
Exploring the Energy-Time Tradeoff in MPI Programs
on a Power-Scalable Cluster

Vincent W. Freeh
Feng Pan Nandini Kappiah

Department of Computer Science
North Carolina State University�

vwfreeh,fpan2,nkappia � @ncsu.edu

David K. Lowenthal
Rob Springer

Department of Computer Science
The University of Georgia�

dkl,springer � @cs.uga.edu

Abstract

Recently, energy has become an important issue in high-
performance computing. For example, supercomputers that
have energy in mind, such as BlueGene/L, have been built;
the idea is to improve the energy efficiency of nodes. Our
approach, which uses off-the-shelf, high-performance clus-
ter nodes that are frequency scalable, allows energy saving
by scaling down the CPU.

This paper investigates the energy consumption and exe-
cution time of applications from a standard benchmark suite
(NAS) on a power-scalable cluster. We study via direct mea-
surement and simulation both intra-node and inter-node ef-
fects of memory and communication bottlenecks, respec-
tively. Additionally, we compare energy consumption and
execution time across different numbers of nodes.

Our results show that a power-scalable cluster has the
potential to save energy by scaling the processor down to
lower energy levels. Furthermore, we found that for some
programs, it is possible to both consume less energy and
execute in less time when using a larger number of nodes,
each at reduced energy. Additionally, we developed and val-
idated a model that enables us to predict the energy-time
tradeoff of larger clusters.

1. Introduction

Recently, power-aware computing has gained traction in
the high-performance computing (HPC) community. As a
result, low-power, high-performance clusters, such as Blue-
Gene/L [1] or Green Destiny [32], have been developed to
stem the ever-increasing demand for energy. Such systems
improve the energy efficiency of nodes. Consider the case of
Green Destiny—a cluster of Transmeta processors—which
consumes less energy than a conventional supercomputer.
In particular, Green Destiny consumes about one third of
the energy per unit performance than the ASCI Q machine.

However, because Green Destiny uses a slower (and cooler)
microprocessor, ACSI Q is about 15 times faster per node
(200 times overall) [32]. A reduction in performance by
such a factor surely is unreasonable from the point of view
of many users. If performance is the only goal, then one
should continue on the current “performance-at-all-costs”
path of HPC architectures. On the other hand, if power is
paramount, then one should use a low-performance archi-
tecture that executes more instructions per unit energy.

We believe one should strike a path between these two
extremes. This is conceptually possible because an increase
in CPU frequency generally results in a smaller increase in
application performance. The reason for this is that the CPU
is not always the bottleneck resource. Therefore, increas-
ing frequency also increases CPU stalls—usually waiting
for memory or communication. Consequently, there are op-
portunities where energy can be saved, without an undue
performance penalty, by reducing CPU frequency.

As a preliminary step, this paper studies the tradeoff be-
tween power and performance (or equivalently energy and
time) for HPC. In particular, this paper makes two key con-
tributions. First, we evaluate a real, small-scale power-
scalable cluster, which is a cluster composed of proces-
sors that are each frequency and voltage scalable—i.e., their
clock speed and power consumption can be changed dy-
namically. This illustrates the tradeoff between the power-
conserving benefits and the time-increasing costs of such a
machine. Second, in order to estimate the potential for large
power-scalable clusters, we developed a simulation model
that allows us to predict energy consumed and time taken.
Studies like this are needed so that architects can make in-
formed decisions before building or purchasing large, ex-
pensive power-scalable clusters.

We used the NAS benchmark suite for evaluation. Our
results show that the potential for energy savings from us-
ing a slower gear depends on the benchmark. In particu-
lar, we found that on one node, it is possible to use 10%
less energy while increasing time by 1%, with CG. How-
ever, with EP there was essentially no savings. We present

a simple metric that predicts this energy-time tradeoff. Ad-
ditionally, we found that in some cases one can save energy
and time by executing a program on more nodes at a slower
gear rather than on fewer nodes at the fastest gear. We be-
lieve this will be important in the future, where a program
running on a cluster may be allowed to generate only a lim-
ited amount of heat. Finally, this paper presents a model for
estimating energy consumption. It validates the model on a
real power-scalable cluster, then extrapolates to determine
the benefit of a larger power-scalable cluster.

The rest of this paper is organized as follows. Section 2
describes related work. Next, Section 3 discusses the mea-
sured results on our power-scalable cluster. The next section
presents our simulation results up to 32 nodes. Finally, Sec-
tion 5 summarizes and describes future work.

2. Related Work

There has been a voluminous amount of research per-
formed in the general area of energy management. In
this section, we describe some of the closely related re-
search. We divide the related work into two categories:
server/desktop systems and mobile systems.

2.1. Server/Desktop Systems

Several researchers have investigated saving energy in
server-class systems. The basic idea is that if there is a large
enough cluster of such machines, such as in hosting cen-
ters, energy management can become an issue. In [5], Chase
et al. illustrate a method to determine the aggregate sys-
tem load and then determine the minimal set of servers that
can handle that load. All other servers are transitioned to a
low-energy state. A similar idea leverages work in cluster
load balancing to determine when to turn machines on or
off to handle a given load [26, 27]. Elnozahy et al. [10] in-
vestigated the policy in [26] as well as several others in a
server farm. Such work shows that power and energy man-
agement are critical for commercial workloads, especially
web servers [3, 21]. Additional approaches have been taken
to include DVS [9, 28] and request batching [9]. The work
in [28] applies real-time techniques to web servers in order
to conserve energy while maintaining quality of service.

Our work differs from most prior research because it
focuses on HPC applications and installations, rather than
commercial ones. A commercial installation tries to reduce
cost while servicing client requests. On the other hand, an
HPC installation exists to speedup an application, which is
often highly regular and predictable. One HPC effort that
addresses the memory bottleneck is given in [18]; however,
this is a purely static approach.

In server farms, disk energy consumption is also sig-
nificant. One study of four energy conservation schemes
concludes that reducing the spindle speed of disks is the

only viable option for server farms [4]. DRPM is a scheme
that dynamically modulates the speed of the disk to save
energy [14, 15]. Another approach is to improve cache
performance—if many consecutive disk accesses are cache
hits, the disk can be profitably powered down until there is
a miss; this is the approach taken by [36]. An alternative
is to use an approach based on inspection of the program
counter [12]; the basic idea is to infer the access pattern
based on inspection of the program counter and shut down
the disk accordingly. A final approach is to try to aggregate
disk accesses in time. A compiler/run-time approach using
this was designed and implemented in [16], and a prefetch-
ing approach in [25]. Both were designed for mobile sys-
tems but can be directly applied to server/desktop systems.

There are also a few high-performance computing clus-
ters designed with energy in mind. One is BlueGene/L [1],
which uses a “system on a chip” to reduce energy. An-
other is Green Destiny [32], which uses low-power Trans-
meta nodes. A related approach is the Orion Multisystem
machines [23], though these are targeted at desktop users.
However, using a low-power processor sacrifices perfor-
mance in order to save energy.

2.2. Mobile Systems

There is also a large body of work in saving energy in
mobile systems; most of the early research in energy-aware
computing was on these systems. Here we detail some of
these projects.

At the system level, there is work in trying to make the
OS energy-aware through making energy a first class re-
source [29, 8, 6]. Our approach differs in that we are con-
cerned with saving energy in a single program, not a set
of processes. One important avenue of application-level re-
search on mobile devices focuses on collaboration with the
OS (e.g., [22, 33, 35, 2]). Such application-related ap-
proaches are complementary to our approach.

In terms of research on device-specific energy savings,
there is work in the CPU via DVS (e.g., [11, 13, 24]),
the disk via spindown (e.g., [17, 7]), and on the memory
or network [20, 19]. The primary distinction between these
projects and ours is that energy saving is typically the pri-
mary concern in mobile devices. In HPC applications, per-
formance is still the primary concern.

3. Measured Results

This section describes the results of our experiments us-
ing our power-aware cluster. We studied the programs in
the NAS parallel benchmark suite on all valid configura-
tions using up to 9 nodes. Presumably, such mature bench-
marks have been thoroughly analyzed and are well-written
(e.g., see [34])—so that they are not unrealistically commu-
nication bound.

 130

 135

 140

 145

 150

 155

 160

 165

 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25
 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

(a) BT B

 58

 60

 62

 64

 66

 68

 70

 72

 500 550 600 650 700

 0.825

 0.85

 0.875

 0.9

 0.925

 0.95

 0.975

 1
 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

(b) CG B

 45

 50

 55

 60

 65

 350 400 450 500 550 600 650 700 750

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 1.25 1.5 1.75 2 2.25 2.5

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

(c) EP B

 150

 155

 160

 165

 170

 175

 1100 1200 1300 1400 1500 1600 1700 1800 1900
 0.9

 0.925

 0.95

 0.975

 1

 1.025

 1.05

 1.075

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

(d) LU B

 31

 32

 33

 34

 35

 36

 37

 38

 39

 250 300 350 400

 0.95

 1

 1.05

 1.1

 1.15

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
E

ne
rg

y
co

ns
um

pt
io

n
(k

J)

Execution time (s)

(e) MG B

 150

 155

 160

 165

 170

 175

 1200 1300 1400 1500 1600 1700 1800
 0.825

 0.85

 0.875

 0.9

 0.925

 0.95

 0.975

 1
 1 1.1 1.2 1.3 1.4 1.5 1.6

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

(f) SP B

Figure 1. Energy consumption vs execution time for NAS benchmarks on a single AMD machine.

This study uses, as a reference example, a cluster of
ten nodes, each equipped with a frequency- and voltage-
scalable AMD Athlon-64. We run each program at each
available energy gear: 2000 MHz, 1800 MHz, 1600 MHz,
1400 MHz, 1200 MHz, and 800 MHz.1 The voltage, which
ranges from 1.5–1.0V, is reduced in each gear. Each node
has 1GB main memory, a 128KB L1 cache (split), and a
512KB L2 cache, and the nodes are connected by 100Mb/s
network. In this paper, we control the CPU power and mea-
sure overall system energy. This is effective in saving en-
ergy because the CPU—a major power consumer—uses
less power. In particular, the Athlon CPU used in this study
consumes approximately 45-55% of overall system energy.2

For each program we measure execution time and energy
consumed for an application at a range of energy gears. Ex-
ecution time is elapsed wall clock time. The voltage and
current consumed by the entire system is measured by pre-
cision multimeters at the wall outlet to determine the in-
stantaneous power (in Watts). This value is integrated over
time to determine the energy used. Integration is performed

1 The 1000 MHz does not work reliability on a few of the nodes.
2 CPU power is not measured directly. However, the system power at

the fastest energy gear is 140–150 W. The AMD datasheet states that
the maximum CPU power consumption is 89 W. We estimate the peak
power of the CPU for our application is in the range of 70–80 W,
which is 45–55% of system power.

by a separate computer that samples two multimeters sev-
eral tens of times a second.

We divide our results into two parts. First, we discuss
results on a single processor. This shows the energy-time
tradeoff due to the memory bottleneck. The next section
shows time and energy results for the NAS suite on multi-
ple nodes. This shows the effect of the communication bot-
tleneck as well as the energy-time tradeoff when the num-
ber of nodes increases.

3.1. Single Processor Results

Figure 1 shows the results of executing 6 NAS programs
on a single Athlon-64 processor. The NAS FT benchmark
is not shown because we cannot get it to work, and IS is not
shown because (1) class B is too small to get any parallel
speedup and (2) class C thrashes on 1 and 2 nodes, making
comparative energy results meaningless. For each graph, the
total system energy consumed at each gear (gear 1 is fastest,
gear 6 is slowest) is plotted on the y-axis and the total exe-
cution time is plotted on the x-axis. The higher of two points
uses more energy, and the further right of two points takes
more time. Therefore, a near-vertical slope indicates an en-
ergy savings with little time delay between adjacent gears,
whereas a horizontal slope indicates a time penalty and no
energy savings. For readability, the origin of the graphs is

not ��������� . Therefore, the alternate axes show the time and
energy relative to the fastest gear (leftmost point).

All of our tests show that for a given program, using
the fastest gear takes the least time (i.e., it is the leftmost
point on the graph). The greatest relative savings in energy
is 20%, which occurs in CG operating at gear 5 (1200MHz).
This savings incurs a delay (increase in execution time) of
almost 10%. The best savings relative to performance oc-
curs at gear 2 (1800MHz) which saves 9.5% energy with
a delay less than 1%. On the other hand, EP at 1800MHz
saves 2% energy with an 11% delay. This delay is approxi-
mately the same as the increase is CPU clock cycle.

At a lower gear, a given program runs longer; if the de-
crease in power exceeds the increase in time, a lower gear
uses less energy. We have found that the increase in time
from one gear to another is bounded above and below as fol-
lows: �
	�������� 	 � � ���� , where ��� and ��� are the execution
time and frequency at gear � , respectively. In words, shift-
ing to a slower gear will never speed up a program, nor will
it slow a program by more than the increase in CPU cycle
time. This makes intuitive sense and is borne out by our em-
pirical results. Further testing shows that a program with a
time increase close to the upper bound has the CPU on the
critical path. In other words, its performance depends on the
throughput of the CPU. EP is representative of such a pro-
gram. On the other hand, a program such as CG, which has
a small time increase at slower gears, is largely indepen-
dent of CPU frequency. Because we tested the in-core ver-
sion of NAS (i.e., class B), these programs do not have sig-
nificant I/O. Therefore, programs that are not dependent on
the CPU do not have the CPU on the critical path, e.g., the
memory subsystem is instead on the critical path. One more
test that also shows the dependency on CPU or memory is
the effect the gear has on overall UPC (micro-operations per
cycle). In memory-bound applications, the UPC increases
as frequency decreases. This increase is because the cycle
time of the processor increases, but the memory latency re-
mains the same. At a lower frequency, memory latency is
less in terms of CPU cycles. Consequently, there fewer de-
lay slots that must be filled, and ILP increases.

We looked for a predictor of the energy-time tradeoff.
The typical measure of IPC or UPC is problematic because
it varies too much. The programs we consider in this sec-
tion do not perform much I/O. Therefore, the memory sys-
tem is the only other component that could be on the criti-
cal path. The metric we chose is micro-operations per mem-
ory reference (i.e., per L2 cache miss). This value stays con-
stant as the frequency changes. What UPM (� op/miss) in-
dicates is the pressure exerted on the memory system by the
program. Misses per cycle or per second are dependent on
CPU frequency and, therefore, are not useful.

Table 1 shows the UPM for 6 NAS benchmark programs.
The benchmarks are sorted from highest to lowest, ranging
from a high of 844 for EP to a low of 8.60 for CG. The next

UPM Slope ����� Slope � ��!
EP 844. -0.189 0.288
BT 79.6 -0.811 0.0510
LU 73.5 -1.78 -0.355
MG 70.6 -1.11 -0.161
SP 49.5 -5.49 -1.52
CG 8.60 -11.7 -1.69

Table 1. Predicting energy-time tradeoff.

column shows the slope of the energy-time curve from the
fastest gear to gear 2, computed as "$#&%�" �� #&% � � . A large negative
number indicates a near vertical slope and a significant en-
ergy savings relative to the time delay. On the other hand, a
small negative number indicates a near horizontal slope and
little energy savings. The last column shows the slope from
second to third gear. Except for MG, we see that the slopes
are also sorted, in this case from greatest (positive) to least
(negative). Because the more negative slope indicates a bet-
ter energy-time tradeoff, this table shows that memory pres-
sure tends to predict the energy-time tradeoff.

3.2. Multiple Processor Results

The previous section investigated the energy-time trade-
off on a single node. This section studies the effect of dis-
tributed programs. Figure 2 shows results from six NAS
programs. Results from FT and IS are not shown for the rea-
sons stated above. Each graph has the same general layout
as in Figure 1, except that it shows the results from multi-
ple experiments: 2, 4, and 8 nodes (or 4 and 9 nodes in the
case of BT and SP). It also plots the one-node results from
the previous section, but in most cases the data are to the
right of the window of time shown. The energy plotted is
cumulative energy of all nodes used.

Before discussing the results, we describe the possible
layouts of these graphs. First, for a fixed number of nodes,
the shape of the curve depends on the memory and commu-
nication bottlenecks. This is because in a distributed pro-
gram, not only might a processor wait for the memory sub-
system, but at times it also might block awaiting a message.
In either scenario, the CPU is not on the critical path, and
idle or slack time is more efficiently spent at a lower en-
ergy gear.

Second, consider the possible effects when comparing
an experiment with �(' nodes versus one with ' nodes. The
following possibilities exist. Note that we do not consider
the case where the time on ��' nodes is larger than on '
nodes.

1. The curve for ��' nodes can lie completely above and
to the left of the curve for ' nodes. Each point on the
��' node curve lies above all points on the ' node

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

E
ne

rg
y

C
on

su
m

pt
io

n
(K

J)

Execution time (s)

1 node
4 nodes
9 nodes

(a) BT B

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400

E
ne

rg
y

C
on

su
m

pt
io

n
(K

J)

Execution time (s)

1 node
2 nodes
4 nodes
8 nodes

(b) CG B

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

E
ne

rg
y

C
on

su
m

pt
io

n
(K

J)

Execution time (s)

1 node
2 nodes
4 nodes
8 nodes

(c) EP B

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(K

J)

Execution time (s)

1 node
2 nodes
4 nodes
8 nodes

(d) LU B

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

E
ne

rg
y

C
on

su
m

pt
io

n
(K

J)

Execution time (s)

1 node
2 nodes
4 nodes
8 nodes

(e) MG B

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800

E
ne

rg
y

C
on

su
m

pt
io

n
(K

J)

Execution time (s)

1 node
4 nodes
9 nodes

(f) SP B

Figure 2. Energy consumption vs execution time for NAS benchmarks on 2, 4, and 8 (or 2 and 9)
nodes.

curve. This case occurs when the program achieves
poor speedup on ��' nodes compared to ' nodes.

2. The point that represents the fastest energy gear for ��'
nodes can be to the left, at or below, the corresponding
point on the curve for ' nodes. This case occurs when
the program achieves perfect or superlinear speedup
on ��' nodes compared to ' nodes.

3. The curve for ��' nodes can lie to the left of the curve
for ' nodes, but not completely above or below the
fastest gear point for ' . This is the most interesting
case. While the program executes faster and consumes
more energy in the fastest gear on ��' nodes than on
' nodes, there is a lower gear at ��' nodes that has
less energy consumption than the fastest gear point at
' nodes. Therefore, it is possible to achieve better exe-
cution time and lower energy consumption by running
at a lower energy gear on ��' nodes than at a higher
energy gear on ' nodes. There is not an energy-time
tradeoff between these points because one point dom-
inates the other in both energy and time. This case oc-
curs case when speedup is good (i.e., not superlinear
and not poor) and there are a significant number of
main memory accesses (so that scaling down the pro-

cessor has only a slightly detrimental effect).

We describe each of the cases in turn below.

Case 1: Poor Speedup

Figure 2 offers several examples of case 1. In particular,
this case is illustrated in BT, SP, and MG from 2 to 4 nodes,
and CG from 4 to 8 nodes.

We believe in the future a given supercomputer cluster
will be restricted to a certain amount of power consumption
or heat dissipation. If there is a limit for energy/power con-
sumption or heat dissipation, this would be represented as a
horizontal line. For programs in this case, the line will in-
tersect at most one of the curves. The most desirable point
would be the leftmost (fastest) one under the limit.

Case 2: Superlinear Speedup

Figure 2 does not contain an example of superlinear
speedup. However, EP, which gets almost perfect speedup,
illustrates this case. Power consumption doubles when the
number of nodes doubles. Because the time is cut in half,
the total energy consumed is the same. With superlinear

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 100 200 300 400 500 600 700 800

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

2 nodes
4 nodes
6 nodes
8 nodes

10 nodes

Figure 3. Energy consumption vs. execution
time for Jacobi iteration on 2, 4, 6, 8, and 10
nodes.

speedup the energy consumption decreases as nodes are
added. When speedup is perfect or superlinear there is no
energy-time tradeoff, because the energy and time are never
better with fewer nodes.

Case 3: Good Speedup

Figure 2 shows several examples of this case. First, con-
sider LU at 4 and 8 nodes. Gear 4 on 8 nodes uses approx-
imately the same energy as the fastest gear on 4 nodes, but
executes 50% more quickly. The fastest gear on 8 nodes
executes 72% faster than on 4 nodes, but uses 12% more
energy. This case illustrates an additional choice not avail-
able in a conventional cluster, which only supports either
the fastest gear option (4 or 8 nodes). So a user must trade
off a performance increase against an energy increase. With
a power-scalable cluster, the user can select a slower gear on
8 nodes, which may offer better performance for the same
energy consumption. Thus, a user of a power-scalable clus-
ter has two dimensions to explore: (1) number of nodes and
(2) processor performance gear. In case 3, the user may be
able to get better performance by using more nodes, with
each node executing at a lower energy gear.

Next, Figure 3 plots data for a (hand-written) Jacobi iter-
ation application. This application is shown because it can
run at any number of nodes, unlike the NAS benchmarks.
The figure shows energy-time curves on 5 configurations:
2, 4, 6, 8, and 10 nodes. Because this application gets good
speedup (1.9, 3.6, 5.0, 6.4, and 7.7) each adjacent pair of
curves falls in case 3. For example, executing in second or
third gear on 6 nodes results in the program finishing faster
and using less energy than using first gear on 4 nodes.

Finally, we present results from a synthetic benchmark.
This benchmark models CG in terms of its cache miss rate,
but achieves good speedup (over 7 on 8 nodes). The pur-
pose of this benchmark is to show the potential of a power-

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 50 100 150 200 250 300 350 400 450

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

2 nodes
4 nodes
8 nodes

Figure 4. Synthetic benchmark with high
memory pressure.

scalable cluster. Figure 4 shows the results. Because the
miss rate is high (7%), the execution time penalty for scal-
ing down is low (e.g., 3% at gear 5, 1200MHz), and the
corresponding energy savings is large (e.g., 24% at gear 5).
Furthermore, compared to gear 1 on 4 nodes, gear 5 on 8
nodes uses 80% of the energy and executes in half the time.

4. Simulated Results

The previous section presented results on up to ten
power-scalable nodes. While the results are encourag-
ing, it is left unclear what performance (in time and
energy) can be expected for larger power-scalable clus-
ters. Most likely, before building or buying a large
power-scalable cluster, one would like to determine the per-
formance potential. As we do not have access to more than
ten nodes, this section seeks to address this issue by devel-
oping a simulation model.

4.1. Model

Understanding scalability of parallel programs is of
course a difficult problem; indeed, it is one of the fun-
damental problems in parallel computing [30, 31]. Re-
searchers try to predict scalability using a range of tech-
niques, from analytical to execution-based. We will use a
combination of both.

Our methodology for predicting the behavior of larger
power-aware clusters (that we cannot run programs on) is as
follows. We model computation and communication using
a combination of Amdahl’s law, trace gathering, and source
code inspection. To assist in understanding scalability, we
use results from a 32-node (non-power-scalable) cluster. Af-
ter that, we use the model to predict execution time on up to
32 power-scalable nodes at the fastest gear. (Our methodol-
ogy can be applied to larger instances, but we do not have
reliable results from a larger non-power-scalable cluster.)

To determine time and energy on slower gears, we measure
power consumption on a cluster node and use a straight-
forward algebraic formula. Below we describe our five-step
methodology in full detail.

Step 1: Gather time traces. The first step is to gather active
and idle times on � nodes (� � ��� � and � � ��� � , respectively,
where � � ��� � includes the actual communication time) on
each of our clusters. This includes the (ten-node) power-
scalable cluster described above as well as a 32-node Sun
cluster.3 The parameter � varies to include all configura-
tions on which the NAS suite can run. We gather the traces
at only the fastest gear on the power-scalable cluster, and
the Sun cluster is not power scalable. We decompose the to-
tal execution time into � � ��� � and � � ��� � by instrumenting
MPI. This instrumentation intercepts all relevant MPI calls,
and writes a timestamp to a log file.

For all MPI communication routines used in each bench-
mark, interception functions report the time at which the
routine was entered and exited. These operations create a
trace from which we recover active and idle times. To re-
duce perturbation, each trace record is written to a local
buffer.

Step 2: Model computation and communication. The sec-
ond step is to develop a model of computation and commu-
nication that is based on � � ��� � and � � ��� � . This will help
us predict (in step 3) � � ��� � and � � ��� � where ��� ��� , i.e,
for power-scalable configurations with more than ten nodes.
Our approach here is distinct for each quantity, out of neces-
sity: no matter what the gear, the power consumed is differ-
ent when computing than when blocking awaiting data. The
formulas below do not mention gear because all of these
measurements are taken at the fastest gear.

Determining �	� and ��
 . Here, we use Amdahl’s law to
estimate ��� and �
 , which denote the parallelizable and in-
herently sequential fractions of an application, respectively.
For a test with � nodes, we estimate ��� and �
 as follows:

�
�
� � ��� �

�
� � � ������� ������
 �

��� � ������

We obtain a family of �	� and ��
 values. We will use these to
determine �	� and �
 on large power-scalable clusters. Also,
� � ��� � represents the maximum computation time over all
nodes.

Classifying communication. Here, we recall that � � in-
cludes idle time and communication time. While idle time
(due to load imbalance) can be directly derived from � � ,
the communication cost cannot. Hence, our approach is to
categorize communication of each NAS program into one
of three groups: logarithmic, linear, or quadratic. These are
three common scaling behaviors for communication. To do

3 We also ran tests on a 64-node Xeon cluster, but as the network was
shared among several large jobs, the results were unreliable.

this, we rely on three complementary methods: (1) inspec-
tion of the behavior of our measured � � on up to nine
power-scalable nodes, (2) dynamic measurement of num-
ber of each MPI call as well as inspection of corresponding
source code, and (3) the literature in the field (e.g., [34]).
Specifically, we classified communication in BT, EP, MG,
and SP as logarithmic; CG as quadratic, and LU as linear.

Step 3: Extrapolation of � � ��� � and � � ��� � at fastest gear.
Third, we extrapolate to 16, 25, and 32 power-scalable
nodes, i.e., ������� . For a given number of nodes, � , the
sum of � � ��� � and � � ��� � yields the execution time.

Predicting active time: Predicting � � ��� � , requires an
appropriate �	� and �
 for 16 and 32 nodes on the power-
scalable cluster. Using our measured values on up to 32
nodes on the Sun cluster and up to 9 nodes on our power-
scalable cluster, we fit ��� and ��
 for 16, 25, and 32 nodes
on the power-scalable cluster using a linear regression.

Predicting idle time: Given the classification of commu-
nication behavior (logarithmic, linear, or quadratic) for each
application, we use regression to fit a curve to the commu-
nication using measured data on power-scalable nodes. This
gives us communication time on 16, 25, and 32 nodes.

Validation. Our technique is validated in the following
way. For � � ��� � , we compared �	� and �
 on up to 9 nodes
on both clusters. With only 1 exception, it was identical;
the outlier was CG, where the parallelism actually increases
from 4 to 8 nodes on our power-scalable cluster, but is con-
stant on the Sun cluster. For � � ��� � , each communication
shape that we chose for our power-scalable cluster is identi-
cal on the Sun cluster up to 32 nodes. We also note that [34]
supports our conclusion on five of the six programs. The ex-
ception is LU; for this program, we found that communica-
tion was best modeled as a constant; our traces showed that
when nodes are added, each node sends more messages, but
the average message size decreases.

Armed with estimates of � � ��� � and � � ��� � on larger
configurations (at the fastest gear), we now turn our atten-
tion to determining the effect of different energy gears on
execution time and energy consumption. The last two steps
in this methodology are concerned with this issue.

Step 4: Determine ��� , '�� , and ��� . The next step is to gather
power data from a single power-scalable node. Two values
will be needed on a per-application and per-gear basis: ap-
plication slowdown (���) and average power consumption
('��). Separately, the power consumption for an idle (i.e.,
inactive) system is determined for each gear (� �).

This data determines the increase in time and the de-
crease in power. The execution time for a sequential pro-
gram is wall clock time. This is done for each (sequential)
program at each energy gear. The ratio �	� is determined

as follows: ���!� �#"%$'&)(% � � $'&)(� � $�&*(. Now that we are discussing
gear, we modify our notation: ����� � � is the time on one node
at gear + .

The values ' � and ��� are obtained by measuring overall
system power. The voltage and current consumed by the en-
tire system is measured at the wall outlet to determine the
instantaneous power (in Watts), as described in Section 3.
This experimental setup determines the values, '�� , for each
application and for each gear. The same setup, except this
time with no application running, was used to determine the
power usage of an idle system (� �) at each gear.

Step 5: Determine ������� � and
� ����� � . The final step is

to estimate the time and energy consumption of a power-
scalable cluster using the information developed so far. The
time for a lower gear is computed by increasing the active
time by the appropriate ratio, �	� . We assume that execut-
ing in a reduced gear does not itself increase the idle time,
as our experimentation has shown that the time for com-
munication is independent of the energy gear—the compu-
tational load during MPI communication is quite low. Us-
ing the values of ' � and ��� , we can estimate energy con-
sumption at each lower gear for the MPI program. In this
straightforward case, the time and energy estimates, on �
nodes, for each gear are:

� ����� ��� ��� �
�
��� �	� �

�
��� � (1)� ����� ��� '�� ��� �

�
��� ��� ��� �

�
��� ��� (2)

At slower gears the compute time is greater than that of
the fastest gear, whereas the idle time is independent of the
gear. Thus the time executing in gear + increases to ��� � � .
Communication latency is independent of gear, so this is as-
sumed to remain the same.

However, this naive case above is too simple because it
assumes all computation is on the critical path. In many pro-
grams, not all computation is on the critical path. Of course,
reducing the energy gear of any computation on the crit-
ical path will delay other nodes, who must wait for data
sent from the (now slower) node. In the refined model, � �
is classified into what critical and reducible work (��� and
���), and in our estimates of computation we separate these
and estimate each. In short, executing reducible work in a
slower gear might not increase overall execution time, be-
cause an increase in the time of reducible work will de-
crease the idle time. On the other hand, executing critical
work in a slower gear always increases execution time. The
communication latency, which is unaffected by CPU fre-
quency, is delayed only by the slowdown applied to the crit-
ical work. The idle time is slack for the reducible work.
However, if reducible work is slowed such that all slack is
consumed, then the time will be extended. This point of in-
flection is when ��� � � � � ��� ��� .

The post-processing analysis conservatively determines
the reducible work to be computation between the last send4

and a blocking point. In between those two points there is

4 We assume that the send is asynchronous.

no interaction between nodes, so the work is not on the criti-
cal communication path. With this refinement, Equation (1)
changes as shown below. Note that for notational simplic-
ity, we omit number of nodes (�).

� � �
	 ����� � � � � � � �
�� � � � � � 	 ��� � �

����� ��� � ��� ��� � � � ��� � ��� ��� �������������
����
Then, Equation (2) becomes

� � ���� � '�� ����� ��� � ��� � �
�� � � � ��� 	 ��� ���
'�� ����� ��� � ��� �	� ����� � � � ��� � ��� ��� � ����� �!����
����

Assumptions The methodology described in this section
makes use of two assumptions. First, this methodology as-
sumes that the power consumed when an application is
computing is constant (because we use the average power).
This is reasonable as the observed power consumption for
regular applications is fairly constant (within a few percent-
age points). Second, it assumes that the power consumption
follows a step function, in that at all times the power con-
sumed is either '�� or ��� . In reality, the transition between
these power levels takes some time. However, this transi-
tion, which is very short, occurs on both sides of an idle pe-
riod, tending to equal out.

4.2. Evaluation
Figure 5 shows the results of our simulation on each ap-

plication ranging from 2–32 nodes. All node configurations
up to and including 9 nodes are actual runs on the cluster,
and configurations of 16, 25, and 32 nodes are simulated us-
ing the model discussed previously. (CG has a speedup of
less than one on 32 nodes, so that curve is not plotted.)

In the same way that the eight- and nine-node tests tend
to be more “vertical” than the two- and four-node tests, as
with the runs up to nine nodes, the shapes of the graphs tend
to become more “vertical” when using 16, 25, or 32 nodes;
i.e., using lower gears becomes a better idea. As an exam-
ple, consider SP. On four nodes, second gear consumes the
least energy. On the other hand, on 16 nodes, fourth gear
consumes the least energy.

One possible implication of this is that for massively par-
allel power-scalable clusters, the individual nodes can be
placed in a relatively low energy gear with only a modest
time penalty. As discussed in the previous section, this may
potentially allow for supercomputing centers to fit more
nodes in a rack while staying within a given power bud-
get. On the other hand, this could degrade performance sig-
nificantly if many applications for such machines are em-
barrassingly parallel.

Second, speedup on the NAS suite generally starts to tail
off around 25 or 32 nodes. Again, this is because this bench-
mark suite uses non-scaled speedup. The result of this is that
the total cluster energy consumed starts to increase dramat-
ically. Essentially, continuously increasing the number of

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

4 nodes
9 nodes

16 nodes
25 nodes

(a) BT B

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

2 nodes
4 nodes
8 nodes

16 nodes

(b) CG B

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes

(c) EP B

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes

(d) LU B

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes

(e) MG B

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Execution time (s)

4 nodes
9 nodes

16 nodes
25 nodes

(f) SP B

Figure 5. Simulated energy consumption vs execution time for NAS benchmarks on up to 32 nodes.

nodes causes an application to be placed in the poor speedup
classification (see previous section), which we know is en-
ergy inefficient. Also, for each application, there exists a
certain number of nodes that, if exceeded, will cause pro-
gram slowdown. It appears that that point is around 32
nodes for the NAS suite on our power-scalable Athlon-64
cluster.

This problem is not unique to power-aware computing;
indeed, it is a problem with roots in the scalability field.
However, it is clear that when this phenomenon occurs, it is
necessarily the case that communication dominates compu-
tation. This means that in fact a lower gear is almost certain
to be better. Hence, if one does not know what the paral-
lel efficiency for a given application is, using a lower en-
ergy gear is a safeguard against excessive energy consump-
tion.

5. Conclusions and Future Work
This paper has investigated the tradeoff between energy

and performance in MPI programs. We have studied trends
on both one processor and multiple processor programs. Us-
ing the NAS benchmark suite, we found for example that
on one node, it is possible to use 10% less energy while in-
creasing time by 1%. Additionally, we found that in some
cases one can save energy and time by executing a program
on more nodes at a slower gear rather than on fewer nodes at
the fastest gear. We believe this will be important in the fu-
ture, where a cluster may have heat limitations.

The reason why energy saving is possible is because of

delays in the processor, where executing at a high frequency
and voltage does not make the program execute faster, but
does waste energy. This delay is due to (1) the processor
waiting for the memory system to fetch a value or (2) the
processor blocking awaiting a message from a remote pro-
cessor.
Future Work. Armed with this preliminary information,
there are several avenues for future study. First we will con-
sider scaling down other components, such as the disk. Sec-
ond, we will consider what we call the node bottleneck, in
which a node reaches a synchronization point later than the
rest of the nodes. A node bottleneck can occur for a vari-
ety of reasons, but the end result is that early-arriving nodes
can be scaled down with little or no performance degrada-
tion. Third, we will develop a new MPI implementation that
will automatically monitor executing programs and auto-
matically reduce the energy gear appropriately. Finally, we
need to experiment with large-scale programs; while we be-
lieve the NAS programs are representative, they are not in-
dustrial codes that number in the tens or hundreds of thou-
sands of lines. Overall, the end goal of our research is the
development of an energy- and performance-efficient paral-
lel computing infrastructure.

Acknowledgments
This research was supported in part by NSF award CCF

0234285. We give special thanks to Dan Smith for some of
the low-level software and comments on early versions of
the paper.

References

[1] N. Adiga et al. An overview of the BlueGene/L supercom-
puter. In Supercomputing 2002, Nov. 2002.

[2] M. Anand, E. Nightingale, and J. Flinn. Self-tuning wireless
network power management. In Mobicom, Sept. 2003.

[3] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,
C. McDowell, and R. Rajamony. The case of power man-
agement in web servers. In R. Graybill and R. Melham, edi-
tors, Power Aware Computing. Kluwer/Plenum, 2002.

[4] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk
energy in network servers. In Proceedings of International
Conference on Supercomputing, pages 86–97, San Fransisco,
CA, 2003.

[5] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and
R. P. Doyle. Managing energy and server resources in host-
ing centres. In Symposium on Operating Systems Principles,
pages 103–116, 2001.

[6] C. C. Corporation, I. Corporation, M. Corporation, P. T. Ltd.,
and T. Corporation. Advanced configuration and power in-
terface specification, revision 2.0. July 2000.

[7] F. Douglis, P. Krishnan, and B. Bershad. Adaptive disk
spin-down policies for mobile computers. In Proc. 2nd
USENIX Symp. on Mobile and Location-Independent Com-
puting, 1995.

[8] C. Ellis. The case for higher-level power management. In
Proceedings of the 7th Workshop on Hot Topics in Operating
Systems, March 1999.

[9] E. Elnozahy, M. Kistler, and R. Rajamony. Energy conserva-
tion policies for web servers. In USITS ’03, 2003.

[10] E. M. Elnozahy, M. Kistler, and R. Rajamony. Energy-
efficient server clusters. In Workshop on Mobile Comput-
ing Systems and Applications, Feb 2002.

[11] K. Flautner, S. Reinhardt, and T. Mudge. Automatic
performance-setting for dynamic voltage scaling. In Pro-
ceedings of the 7th Conference on Mobile Computing and
Networking MOBICOM ’01, July 2001.

[12] C. Gniady, Y. C. Hu, and Y.-H. Lu. Program counter based
techniques for dynamic power management. In Proceedings
of the 10th International Symposium on High-Performance
Computer Architecture, Feb. 2004.

[13] D. Grunwald, P. Levis, K. Farkas, C. Morrey, and
M. Neufeld. Policies for dynamic clock scheduling. In Pro-
ceedings of 4th Symposium on Operating System Design and
Implementation, October 2000.

[14] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. Dynamic speed control for power management in
server class disks. In Proceedings of International Sympo-
sium on Computer Architecture, pages 169–179, June 2003.

[15] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. Reducing disk power consumption in servers with
DRPM. IEEE Computer, pages 41–48, Dec. 2003.

[16] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini.
Application transformations for energy and performance-
aware device management. In Proceedings of the 11th In-
ternational Conference on Parallel Architectures and Com-
pilation Techniques, Sept. 2002.

[17] D. P. Helmbold, D. D. E. Long, and B. Sherrod. A dynamic
disk spin-down technique for mobile computing. In Mobile
Computing and Networking, pages 130–142, 1996.

[18] C.-H. Hsu and U. Kremer. The design, implementation, and
evaluation of a compiler algorithm for CPU energy reduc-
tion. In ACM SIGPLAN Conference on Programming Lan-
guages, Design, and Implementation, June 2003.

[19] R. Krashinsky and H. Balakrishnan. Minimizing energy for
wireless web access with bounded slowdown. In Mobicom
2002, Atlanta, GA, September 2002.

[20] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware
page allocation. In Architectural Support for Programming
Languages and Operating Systems, pages 105–116, 2000.

[21] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler,
and T. W. Keller. Energy management for commerical
servers. IEEE Computer, pages 39–48, Dec. 2003.

[22] R. J. Minerick, V. W. Freeh, and P. M. Kogge. Dynamic
power management using feedback. In Workshop on Com-
pilers and Operating Systems for Low Power, pages 6–1–6–
10, Charlottesville, Va, Sept. 2002.

[23] O. Multisystems. http://www.orionmulti.com/.
[24] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,

J. Flinn, and K. R. Walker. Application-aware adaptation for
mobility. In Proceedings of the 16th ACM Symposium on
Operating Systems and Principles, pages 276–287, October
1997.

[25] A. E. Papathanasiou and M. L. Scott. Energy efficiency
through burstiness. In WMCSA, Oct. 2003.

[26] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Dy-
namic cluster reconfiguration for power and performance.
In Compilers and Operating Systems for Low Power, Sept.
2001.

[27] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load
balancing and unbalancing for power and performance in
cluster-based systems. In Workshop on Compilers and Op-
erating Systems for Low Power, Sept. 2001.

[28] V. Sharma, A. Thomas, T. Abdelzaher, and K. Skadron.
Power-aware QoS management in web servers. In 24th An-
nual IEEE Real-Time Systems Symposium, Cancun, Mexico,
Dec. 2003.

[29] A. Vahdat, A. Lebeck, and C. Ellis. Every joule is precious:
The case for revisiting operating system design for energy ef-
ficiency. SIGOPS European Workshop, 2000.

[30] J. S. Vetter. Performance analysis of distributed applications
using automatic classification of communication inefficien-
cies. In International Conference on Supercomputing, pages
245–254, May 2000.

[31] J. S. Vetter and M. McCracken. Statistical scalability analy-
sis of communication operations in distributed applications.
In Principles and Practice of Parallel Programming, pages
123–132, June 2001.

[32] M. Warren, E. Weigle, and W. Feng. High-density comput-
ing: A 240-node beowulf in one cubic meter. In Supercom-
puting 2002, Nov. 2002.

[33] M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Schedul-
ing for reduced CPU energy. In Operating Systems Design
and Implementation (OSDI ’94), pages 13–23, 1994.

[34] F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E.
Culler. Architectural requirements and scalability of the
NAS parallel benchmarks. In Proceedings of Supercomput-
ing ’99, Portland, OR, Nov. 1999.

[35] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Currentcy:
Unifying policies for resource management. In USENIX
2003 Annual Technical Conference, June 2003.

[36] Q. Zhu, F. M. David, C. Devaraj, Z. Li, Y. Zhou, and P. Cao.
Reducing energy consumption of disk storage using power-
aware cache management. In Proceedings of the 10th Inter-
national Symposium on High-Performance Computer Archi-
tecture (HPCA-10), Feb. 2004.

