its
minimum and GPU frequency to its maximum during kernel
execution, then let the frequency limiter control GPU P-states
in response to power constraints. If there is power headroom
after setting the GPU P-state, we increase the CPU frequency
as much as is possible without violating the power constraint.

We also evaluate the combination of our model with a
frequency-limiting system, referred to as Model+FL.

B. Evaluation Metrics

We evaluate all of the aforementioned power-limiting meth-
ods by comparing them against an oracle with perfect knowl-
edge. For each method, we compare configurations selected
by the method with those selected by the oracle under various
power constraints. The specific power constraints correspond
to the power consumption levels at the configurations on the
oracle-selected power-performance frontier for each kernel
under comparison. We compare the method-selected config-
urations with the oracle-selected configurations by computing
power and performance differences in two categories: when
the method meets the power limit, and when the method does
not meet power limit. For the remainder of the paper, we refer
to these categories as under-limit and over-limit, respectively.
A method may fail to meet a power constraint by selecting a
configuration that cannot be sufficiently scaled via DVFS.

C. Cross-Validation

To verify that our model makes accurate predictions for
new kernels, we perform leave-one-out cross-validation [43,
Chapter 7] for the entire process across individual benchmarks.
That is, for each benchmark, we form a training set that
consists of kernels from other benchmarks. From kernels in
the training set, we compute clusters, cluster models, and
a classification tree, then apply them to kernels from the

Model Model+FL

GPU+FL

CPU+FL

oracle

● ●

●

●

●

60

70

80

90

100

50 60 70 80 90 100

% Under Power Limit

%
 o

f 
O

ra
c
le

 P
e
rf

o
rm

a
c
e

Performance vs. % Under−limit

Fig. 4: Comparisons of our model and state-of-the-practice
methods, normalized to an oracle.

benchmark under validation. In doing so, we ensure that the
model is always applied to as-yet-unseen benchmarks.

D. Results: Comparison of Power-limiting Methods

Table III compares all the previously discussed methods
(CPU+FL, GPU+FL, Model, and Model+FL) to an oracle with
perfect knowledge of the test system and benchmark kernels.
When combined with frequency-limiting, our model has a
clear advantage over the other methods. Primarily, Model+FL
both achieves near-optimal performance and meets power
constraints more often than the other methods. In over-limit
cases, Model+FL uses the least power, while still providing
54% more performance than the oracle.

Figure 4 compares each power-limiting method to an or-
acle in two metrics: percentage of time meeting the tested
power constraints, and the percentage of optimal performance
achieved in those cases. When combined with frequency-
limiting, our model is closest to the oracle when considering
both metrics together. GPU+FL achieves higher performance,
but it meets power constraints only 60% of the time, whereas
our model achieves high performance while meeting power
constraints 88% of the time. In the absence of power con-
straints, running all kernels on the GPU yields high perfor-
mance. In a power-constrained system, however, more care
must be taken to select appropriate devices and configurations.

The values in our method comparisons are averaged across
all kernels that compose each benchmark, weighted by how
much of the benchmark time is spent in each kernel. Figure
5 compares the methods by their performance in under-
limit cases. Model+FL has a clear advantage over the other
methods in maintaining high performance across the set of



Under-limit Over-limit
Method % Under-limit % Oracle Perf. % Oracle Power % Oracle Power % Oracle Perf.
Model 70 91 94 112 139
Model+FL 88 91 91 106 154
GPU+FL 60 94 95 137 1723
CPU+FL 76 69 94 111 216

TABLE III: Comparisons of our model and state-of-the-practice methods, normalized to an oracle.

CPU+FL GPU+FL Model Model+FL

SMC

LULESH Large

LULESH Small

CoMD Large

CoMD Small

LU Large

LU Small

Percent of Optimal Performance by Benchmark

Method

%
 o

f 
O

p
ti
m

a
l 
P

e
rf

o
rm

a
n
c
e

0
2
5

5
0

7
5

1
0
0

Fig. 5: Performance vs oracle in under-limit cases.

CPU+FL GPU+FL Model Model+FL

SMC

LULESH Large

LULESH Small

CoMD Large

CoMD Small

LU Large

LU Small

Percent Under−limit by Benchmark

Method

%
 U

n
d
e
r−

lim
it

0
2
5

5
0

7
5

1
0
0

Fig. 6: Percent of cases under-limit.

●
●
● ●●●

●●● ●● ●●● ●● ●● ●● ●
● ●

●

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Performance−Power Frontier,

lud

Power (watts)

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

●

Perf−Power Pareto

GPU OpenCL

CPU OpenMP

Fig. 7: Power-performance frontier of LU Small.

benchmarks. Over all benchmarks, Model+FL achieves a min-
imum of 74.9% of oracle performance, while the state-of-the-
practice methods, CPU+FL and GPU+FL, achieve only 13.3%
and 62.4% of oracle performance for their respective worst-
case benchmarks. Similarly, Model+FL outperforms the other
methods in respecting power constraints. Figure 6 indicates
that Model+FL meets power constraints more often than all
other methods for all benchmark/input combinations except
SMC, where CPU+FL meets constraints more often, and
LU Small, where Model+FL ties with GPU+FL at 57.1%.
LU Small (Figure 7) is representative of multiple challenges
encountered in attempting to meet power constraints. First,
when available power changes from 17.2 watts to 17.6 watts,
achievable normalized performance changes from 10.4% to
89.0% as a result of switching from the CPU to the GPU.
Second, all configurations with three or four cores use more
than 17.2 watts on LU Small, which requires the power-
limiting method to not only select the correct device, but also
select the correct number of cores, even when combined with
frequency-limiting. These challenges hinder all of the tested
methods from meeting power constraints in multiple kernels,
including LU Small. Model+FL and GPU+FL both select the
GPU at all power constraints, leaving them unable to meet



CPU+FL
GPU+FL

Model
Model+FL

Over−limit Power vs Oracle by Benchmark

Benchmark

%
 o

f O
ra

cl
e 

Po
we

r

0
50

10
0

15
0

20
0

25
0

SMC

LU
LE

SH Lg

LU
LE

SH Sm

CoM
D Lg

CoM
D Sm

LU
 Lg

LU
 Sm

Fig. 8: Power vs oracle in over-limit cases.

CPU+FL
GPU+FL
Model
Model+FL

Over−limit Performance by Benchmark

Benchmark

%
 o

f O
ra

cl
e 

Pe
rfo

rm
an

ce

0
10

0
20

0
30

0
40

0
50

0

SMC

LU
LE

SH Lg

LU
LE

SH Sm

CoM
D Lg

CoM
D Sm

LU
 Lg

LU
 Sm

Fig. 9: Performance vs oracle in over-limit cases. It is possible
to exceed oracle performance only when also exceeding oracle
power. The clipped values from GPU+FL are 1218% for SMC,
9297% for LU Large, and 627% for LU Small.

constraints under 17.6 watts. CPU+FL always runs on four
threads, thus violating the lower constraints.

Figure 8 details cases in which the methods do not meet
power constraints. In these cases, Model+FL uses less power
than the other methods for all of the benchmark/input combi-
nations except LULESH Large, where CPU+FL uses 110%
of oracle power vs 120% for Model+FL, and LU Small,
where Model ties with Model+FL at 113%. Methods using
frequency-limiting are not able to meet some power constraints
because they select configurations with the inappropriate de-
vice (i.e. GPU instead of CPU), or they select configurations
with too many cores.

Figure 9 shows the impact of exceeding power constraints
for each method and benchmark. GPU+FL violates power
constraints 40% of the time, which frequently results in higher

power and performance than an oracle at the same power
constraint. In the most extreme example, GPU+FL achieves
92 times better performance than an oracle on LU Large,
but exceeds the power constraints by an average of 77%.
Model+FL experiences a similar effect, but the magnitude
is limited to a factor of 2.3 times oracle performance at an
average of 20% over the power constraint for LULESH Small.

VI. FUTURE WORK

A few features would significantly improve the utility of
our proposed model. One idea is to apply a variance-stabilizing
transformation to model inputs and outputs during the training
phase. This would give less weight to both very small and very
large fitted model values [19].

Taking variance into account when predicting best config-
urations could also improve model accuracy when applied to
new applications. If the confidence interval for a prediction
is large, it may be wise to choose another configuration with
smaller confidence interval and lower expected performance.

Few hardware features are exposed that directly affect power
consumption, but one that we did not yet include in our
machine configuration space is opportunistic overclocking.
This feature allows the CPU to increase its frequency beyond
user-selectable levels, but only when there is enough thermal
headroom; if the chip is too hot, such frequency boosting will
not engage.

Our system does not automatically differentiate between
invocations of the same kernel with distinct data inputs or input
sizes. For the purposes of this paper, we manually identified
multiple input sizes, but an OpenCL runtime could use readily
available information to accomplish this. For identifying use
in distinct contexts, the runtime could use call stacks to
differentiate between invocations of the same kernel from
distinct points in the application [28], [44].

Processor power is a major component of system power,
but not the only component. However, processor and memory
power make up the majority of system power. Network power
also contributes significantly to total system power [45] , but
memory power is more volatile than network power and thus
more amenable to our power management techniques. In future
work, we intend to account for memory power in addition to
processor power.

VII. CONCLUSIONS

In this paper, we demonstrate a power/performance model
that selects efficient configurations under imposed power con-
straints. Our model is trained offline by characterizing the ma-
chine with a small set of benchmarks. Importantly, our model
handles a much larger configuration space compared to prior
work, including multiple devices and parallel implementations.

We show that our model is practical through a significant
experimental study. Specifically, our model accurately predicts
power and performance for a set of 36 kernels from a range
of applications, and maintains 91% of optimal performance
while meeting power constraints 88% of the time.



VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship un-
der Grant No. 1216829. This work was partially performed
under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.

REFERENCES

[1] H. David, E. Gorbatov, U. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory power estimation and capping,” in ACM/IEEE International
Symposium on Low Power Electronics and Design. ACM, 2010, pp.
189–194.

[2] S. Nussbaum, “Amd trinity fusion apu,” in Proceedings of the Hot Chips:
A Symposium on High Performance Chips, 2012.

[3] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Nikolopoulos,
“Online power-performance adaptation of multithreaded programs using
hardware event-based prediction,” in ACM International Conference on
Supercomputing, vol. 28, 2006, pp. 157–166.

[4] M. Curtis-Maury, K. Singh, S. McKee, F. Blagojevic, D. Nikolopoulos,
B. De Supinski, and M. Schulz, “Identifying energy-efficient concur-
rency levels using machine learning,” in IEEE International Conference
on Cluster Computing. IEEE, 2007, pp. 488–495.

[5] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Nikolopoulos,
“Online strategies for high-performance power-aware thread execution
on emerging multiprocessors,” in IEEE International Parallel and Dis-
tributed Processing Symposium, 2006.

[6] M. Curtis-Maury, A. Shah, F. Blagojevic, D. Nikolopoulos, B. de Supin-
ski, and M. Schulz, “Prediction models for multi-dimensional power-
performance optimization on many cores,” in International Conference
on Parallel Architectures and Compilation Techniques, 2008.

[7] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:
adaptive dvfs and thread packing under power caps,” in Proceedings of
the 44th annual IEEE/ACM international symposium on microarchitec-
ture. ACM, 2011, pp. 175–185.

[8] S. Reda, R. Cochran, and A. K. Coskun, “Adaptive power capping for
servers with multithreaded workloads,” IEEE Micro, vol. 32, no. 5, pp.
0064–75, 2012.

[9] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee, “Methods of inference and learning for performance
modeling of parallel applications,” in Proceedings of the 12th ACM SIG-
PLAN symposium on Principles and practice of parallel programming.
ACM, 2007, pp. 249–258.

[10] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: a
machine learning based approach,” ACM Sigplan Notices, vol. 44, no. 4,
pp. 75–84, 2009.

[11] A. Karami, S. A. Mirsoleimani, and F. Khunjush, “A statistical perfor-
mance prediction model for opencl kernels on nvidia gpus,” in Computer
Architecture and Digital Systems (CADS), 2013 17th CSI International
Symposium on. IEEE, 2013, pp. 15–22.

[12] A. Kerr, E. Anger, G. Hendry, and S. Yalamanchili, “Eiger: A framework
for the automated synthesis of statistical performance models,” in High
Performance Computing (HiPC), 2012 19th International Conference
on. IEEE, 2012, pp. 1–6.

[13] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” in Microar-
chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on. IEEE, 2009, pp. 45–55.

[14] D. Li, B. de Supinski, M. Schulz, K. Cameron, and D. Nikolopoulos,
“Hybrid MPI/OpenMP power-aware computing,” in IEEE International
Parallel and Distributed Processing Symposium, 2010, pp. 1–12.

[15] R. Springer, D. Lowenthal, B. Rountree, and V. Freeh, “Minimizing
execution time in MPI programs on an energy-constrained, power-
scalable cluster,” in Symposium on Principles and Practice of Parallel
Programming, 2006, pp. 230–238.

[16] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Formal online
methods for voltage/frequency control in multiple clock domain mi-
croprocessors,” SIGARCH Comput. Archit. News, vol. 32, no. 5, pp.
248–259, Oct. 2004.

[17] S. Hong and H. Kim, “An integrated gpu power and performance model,”
in ACM SIGARCH Computer Architecture News, vol. 38, no. 3. ACM,
2010, pp. 280–289.

[18] J. Li and J. Martinez, “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in IEEE International
Conference High-Performance Computer Architecture, 2006, pp. 77–87.

[19] B. Lee and D. Brooks, “Accurate and efficient regression modeling for
microarchitectural performance and power prediction,” in ACM SIGOPS
Operating Systems Review, vol. 40, no. 5. ACM, 2006, pp. 185–194.

[20] C.-H. Hsu and W. Feng, “Effective dynamic-voltage scaling through
CPU-boundedness detection,” in Fourth IEEE/ACM Workshop on Power-
Aware Computing Systems, Dec. 2004.

[21] B. Rountree, D. Lowenthal, M. Schulz, and B. De Supinski, “Practical
performance prediction under dynamic voltage frequency scaling,” in
International Green Computing Conference, Jul 2011.

[22] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-Based Mod-
els for Run-Time DVFS Orchestration in Superscalar Processors,” in
International Conference on Computing Frontiers, 2010.

[23] S. Eyerman and L. Eeckhout, “A Counter Architecture for Online DVFS
Profitability Estimation,” IEEE Transactions on Computers, 2010.

[24] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in IEEE/ACM
International Symposium on Microarchitecture, 2006, pp. 347–358.

[25] I. Paul, V. Ravi, S. Manne, M. Arora, and S. Yalamanchili, “Coordi-
nated energy management in heterogeneous processors,” in Proceedings
of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2013, p. 59.

[26] K. Shen, A. Shriraman, S. Dwarkadas, and X. Zhang, “Power and energy
containers for multicore servers,” in ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Mar. 2013.

[27] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
“Decomposable and responsive power models for multicore processors
using performance counters,” in International Conference on Supercom-
puting, Jun. 2010.

[28] B. Rountree, D. K. Lowenthal, B. de Supinski, M. Schulz, and V. W.
Freeh, “Adagio: Making DVS practical for complex HPC applications,”
in International Conference on Supercomputing, Yorktown Heights,
N.Y., USA, Jun. 2009.

[29] K. Cameron, X. Feng, and R. Ge, “Performance-constrained, distributed
DVS scheduling for scientific applications on power-aware clusters,” in
Supercomputing, Nov. 2005.

[30] J. C. Beyer, E. J. Stotzer, A. Hart, and B. R. de Supinski, “Openmp for
accelerators,” in OpenMP in the Petascale Era. Springer, 2011.

[31] T. R. Scogland, B. Rountree, W.-c. Feng, and B. R. de Supinski,
“Heterogeneous task scheduling for accelerated openmp,” in Parallel
& Distributed Processing Symposium (IPDPS), 2012 IEEE 26th Inter-
national. IEEE, 2012, pp. 144–155.

[32] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openacc–first
experiences with real-world applications,” in Euro-Par 2012 Parallel
Processing. Springer, 2012, pp. 859–870.

[33] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” International Journal of High Performance Computing Applica-
tions, vol. 14, no. 3, pp. 189–204, 2000.

[34] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81–93, 1938.

[35] M. J. Vavrek, “fossil: palaeoecological and palaeogeographical analysis
tools,” Palaeontologia Electronica, vol. 14, no. 1, p. 1T, 2011, r package
version 0.3.0.

[36] L. B. J. F. R. Olshen and C. J. Stone, “Classification and regression
trees,” Wadsworth International Group, 1984.

[37] B. Mohr, A. Malony, S. Shende, F. Wolf et al., Towards a performance
tool interface for OpenMP: An approach based on directive rewriting.
Forschungszentrum, Zentralinst. für Angewandte Mathematik, 2001.

[38] Advanced Configuration and Power Interface (ACPI) Specification, Std.
[Online]. Available: http://www.acpi.info/spec.htm

[39] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. IEEE, 2009, pp. 44–54.

[40] J. J. Dongarra, LINPACK users’ guide. Siam, 1979, no. 8.



[41] I. Karlin, “Lulesh programming model and performance ports overview,”
Lawrence Livermore National Laboratory (LLNL), Livermore, CA,
Tech. Rep., 2012.

[42] (2013) Comd. [Online]. Available: https://github.com/exmatex/CoMD
[43] T. Hastie, R. Tibshirani, and J. J. H. Friedman, The elements of statistical

learning. Springer New York, 2001, vol. 1.
[44] M. C. Huang, J. Renau, and J. Torrellas, “Positional adaptation of

processors: application to energy reduction,” in Computer Architecture,
2003. Proceedings. 30th Annual International Symposium on. IEEE,
2003, pp. 157–168.

[45] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-
system power analysis and modeling for server environments.” Inter-
national Symposium on Computer Architecture-IEEE, 2006.


